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7th IFAC CONFERENCE on MANAGEMENT and CONTROL of
PRODUCTION and LOGISTICS (MCPL 2016)

Bremen, Germany, February 22-24, 2016
http://www.mcpl2016.logdynamics.de

The 7th IFAC Conference on Management and Control of Production and Logistics (MCPL
2016) will be held in Bremen (Germany) from 22nd to 24th of February 2016 jointly with the
5th International Conference on Dynamics in Logistics (LDIC 2016) and several satellite events.
Accepted papers will be published in the proceedings of the event using the open-access IFAC-
PapersOnLine.

Scope of the Conference
The conference, sponsored by IFAC, aims to bring together researchers and practitioners

from different areas of production and logistics with a special focus on the engineering side of
management and control of such systems. The central idea is to establish a common ground in
order to promote a synergy among different disciplines for exploring new solutions for complex
scientific and technical challenges. The objectives of the conference are to provide high quality
research and professional interactions for the advancement of science, technology and fellowship.
It also provides the participants an opportunity to present their research papers and experience
reports, and to take part in open discussions.

Topics
Topics of interest include, but are not limited to: Modeling and Simulation; Decision-Support

Systems: Concepts, Methods and Algorithms; Discrete Event Systems; Cyber-physical Production
and Logistic Systems; Probabilistic and Statistical Modeling; Production Planning and Scheduling;
Operational Research Applications; Control Methods and Concepts; Robotics and Man-Machine
Interaction; Factory Automation; Intelligent Manufacturing Systems; Advanced Process Control
and Wireless Automation; Lean Six Sigma: Enterprise, Manufacturing and Healthcare; ERP
and Inventory Control; Management of Organizations; Supply Chain and Green Supply Chain
Management; Urban Freight Distribution and City Logistics; Information Technology in Produc-
tion, Logistics and Management; Humanitarian Logistics; Socio-technical and Cognitive Aspects
in Manufacturing and Logistics; Quality Management Systems and Performance Indicators.

MCPL
The IFAC MCPL 2016 is the 7th in a very successful series of events, previously held in For-

taleza (Brazil), Campinas (Brazil), Grenoble (France), Santiago (Chile), Sibiu (Romania) and
Coimbra (Portugal). This seventh edition will be organized by the BIBA Bremer Institut für
Produktion und Logistik, one of the most important research centers for Production and Logistic
Systems in Europe. The conference will be held in the Hanseatic City Bremen on the banks of
the River Weser, one of the biggest logistics hubs in Europe. The city combines high-tech and
picturesque narrow streets built in centuries past, and its rich heritage of history is greatly cher-
ished and lovingly preserved. Bremen is the only city in Germany to have an airport ten minutes
away from the city. Destinations like London, Madrid, Munich or Vienna can be reached easily
by plane. Submissions The conference submission tool "PaperCept" will open in July 2015. Pa-
pers submitted to the main conference must contain original research and should not exceed six
pages. Simultaneous submission to other conferences with proceedings or submission of material
that has already been published elsewhere is not allowed.

Program Chairs: Jurgen Pannek (pan@biba.uni-bremen.de)
and Florin Gheorghe Filip (ffilip@acad.ro).
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Scope and Topics
The International Conference on Computers Communications and Control (ICCCC) has been

founded in 2006 by I. Dzitac, F.G. Filip and M.-J. Manolescu and organized every even year by
Agora University of Oradea, under the aegis of the Information Science and Technology Section
of Romanian Academy and IEEE - Romania Section.

The goal of this conference is to bring together international researchers, scientists in academia
and industry to present and discuss in a friendly environment their latest research findings on a
broad array of topics in computer networking and control.

The Program Committee is soliciting paper describing original, previously unpublished, com-
pleted research, not currently under review by another conference or journal, addressing state-
of-the-art research and development in all areas related to computer networking and control.

In particular the following topics are expected to be addressed by authors:
1) Integrated solutions in computer-based control and communications;
2) Network Optimization and Security;
3) Computational intelligence methods (with particular emphasis on fuzzy logic-based methods,
ANN, evolutionary computing, collective/swarm intelligence);
4) Data Mining and Intelligent Knowledge Management;
5) Advanced decision support systems (with particular emphasis on the usage of combined solvers
and/or web technologies);
6) Membrane Computing - Theory and Applications;
7) Stereovision Based Perception for Autonomous Mobile Systems and Advanced Driving Assis-
tance.

Special Sessions
Special Session 1: Network Optimization and Security, Organizer and Chair: Yezid DONOSO
(Colombia);
Special Session 2: Data Mining and Intelligent Knowledge Management, Organizers and Chairs:
Gang KOU (China) and Yi PENG (China);
Special Session 3: Computational Intelligence Methods, Organizers and Chairs: Razvan AN-
DONIE (USA) and Donald DAVENDRA (USA);
Special Session 4: Advanced Decision Support Systems, Organizer and Chair: Marius CIOCA
(Romania) and Felisa CORDOVA (Chile);
Special Session 5: Fuzzy Control, Modeling and Optimization, Organizer and Chair: Radu-Emil
PRECUP (Romania);
Special Session 6: Membrane Computing - Theory and Aplications, Organizers and Chairs: Mar-
ian GHEORGHE (UK) and Florentin IPATE (Romania);
Special Session 7: Stereovision Based Perception for Autonomous Mobile Systems and Advanced
Driving Assistance, Organizer and Chair: Sergiu NEDEVSCHI (Romania).
Keynote Speakers: Enrique HERRA VIEDMA(Spain), Zenonas TURSKIS (Lithuania), Gang
KOU (China).
Conference Chairs: Ioan DZITAC, Florin Gheorghe FILIP and Misu-Jan MANOLESCU.
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Foreword

R.R. Yager

Ronald R. Yager1

Iona College, New Rochelle, NY 10801, USA,
E-mail: yager@panix.com.

Here we are celebrating the fiftieth anniversary of Lotfi Zadeh’s pioneering paper Fuzzy Sets
that appeared in Information and Control in 1965. While the paper was clear, direct and easy
to understand the ideas presented were revolutionary and ground breaking. This article now
has close to sixty thousand citations as noted in Google Scholar. Clarity and simplicity are the
hallmark of the writing of Zadeh. This has always reminded me of the writings of Sigmund
Freud. One rarely needs to draw on complex mathematics to read Zadeh’s papers.

The capacity of fuzzy sets to represent and manage imprecise linguistic concepts has proven
to be of great use in the modern technological world where there is now a great interest in
building intelligent systems that can model human reasoning but take advantage of the vast
amount of information available on the Internet. If the idea of fuzzy sets was not introduced in
Zadeh’s ground breaking paper in the 1960’s it would have naturally arisen in early 2000’s as we
moved into intelligent systems. However the early reception of fuzzy sets was not very promising
both the Artificial Intelligence community and the probabilistic community were very dubious
of the worth of this new field. Interestingly a number of researchers from Romania, the home
of this journal, were among the early supporters of ideas presented by Zadeh. Zadeh persevered
in the face of adversity, describing himself as thick skinned, until mid 1980’s when the Japanese
engineers provided significant applications of fuzzy sets in control systems. Particularly notable
among these applications was the use of fuzzy control to the Sendai subway. These applications
brought a new appreciation to the possibilities of fuzzy sets and clearly changed its history.

The editors of this Special Issue of the International Journal of Computers Communications
& Control dedicated to the 50th anniversary of the publication of Lotfi Zadeh’s pioneering paper
Fuzzy Sets have provided a collection of papers representative of the current state of the field
of fuzzy sets. Included in this issue are papers investigating some current theoretical issues and
applied papers in domains in which fuzzy sets has introduced some benefits.

The editorial team is to be congratulated for providing a wonderful anniversary gift to Pro-
fessor Zadeh and a useful collection of articles for the community.

Ronald R. Yager
New York, October 2015

1Editor’s note: "Ronald R. Yager is Professor of Information Systems and Director of the Machine Intelligence Institute
at Iona College. He is among the world’s most highly cited researchers with over 47,000 citations (updated by editor) to
his work in Google Scholar. He is editor and chief of the International Journal of Intelligent Systems and serves on the
editorial board of numerous journals. He has published over 500 papers and edited over 30 books in areas related to fuzzy
sets, human behavioral modeling, decision-making under uncertainty and the fusion of information. He was the recipient of
the IEEE Computational Intelligence Society Pioneer award in Fuzzy Systems. He received the special honorary medal of
the 50-th Anniversary of the Polish Academy of Sciences. He received the Lifetime Outstanding Achievement Award from
International the Fuzzy Systems Association. He received honorary doctorate degrees, honoris causa, from the Azerbaijan
Technical University and the State University of Information Technologies, Sofia Bulgaria. Dr. Yager is a fellow of the
IEEE, the New York Academy of Sciences and the Fuzzy Systems Association. He has served at the National Science
Foundation as program director in the Information Sciences program. He was a NASA/Stanford visiting fellow and a
research associate at the University of California, Berkeley. He has been a lecturer at NATO Advanced Study Institutes.
He received his undergraduate degree from the City College of New York and his Ph. D. from the Polytechnic Institute
New York University." Source: http://www.iona.edu retrieved on 2th October 2015.

Copyright © 2006-2015 by CCC Publications
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The Fuzzification of Classical Structures: A General View

I. Dzitac

Ioan Dzitac
1. Aurel Vlaicu University of Arad,
Elena Dragoi 2, RO-310330 Arad, Romania
ioan.dzitac@uav.ro
2. Agora University of Oradea,
Piata Tineretului 8, RO-485526 Oradea, Romania
rector@univagora.ro

Abstract: The aim of this survey article, dedicated to the 50th anniversary of
Zadeh’s pioneering paper "Fuzzy Sets" (1965), is to offer a unitary view to some
important spaces in fuzzy mathematics: fuzzy real line, fuzzy topological spaces,
fuzzy metric spaces, fuzzy topological vector spaces, fuzzy normed linear spaces. We
believe that this paper will be a support for future research in this field.
Keywords: Fuzzy real line, fuzzy topological spaces, fuzzy metric spaces, fuzzy
topological vector spaces, fuzzy normed linear spaces, fuzzy F-space.

1 Introduction

An introduction in the classical set theory begins, in general, in the following way: by a set
we understand a collection of objects, well individualized, such that we can decide without any
ambiguity whether a given element belongs to that set or not. What should we do when we
cannot answer this question? Can we talk about sets described in natural language such as "the
set of beautiful women" or "the set of tall men"? Although these questions are natural they
were formulated only in 1965 by Lotfi A. Zadeh. In order to give answers to these questions,
L.A. Zadeh [61] introduced the concept of fuzzy set.

We present bellow some thoughts of Lotfi A. Zadeh, remembering the beginnings and the
current impact of fuzzy sets theory.

In [63] Lotfi A. Zadeh said: "In July of 1964, I was attending a conference in New York and
was staying at the home of my parents. They were away. I had a dinner engagement but it had
to be canceled. I was alone in the apartment. My thoughts turned to the unsharpness of class
boundaries. It was at that point that the simple concept of a fuzzy set occurred to me. It did not
take me long to put my thoughts together and write a paper on the subject. This was the genesis
of fuzzy set theory. I knew that the word "fuzzy" would make the theory controversial. Knowing
how the real world functions, I submitted my paper to Information and Control because I was a
member of the Editorial Board. There was just one review-which was very lukewarm. I believe
that my paper would have been rejected if I were not on the Editorial Board. Today (20 Dec.
2010), with over 26,000 Google Scholar citations, "Fuzzy Sets"is by far the highest cited paper
in Information and Control.

My paper was a turning point in my research. Since 1965, almost all of my papers relate to
fuzzy set theory and fuzzy logic. As I expected, my 1965 paper drew a mixed reaction, partly
because the word "fuzzy" is generally used in a pejorative sense, but, more substantively, because
unsharpness of class boundaries was not considered in science and engineering. In large measure,
comments of my paper were skeptical or hostile. An exception was Japan. In 1968, I began
to receive letters from Japan expressing interest in application of fuzzy set theory to pattern
recognition. In the years which followed, in Japan fuzzy set theory and fuzzy logic became
objects of extensive research and wide-ranging application, especially in the realm of consumer

Copyright © 2006-2015 by CCC Publications
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products. A very visible application was the subway system in the city of Sendai - a fuzzy logic-
based system designed by Hitachi and Kawasaki Heavy Industry. The system began to operate
in 1987 and is considered to be a great success."

On October 2, 2015 the paper "Fuzzy Sets" has already over 58,540 citations in Google
Scholar and all Zadeh’s papers have over 151,300 citations.

"Computation with information described in natural language (NL) is closely related to
Computing with Words. NL-Computation is of intrinsic importance because much of human
knowledge is described in natural language. This is particularly true in such fields as economics,
data mining, systems engineering, risk assessment and emergency management. It is safe to
predict that as we move further into the age of machine intelligence and mechanized decision-
making, NL-Computation will grow in visibility and importance." (L.A. Zadeh, [65]).

"What is thought-provoking is that neither traditional mathematics nor standard probability
theory has the capability to deal with computational problems which are stated in a natural
language. Not having this capability, it is traditional to dismiss such problems as ill-posed. In
this perspective, perhaps the most remarkable contribution of Computing with Words (CW) is
that it opens the door to empowering of mathematics with a fascinating capability - the capability
to construct mathematical solutions of computational problems which are stated in a natural
language. The basic importance of this capability derives from the fact that much of human
knowledge, and especially world knowledge, is described in natural language. In conclusion, only
recently did I begin to realize that the formalism of CW suggests a new and challenging direction
in mathematics - mathematical solution of computational problems which are stated in a natural
language. For mathematics, this is an unexplored territory." (L.A. Zadeh, [64]).

Since then many authors have developed the theory of fuzzy set and its applications. Espe-
cially, many mathematicians tried to extend in fuzzy context classical mathematics results. The
success of the research undertaken has been demonstrated in a variety of areas such as: artificial
intelligence, computer science, quantum particle physics, control engineering, robotics and many
more. Perhaps the main reason for this rapid development is that the world that surrounds us is
full of uncertainty, the data we collect from the environment are, in general, vague and incorrect.
So the notion of fuzzy set allows us to study the degree of uncertainty mentioned above in a
purely mathematical way.

2 Fuzzy Sets

The concept of fuzzy set was introduced by L.A. Zadeh [61] in 1965.

Definition 1. [61] A fuzzy set in X is a function µ : X → [0, 1]. We denote by F(X) the family
of all fuzzy sets in X.

Remark 2. In fact µ is the membership function of a fuzzy set A of X and the value µ(x)
represents "the grade of membership" of x to fuzzy set A. But, in this paper, we adopt the
convention to identify fuzzy sets with their membership functions. This identification was first
used by J.A. Goguen [19].

Remark 3. As any subset of X can be identified with its characteristic function we remark that
fuzzy sets generalize subsets.

Definition 4. [61] Let µ, ν be fuzzy sets in X. The union of fuzzy sets µ şi ν, denoted µ∨ ν, the
intersection of fuzzy sets µ şi ν, denoted µ ∧ ν, the complement of fuzzy set µ, denoted 1 − µ,
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are fuzzy sets in X, defined by

(µ ∨ ν)(x) = max{µ(x), ν(x)} (1)
(µ ∧ ν)(x) = min{µ(x), ν(x)} (2)

C(µ)(x) = 1− µ(x) (3)

Definition 5. The union of the fuzzy sets {µi}i∈I is defined by(∨
i∈I

µi

)
(x) = sup{µi(x) : i ∈ I} .

The intersection of the fuzzy sets {µi}i∈I is defined by(∧
i∈I

µi

)
(x) = inf{µi(x) : i ∈ I} .

Definition 6. Let α ∈ (0, 1], and let µ be a fuzzy set in X. The α-level set [µ]α is defined by

[µ]α := {x ∈ X : µ(x) ≥ α} .

The support of µ is
supp µ := {x ∈ X : µ(x) > 0} .

Definition 7. [61] Let X be a vector space over a field K (where K is R or C). A fuzzy set µ is
called convex if

µ(λx1 + (1− λ)x2) ≥ min{µ(x1), µ(x2)} , (∀)x1, x2 ∈ X, (∀)λ ∈ [0, 1] .

The extension principle is undoubtedly one of the most important of Zadeh’s contribution in
fuzzy set theory, allowing to extend in a fuzzy context almost any mathematical concept. The
extension principle was introduced by Zadeh [61] in 1965, and then it suffered many changes:
Zadeh [62]; Jain [24]; Dubois & Prade [14]. For more details of this principle and its extensions
we refer the reader to [66], [30].

Let X = X1×X2×· · ·×Xr and µ1, µ2, · · · , µr be fuzzy sets in X1, X2, · · · , Xr, respectively.
Let f : X → Y . The extension principle allows us to define a fuzzy set in Y by

µ(y) =

{
sup

(x1,··· ,xr)∈f−1(y)

min{µ1(x1), · · · , µr(xr)} if f−1(y) ̸= ∅

0 if f−1(y) = ∅
.

3 Fuzzy relations

It is well known that the fuzzy relations play an important role in fuzzy modeling and fuzzy
control and they also have important applications in relational databases, approximate reasoning,
preference modeling, medical diagnosis.

The concept of fuzzy relation was introduced by L.A. Zadeh in his classical paper [61].
According to L.A. Zadeh a fuzzy relation T between two nonempty sets X and Y is a fuzzy set
in X × Y , i.e. it is a mapping T : X × Y → [0, 1]. We denote by FR(X,Y ) the family of all
fuzzy relations between X and Y . For x ∈ X we denote by Tx the fuzzy set in Y defined by
Tx(y) = T (x, y). Thus, a fuzzy relation can be seen as a mapping X ∋ x 7→ Tx ∈ F(Y ), where
F(Y ) represents the family of all fuzzy sets in Y .
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Such mappings were investigated by various mathematicians under different aspects. Thus
N. Papageorgiou [46] called these mappings fuzzy multifunctions and studied the continuity of
these mappings. E. Tsiporkova, B. De Baets, E. Kerre [56, 57] called these maps fuzzy multi-
valued mappings and they defined lower and upper semi-continuous fuzzy multivalued mapping.
The relationships between these two types were studied completely. The continuity of fuzzy
multifunctions was also studied by I. Beg [6]. In papers [7, 8], I.Beg studied the linear fuzzy
multivalued operators and vector-valued fuzzy multifunctions. An application T : Rm → F(Rn)
is called a fuzzy process (see Y. Chalco-Cano, M.A. Rojas-Medar, R. Osuna-Gómez [9]).

A special attention was given to convex fuzzy processes. They were introduced by M. Matloka
[36] in 2000. Another concept of convex fuzzy process was proposed by Y. Syau, C. Low and T.
Wu [55] in 2002. A comparative study of these fuzzy convex processes was made in 2010 by D.
Qiu, F. Yang, L. Shu [47]. To avoid any confusion D. Qiu, F. Yang and L. Shu called the former
M-convex fuzzy process and the latter SLW-convex process.

In paper [41] special types of fuzzy relations on vector spaces were considered : affine fuzzy
relations, linear fuzzy relations, convex fuzzy relations, M-convex fuzzy relations. Some funda-
mental properties of fuzzy linear relations between vector spaces are considered in [43].

The domain D(T ) of T is a fuzzy set in X defined by D(T )(x) := sup
y∈Y

T (x, y) (see [56]). We

note that

supp D(T ) = {x ∈ X : Tx ̸= ∅} = {x ∈ X : (∃)y ∈ Y such that T (x, y) > 0} .

If for all x ∈ supp D(T ) there exists unique y ∈ Y such that T (x, y) > 0, then T is called fuzzy
function (or single-valued fuzzy function). In this case, we denote this unique y by T (x).

If µ ∈ F(X), then T (µ) ∈ F(Y ) is defined by T (µ)(y) := sup
x∈X

[T (x, y) ∧ µ(x)] (see [6]). In

particular, the range R(T ) of T is a fuzzy set in Y defined by R(T )(y) := sup
x∈X

T (x, y) [56].

Let T ∈ FR(X,Y ), S ∈ FR(Y, Z). The composition S ◦ T ∈ FR(X,Z) (or simply ST ) is
defined by (S ◦ T )(x, z) := sup

y∈Y
[T (x, y) ∧ S(y, z)] [61].

Proposition 8. Let T ∈ FR(X,Y ), S ∈ FR(Y,Z). Then (S ◦ T )x = S(Tx), (∀)x ∈ X.
Proposition 9. The operation ” ◦ ” is associative.

The inverse (or reverse relation) T−1 of a fuzzy relation T ∈ FR(X,Y ) is a fuzzy set in Y ×X
defined by T−1(y, x) = T (x, y). It is obvious that R(T ) = D(T−1) and R(T−1) = D(T ). We
remark that, for µ ∈ F(Y ), we have T−1(µ)(x) = sup

y∈Y
[T−1(y, x) ∧ µ(x)] = sup

y∈Y
[T (x, y) ∧ µ(x)] .

This type of inverse is usually called lower inverse [6].

4 Fuzzy real numbers

For the concept of fuzzy real number, arithmetic operation and ordering on the set of all
fuzzy real numbers we refer the reader to the papers [13, 14,17,25,26,38,59].
Definition 10. A fuzzy set in R, namely a mapping x : R → [0, 1], with the following properties:

1. x is convex, i.e. x(t) ≥ min{x(s), x(r)}, for s ≤ t ≤ r;

2. x is normal, i.e. (∃)t0 ∈ R : x(t0) = 1;

3. x is upper semicontinuous, i.e.

(∀)t ∈ R, (∀)α ∈ (0, 1] : x(t) < α,

(∃)δ > 0 such that |s− t| < δ ⇒ x(s) < α
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is called a fuzzy real number. We will denote by R(I) the set of all fuzzy real numbers.
Remark 11. Let x ∈ R(I). For all α ∈ (0, 1], the α-level sets [x]α = {t : x(t) ≥ α} are closed
intervals [aα, bα], where the values aα = −∞ and bα = ∞ are admissible. When aα = −∞, the
interval [aα, bα] will be denoted by (−∞, bα].
Definition 12. A fuzzy real number x is called non-negative if x(t) = 0, (∀)t < 0. The set of all
non-negative real numbers will be denoted by R∗(I).
Remark 13. For each r ∈ R we can consider the fuzzy real number r defined by

r(t) =

{
1 if t = r

0 if t ̸= r
.

These fuzzy numbers are called crisp. Thus R can be embedded in R(I).
Definition 14. [38] The arithmetic operations +,−, ·, / on R(I), are defined by:

(x+ y)(t) =
∨
s∈R

min{x(s), y(t− s)}, (∀)t ∈ R (4)

(x− y)(t) =
∨
s∈R

min{x(s), y(s− t)}, (∀)t ∈ R (5)

(xy)(t) =
∨
s∈R∗

min{x(s), y(t/s)}, (∀)t ∈ R (6)

(x/y)(t) =
∨
s∈R

min{x(ts), y(s)}, (∀)t ∈ R (7)

Remark 15. Previous definitions are special cases of Zadeh’s extension principle.
Remark 16. The additive and multiplicative operations are associative and commutative with
the identities 0 and 1, where

0(t) =

{
1 if t = 0

0 if t ̸= 0
, 1(t) =

{
1 if t = 1

0 if t ̸= 1
.

Remark 17. It is obvious that

1. −x = 0− x;

2. (−x)(t) = x(−t);

3. x− y = x+ (−y);

4. −(x+ y) = (−x) + (−y).

Definition 18. The absolute value |x| of x ∈ R(I) is defined by

|x|(t) =

{
max{x(t), x(−t)} if t ≥ 0

0 if t < 0
.

Proposition 19. [26] The equations a+ x = 0 and ax = 1 have unique solutions if and only if a
is crisp.
Definition 20. [16] A partial ordering on R(I) is defined by

x ≤ y if a1α ≤ a2α and b1α ≤ b2α , (∀)α ∈ (0, 1] ,

where [x]α = [a1α, b
1
α] and [y]α = [a2α, b

2
α].
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Proposition 21. [26] If [aα, bα], 0 < α ≤ 1, are the α-level sets of a fuzzy real number x, then:

1. [aα1 , bα1 ] ⊇ [aα2 , bα2 ], (∀)0 < α1 ≤ α2;

2. [ lim
k→∞

aαk
, lim
k→∞

bαk
] = [aα, bα], where {αk} is an increasing sequence in (0, 1] converging to

α.

Conversely, if [aα, bα], 0 < α ≤ 1, is a family of non-empty intervals which satisfy the conditions
(1) and (2), then the family [aα, bα] represents the α-level sets of a fuzzy real number.

Remark 22. As α-level sets of a fuzzy real number is an interval, there is a debate in the
nomenclature of fuzzy real numbers. In [15], D. Dubois and H. Prade suggested to call this fuzzy
interval. They developed a different notion of fuzzy real number by considering it as a fuzzy
element of the real line.

5 Fuzzy topological spaces

From the notion of fuzzy set, to the notion of fuzzy topological space, there was one more step
to be taken. Thus, in 1968, C.L. Chang [10] introduced the notion of fuzzy topological space.
The definition is a natural translation to fuzzy sets of the ordinary definition of topological space.
Indeed, a fuzzy topology is a family T , of fuzzy sets in X, such that T is closed with respect to
arbitrary union and finite intersection and X, ∅ ∈ T .

Definition 23. [10] Let X be an arbitrary set. A fuzzy topology on X is a family T ⊂ F(X)
satisfying the following axioms:

1. ∅, X ∈ T , where ∅ is characterized by the membership function µ(x) = 0, (∀)x ∈ X and X
is characterized by the membership function µ(x) = 1, (∀)x ∈ X;

2. If µ1, µ2 ∈ T , then µ1 ∧ µ2 ∈ T ;

3. If {µi}i∈I ⊂ T , then
∨
i∈I

µi ∈ T .

The pair (X, T ) will be called fuzzy topological space. The elements of T will be called open
fuzzy sets.

Definition 24. [10] Let (X, T ) be a fuzzy topological space. A fuzzy set µ1 is a neighborhood
of a fuzzy set µ2 if there exists an open fuzzy set µ such that µ2 ⊆ µ ⊆ µ1.

Theorem 5.1. Let (X, T ) be a fuzzy topological space. A fuzzy set µ is an open fuzzy set if and
only for each fuzzy set µ2 ⊆ µ, we have that µ is a neighborhood of µ2.

Definition 25. [10] Let X,Y be arbitrary sets and f : X → Y . If µ is a fuzzy set in Y , then the
inverse of µ, denoted as f−1(µ), is a fuzzy set in X defined by

f−1(µ)(x) := µ(f(x)), (∀)x ∈ X .

Conversely, if µ is a fuzzy set in X, the image of µ, denoted as f(µ), is a fuzzy sets in Y defined
by

f(µ)(y) =

{
sup

x∈f−1(y)

µ(x) if f−1(y) ̸= ∅

0 if f−1(y) = ∅
.

Definition 26. A function f from a fuzzy topological space (X, T ) to a fuzzy topological space
(Y,G) is said to be fuzzy continuous if the inverse of each open fuzzy set is an open fuzzy set.
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In 1976, R. Lowen [33] remarked that with Chang’s definition constant functions between
fuzzy topological spaces are not necessarily continuous. Thus R. Lowen suggested an alternative
and more natural definition replacing the condition X, ∅ ∈ T with every constant function belong
to T .

Let (X, T ) be a topological space. We recall that a function f : X → R is said to be lower
semi-continuous if for all a ∈ R, {x ∈ X : f(x) > a} is an open set in X.

Example 27. [33] Let (X, T ) be a topological space. The lower semi-continuous fuzzy topology
on X associated with T is

ω(T ) := {µ : X → [0, 1] : µ is lower semi-continuous} .

The usual fuzzy topology on K is the lower semi-continuous fuzzy topology generated by the
usual topology of K.

Remark 28. [34] If (X, Ti)i∈I is a family of topological spaces and T is the product topology on
X =

∏
i∈I

Xi, then ω(T ) is the product of fuzzy topologies ω(Ti), i ∈ I.

Definition 29. [33] The closure and the interior of a fuzzy set µ in a fuzzy topological space
(X, T ) are defined by

µ = inf{µ1 : µ ⊆ µ1 and C(µ1) ∈ T }
◦
µ= sup{µ1 : µ1 ⊆ µ and µ1 ∈ T } .

We must note that, in paper [37], J. Michálek defined and studied another concept of fuzzy
topological space which is quite different from the classic Chang’s definition. In paper [35] it is
shown the divergences between these two types of fuzzy topological spaces.

In paper [58], it is shown that the fuzzy continuous functions can be characterized by the
closure of fuzzy sets, a subbasis of a fuzzy topology, and a fuzzy neighborhood.

In [53] a more consistent approach to the use of ideas of fuzzy mathematics in general topology
has been developed.

Definition 30. [53] A fuzzy topological space is a pair (X, T ), where X is an arbitrary set and
T : F(X) → [0, 1] is a map satisfying the following axioms:

1. T (0) = T (1) = 1;

2. T (µ1 ∧ µ2) ≥ T (µ1) ∧ T (µ2), (∀)µ1, µ2 ∈ F(X);

3. T
(∨

i∈I
µi

)
≥
∧
i∈I

T (µi), (∀){µi}i∈I ⊆ F(X).

A nice survey concerning fuzzy topological spaces was written by A.P. Shostak [54]. This
survey contains: various approaches to the definition of fuzzy topology, fundamental interrela-
tions between the categories of fuzzy topology and the category of topological spaces, the notion
of a fuzzy point, the convergence structure in fuzzy spaces, important topological properties for
fuzzy spaces etc.

6 Fuzzy metric spaces

One of the important problems concerning the fuzzy topological spaces is to obtain an ade-
quate notion of fuzzy metric space. Many authors have investigated this question, and several
notions of fuzzy metric space have been defined and studied. We mention that the concept of
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fuzzy metric was introduced by I. Kramosil and J. Michálek [9] in 1975. Their notion is equiv-
alent, in certain sense, with that of statistical metric. We note that the statistical metrics were
studied many years before, and a brief survey on them was made by B. Schweizer and A. Sklar in
paper [52]. We also note that, in 1994, A. George and P. Veeramani [18] modified the definition
of fuzzy metric in order to obtain a Hausdorff topology on a fuzzy metric space.
Definition 31. [52] A binary operation

∗ : [0, 1]× [0, 1] → [0, 1]

is called triangular norm (t-norm) if it satisfies the following condition:

1. a ∗ b = b ∗ a, (∀)a, b ∈ [0, 1];

2. a ∗ 1 = a, (∀)a ∈ [0, 1];

3. (a ∗ b) ∗ c = a ∗ (b ∗ c), (∀)a, b, c ∈ [0, 1];

4. If a ≤ c and b ≤ d, with a, b, c, d ∈ [0, 1], then a ∗ b ≤ c ∗ d.

Example 32. Three basic examples of continuous t-norms are ∧, ·, ∗L, which are defined by
a ∧ b = min{a, b}, a · b = ab (usual multiplication in [0, 1]) and a ∗L b = max{a + b − 1, 0}
(the Lukasiewicz t-norm).
Definition 33. [9] The triple (X,M, ∗) is said to be a fuzzy metric space if X is an arbitrary
set, ∗ is a continuous t-norm and M is a fuzzy metric, i.e. a fuzzy set in X ×X × [0,∞) which
satisfies the following conditions:

(M1) M(x, y, 0) = 0, (∀)x, y ∈ X;

(M2) [M(x, y, t) = 1, (∀)t > 0] if and only if x = y;

(M3) M(x, y, t) = M(y, x, t), (∀)x, y ∈ X, (∀)t ≥ 0;

(M4) M(x, z, t+ s) ≥ M(x, y, t) ∗M(y, z, s), (∀)x, y, z ∈ X, (∀)t, s ≥ 0;

(M5) (∀)x, y ∈ X, M(x, y, ·) : [0,∞) → [0, 1] is left continuous and lim
t→∞

M(x, y, t) = 1

Remark 34. In the definition of the fuzzy metric space, I. Kramosil and J. Michálek have imposed
another condition: "M(x, y, ·) is nondecreasing, for all x, y ∈ X". M. Grabiec [12] showed that
this statement derives from the other axioms.

Indeed, for 0 < t < s, we have

M(x, y, s) ≥ M(x, x, s− t) ∗M(x, y, t) = 1 ∗M(x, y, t) = M(x, y, t).

Example 35. [18] Let (X, d) be a metric space. Let

Md : X ×X × [0,∞),Md(x, y, t) =

{
t

t+d(x,y) if t > 0

0 if t = 0
.

Then (X,Md,∧) is a fuzzy metric space. Md is called standard fuzzy metric.
Theorem 6.1. [18] Let (X,M, ∗) be a fuzzy metric space. For x ∈ X, r ∈ (0, 1), t > 0 we define
the open ball

B(x, r, t) := {y ∈ X : M(x, y, t) > 1− r} .

Let
TM := {T ⊂ X : x ∈ T iff (∃)t > 0, r ∈ (0, 1) : B(x, r, t) ⊆ T} .

Then TM is a topology on X.
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Proposition 36. [18] Let (X, d) be a metric space and Md be the corresponding standard fuzzy
metric on X. Then the topology Td induced by the metric d, and the topology TMd

induced by
the standard fuzzy metric Md are the same.
Definition 37. [18] Let (X,M, ∗) be a fuzzy metric space and (xn) be a sequence in X. The
sequence (xn) is said to be convergent if there exists x ∈ X such that M(xn, x, t) = 1, (∀)t > 0.
In this case, x is called the limit of the sequence (xn) and we write lim

n→∞
xn = x, or xn → x.

Remark 38. [18] Let (X,M, ∗) be a fuzzy metric space. A sequence (xn) is convergent to x if
and only if (xn) is convergent to x in topology TM .

Indeed,
xn → x in topology TM ⇔

⇔ (∀)r ∈ (0, 1), (∀)t > 0, (∃)n0 ∈ N : xn ∈ B(x, r, t), (∀)n ≥ n0 ⇔

⇔ (∀)r ∈ (0, 1), (∀)t > 0, (∃)n0 ∈ N : M(xn, x, t) > 1− r, (∀)n ≥ n0 ⇔

⇔ lim
n→∞

M(xn, x, t) = 1, (∀)t > 0 .

Definition 39. [18] Let (X,M, ∗) be a fuzzy metric space and (xn) be a sequence in X. The
sequence (xn) is said to be a Cauchy sequence if

(∀)r ∈ (0, 1), (∀)t > 0, (∃)n0 ∈ N : M(xn, xm, t) > 1− r, (∀)n,m ≥ n0 .

A fuzzy metric in which every Cauchy sequence is convergent is called complete fuzzy metric
space.
Definition 40. [18] Let (X,M, ∗) be a fuzzy metric space. A subset A of X is said to be fuzzy
bounded if there exist r ∈ (0, 1) and t > 0 such that M(x, y, t) > 1− r, for all x, y ∈ A.
Remark 41. If (X,M, ∗) is a fuzzy metric space induced by a metric d on X, then A ⊆ X is
fuzzy bounded if and only if A is bounded.

We say that a topological space (X, T ) is fuzzy metrizable if the topology is generated by
a fuzzy metric. V. Gregori and S. Romaguera [22] proved that a topological space is fuzzy
metrizable if and only if it is metrizable.

In paper [21], the fuzzy metric M∗(x, y, t) := min{x,y}+t
max{x,y}+t and other fuzzy metrics related to

it were studied. This fuzzy metric is useful for measuring perceptual colour differences between
colour samples.

7 Fuzzy topological vector spaces

The starting point of the theory of fuzzy topological vector spaces was a series of papers of
A.K. Katsaras (see [27], [28], [29]).

Let X be a vector space over a field K (where K is R or C).
Definition 42. [27] Let µ1, µ2, · · · , µn be fuzzy sets in X. Then µ = µ1×µ2×· · ·×µn is a fuzzy
set in Xn defined by

µ(x1, x2, · · · , xn) = µ1(x1) ∧ µ2(x2) ∧ · · · ∧ µn(xn) .

Let f : Xn → X , f(x1, x2, · · · , xn) =
n∑

k=1

xk. The fuzzy set f(µ) is called the sum of fuzzy

sets µ1, µ2, · · · , µn and it is denoted by µ1 + µ2 + · · ·+ µn. In fact

(µ1 + µ2 + · · ·+ µn)(x) = ∨{µ1(x1) ∧ µ2(x2) ∧ · · · ∧ µn(xn) : x =

n∑
k=1

xk} .
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Let µ be a fuzzy set in X and λ ∈ K. The fuzzy set λµ is the image of µ under the map
g : X → X, g(x) = λx. Thus,

(λµ)(x) =


µ
(
x
λ

)
if λ ̸= 0

0 if λ = 0, x ̸= 0

∨{µ(y) : y ∈ X} if λ = 0, x = 0

.

Definition 43. [28] A fuzzy topological vector space is a vector space X over K equipped with
a fuzzy topology such that the mappings

+ : X ×X → X , (x, y) 7→ x+ y

· : K×X → X , (λ, x) 7→ λ · x

are fuzzy continuous when K has the fuzzy usual topology and X × X and K × X have the
corresponding product fuzzy topologies.

In paper [28], the fuzzy vector topologies were characterized in terms of the corresponding
families of neighborhoods of zero.

Theorem 7.1. [29] Let X be a vector space over K, and T be a topology on X. Then (X, T ) is
a topological vector space if and only if (X,ω(T )) is a fuzzy topological vector space.

8 Fuzzy normed linear spaces

Studying fuzzy topological vector spaces, A.K. Katsaras [29], introduced in 1984 for the first
time, the notion of fuzzy norm on a linear space. In 1992, C. Felbin [17] introduced another
concept of fuzzy norm by assigning a fuzzy real number to each element of the linear space.
In 1994, S.C. Cheng and J.N. Mordeson [5] introduced another idea of fuzzy norm on a linear
space such that their corresponding fuzzy metric was of Kramosil and Michálek type. Following
S.C. Cheng and J.N. Mordeson, in 2003, T. Bag and S.K. Samanta [2] introduced a new concept
of fuzzy norm, and studied the properties of finite dimensional fuzzy normed linear spaces. A
comparative study on fuzzy norms introduced Katsaras, Felbin and Bag and Samanta was made
in paper [4]. Other approaches for fuzzy normed linear spaces can be found in [1,7,10,44,48,51,60].
Recently, S. Nădăban introduced the concepts of fuzzy pseudo-norm and fuzzy F-space [11].

Different types of fuzzy bounded linear operators and the relation between fuzzy continuity
and fuzzy boundedness were studied in [3], in the context of Bag-Samanta’s type fuzzy normed
linear spaces. The study of fuzzy continuous mappings and fuzzy bounded linear operators in
fuzzy normed linear spaces initiated by T. Bag and S.K. Samanta in [3] was continued by I.
Sadeqi and F.S. Kia [51] as well, as S. Nădăban [45] in a more general setting.

Fuzzy bounded linear operators in Felbin’s type fuzzy normed linear space were introduced by
M. Itoh and M. Cho in [23]. J.Z. Xiao and X.H. Zhu [59,60] gave a new definition for fuzzy norm
of bounded operators. In [5], different definitions of strongly fuzzy bounded linear operators
and weakly fuzzy bounded linear operators were given and a new idea of their fuzzy norm were
introduced. In [25], some properties of the space of all weakly fuzzy bounded linear operators
were studied.

In 2006, R. Saadati and J.H. Park introduced the notion of intuitionistic fuzzy Euclidean
normed space (see [49], [50]). In paper [42] some special fuzzy norms on Kn were introduced,
and in this way, fuzzy Euclidean normed spaces were obtained, . In order to introduce this
concept it is proved that the cartesian product of a finite family of fuzzy normed linear spaces is
a fuzzy normed linear space.
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Definition 44. [27] A fuzzy set ρ in X is said to be:

1. convex if tρ+ (1− t)ρ ⊆ ρ, (∀)t ∈ [0, 1];

2. balanced if λρ ⊆ ρ, (∀)λ ∈ K, |λ| ≤ 1;

3. absorbing if
∨
t>0

tρ = 1;

4. absolutely convex if it is both convex and balanced.

Proposition 45. [27] Let ρ be a fuzzy set in X. Then:

1. ρ is convex if and only if

ρ(tx+ (1− t)y) ≥ ρ(x) ∧ ρ(y), (∀)x, y ∈ X, (∀)t ∈ [0, 1];

2. ρ is balanced if and only if ρ(λx) ≥ ρ(x), (∀)x ∈ X, (∀)λ ∈ K, |λ| ≤ 1.

Definition 46. [29] A Katsaras fuzzy semi-norm on X is a fuzzy set ρ in X which is absolutely
convex and absorbing.
Proposition 47. [31] Let ρ be a Katsaras fuzzy semi-norm on X. Let

pα(x) := inf{t > 0 : ρ
(x
t

)
> α}, α ∈ (0, 1) .

Then P = {pα}α∈(0,1) is an ascending family of semi-norms on X.
Definition 48. [10] A fuzzy semi-norm ρ on X will be called Katsaras fuzzy norm if

ρ
(x
t

)
= 1, (∀)t > 0 ⇒ x = 0 .

Remark 49. a) It is easy to see that[
ρ
(x
t

)
= 1, (∀)t > 0 ⇒ x = 0

]
⇔
[
inf
t>0

ρ
(x
t

)
< 1, for x ̸= 0

]
.

b) The condition
[
ρ
(
x
t

)
= 1, (∀)t > 0 ⇒ x = 0

]
is much weaker than that one imposed by A.K.

Katsaras [29], [
inf
t>0

ρ
(x
t

)
= 0, for x ̸= 0

]
.

Proposition 50. [10] Let ρ be a Katsaras fuzzy semi-norm and

pα(x) := inf{t > 0 : ρ
(x
t

)
> α}, α ∈ (0, 1).

Then the family of semi-norms P = {pα}α∈(0,1) is sufficient if and only if ρ is a Katsaras fuzzy
norm.
Definition 51. [17] Let X be a vector space over R, let || · || : X → R∗(I) and let the mappings
L,R : [0, 1]×[0, 1] → [0, 1] be symmetric, nondecreasing in both arguments and satisfy L(0, 0) = 0
and R(1, 1) = 1. We write [||x||]α = [||x||α1 , ||x||α2 ], for x ∈ X,α ∈ (0, 1].

We suppose that (∀)x ∈ X,x ̸= 0 there exists α0 ∈ (0, 1] independent of x such that for all
α ≤ α0 we have

(A) ||x||α2 < ∞ ,

(B) inf ||x||α1 > 0 .

The quadruple (X, || · ||, L,R) is called fuzzy normed linear space and || · || a fuzzy norm, if
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1. ||x|| = 0 if and only if x = 0;

2. ||rx|| = |r| · ||x||, (∀)x ∈ X, r ∈ R;

3. for all x, y ∈ X,

(a) whenever s ≤ ||x||11, t ≤ ||y||11 and s+ t ≤ ||x+ y||11,

||x+ y||(s+ t) ≥ L(||x||(s), ||y||(t)) ,

(b) whenever s ≥ ||x||11, t ≥ ||y||11 and s+ t ≥ ||x+ y||11,

||x+ y||(s+ t) ≤ R(||x||(s), ||y||(t)) .

Remark 52. C. Felbin [17] proved that, if L(x, y) = min{x, y} and R(x, y) = max{x, y}, then
the triangle inequality (3) in previous definition is equivalent to ||x+ y|| ≤ ||x||+ ||y||. Further
|| · ||iα are crisp norms on X, for each α ∈ (0, 1] and i = 1, 2.

Remark 53. In paper [5], Felbin’s definition of fuzzy normed linear space is slightly modified in
the sense that:

1. the value of the fuzzy norm is taken to be a fuzzy real number in the sense of J.Z. Xiao
and X.H. Zhu [59];

2. the condition (A) and (B) of Felbin’s definition are relaxed by the condition

(A′) x ̸= 0 ⇒ ||x||(t) = 0, (∀)t ≤ 0 .

Definition 54. [10] Let X be a vector space over a field K and ∗ be a continuous t-norm. A
fuzzy set N in X × [0,∞) is called a fuzzy norm on X if it satisfies:

(N1) N(x, 0) = 0, (∀)x ∈ X;

(N2) [N(x, t) = 1, (∀)t > 0] if and only if x = 0;

(N3) N(λx, t) = N
(
x, t

|λ|

)
, (∀)x ∈ X, (∀)t ≥ 0, (∀)λ ∈ K∗;

(N4) N(x+ y, t+ s) ≥ N(x, t) ∗N(y, s), (∀)x, y ∈ X, (∀)t, s ≥ 0;

(N5) (∀)x ∈ X, N(x, ·) is left continuous and lim
t→∞

N(x, t) = 1.

The triple (X,N, ∗) will be called fuzzy normed linear space (briefly FNL-space).

Remark 55. a) T. Bag and S.K. Samanta [2], [3] gave a similar definition for ∗ = ∧, but in order
to obtain some important results they assumed that the fuzzy norm satisfies also the following
conditions:

(N6) N(x, t) > 0, (∀)t > 0 ⇒ x = 0 ;

(N7) (∀)x ̸= 0, N(x, ·) is a continuous function and strictly increasing on the subset {t : 0 <
N(x, t) < 1} of R.

The results obtained by T. Bag and S.K. Samanta can be found in these more general settings [10].
b) I. Goleţ [7], C. Alegre and S. Romaguera [1] gave also the same definition in the context

of real vector spaces.

Remark 56. N(x, ·) is nondecreasing, (∀)x ∈ X.
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Theorem 8.1. [10] If (X,N, ∗) is a FNL-space, then

M : X ×X × [0,∞) → [0, 1],M(x, y, t) = N(x− y, t)

is a fuzzy metric on X, which is called the fuzzy metric induced by the fuzzy norm N. Moreover,
we have:

1. M is a translation-invariant fuzzy metric;

2. M(λx, λy, t) = M
(
x, y, t

|λ|

)
, (∀)x ∈ X, (∀)t ≥ 0, (∀)λ ∈ K∗.

Corollary 57. [10] Let (X,N, ∗) be a FNL-space. For x ∈ X, r ∈ (0, 1), t > 0 we define the open
ball

B(x, r, t) := {y ∈ X : N(x− y, t) > 1− r} .

Then
TN := {T ⊂ X : x ∈ T iff (∃)t > 0, r ∈ (0, 1) : B(x, r, t) ⊆ T}

is a topology on X.
Moreover, if the t-norm ∗ satisfies sup

x∈(0,1)
x ∗ x = 1, then (X, TN ) is Hausdorff.

Theorem 8.2. [10] Let (X,N, ∗) be a FNL-space. Then (X, TN ) is a metrizable topological vector
space.

9 Conclusions

Lotfi A. Zadeh, born on February 4, 1921, is a famous mathematician, electrical engineer,
computer scientist, and Professor Emeritus at the University of California, Berkeley, United State
of America. He is father of fuzzy sets, fuzzy logic and computing with words. His pioneering
paper, entitled "Fuzzy Sets" (1965, [61]), is cited over 58,540 time in many prestigious journals,
and all his papers are cited over 151,300 time.

Some scientists, especially philosophers and mathematicians, had attempted to formalize the
process of logical deduction. Their work culminated in the invention of the programmable digital
computer, a machine based on the abstract essence of mathematical reasoning. This machine
and the ideas behind it inspired a handful of scientists to begin seriously discussing the possibility
of building an artificial brain.

In this survey paper we mentioned some fuzzy mathematical structures as fuzzy real line,
fuzzy topological spaces, fuzzy metric spaces, fuzzy topological vector spaces, fuzzy normed linear
spaces and fuzzy F-space.
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1 Introduction and preliminaries

GDM is a situation faced when a number of experts work together to find the best
alternative(s) from a set of feasible alternatives. Each expert may have exclusive inspirations
or objectives and a different decision procedure, but has a common interest in approaching to
select the “best” option(s). Preference relation is the most common representation format used
in GDM because it is a valuable tool in modeling decision processes, when we have to combine
experts’ preferences into group preferences [6, 14, 15]. In a preference relation an expert assigns
a numerical value to every pair of alternatives that reflects some degree of preference of the
first alternative over the second alternative. Mainly two types of preference relations have been
used to develop the decision models; multiplicative preference relations (MPRs) [2,14], and fuzzy
preference relations (FPRs) [6, 16].

The popular preference relations, which are being used to express an expert’s preferences
over alternatives, are FPRs. In a decision making procedure, an expert mostly needs to compare
a finite set of alternatives xi (i = 1, 2, ..., n) and construct an FPR [6, 13, 16, 17]. However, an
expert may have imprecise information for the preference degrees of one alternative over another
and it may not always be possible to estimate his/her preference by means of an exact numerical
value. In such a situation, an expert constructs an IVFPR.

In 2004, Z. S. Xu defined the notion of compatibility degree of two IVFPRs and showed
the compatible connection among individual and collective IVFPRs [18]. In 2005, F. Herrera et
al. established an aggregation process for combining IVFPRs with other forms of information
as; numerical preference relation (NPR) and linguistic preference relation (LPR) [7]. In 2007,
Y. Jiang proposed a technique to measure the similarity degree of two IVFPRs and used the
error-propagation rule to find the priority vector of the accumulated IVFPRs [8]. In 2008, Z.
S. Xu and Chen developed some linear programming models to derive the priority weights from
several IVFPRs [20].

Copyright © 2006-2015 by CCC Publications
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All the above researches focused on the IVFPRs with complete information. However, in
DM problems such situations are unavoidable in which an expert does not have comprehensive
information of the problem because of time constraint, lack of knowledge and the expert’s limited
expertise within the problem domain [1,3,5,10,19,22,24,33]. Consequently, the expert may not
be able to give his/her opinion about specific traits of the problem, and hence an incomplete
preference relation would be constructed. In literature, researches based on incomplete FPRs
have been given, but there are only few researches in GDM related to incomplete IVFPRs [23].

In this paper, a new technique for GDM by using incomplete IVFPRs is developed. Obvi-
ously, the consistent information is more applicable or important than the information having
ambiguities, consistency is linked with definite transitivity properties. Several properties have
been endorsed to model transitivity of FPRs, one of these properties is the max-min transitivity.
In this paper, a procedure, based on min-transitivity property is proposed to determine unknown
interval-valued preferences of one alternative over others and further, it is extended to develop
an algorithm for GDM to select the best alternative.
Definition 1.1. [4] An interval-valued fuzzy set A on a universe X is defined as:

A = {(a, [x−, x+])|a ∈ X, [x−, x+] ∈ L([0, 1])}

where L([0, 1]) = {[x−, x+]|[x−, x+] ⊆ [0, 1] with x− ≤ x+}.
Arithmetic operations can be performed on closed intervals . The following formulae can be

used for all P,Q ∈ L([0, 1]) (P = [p−, p+] and Q = [q−, q+]) [12]:

• P +Q = [p− + q−, p+ + q+],

• P −Q = [p− − q+, p+ − q−],

• P ·Q = [min(p−q−, p−q+, p+q−, p+q+),max(p−q−, p−q+, p+q−, p+q+)],

• P/Q = [p−, p+] · [ 1
q+

, 1
q− ] if 0 /∈ [q−, q+].

Definition 1.2. [4] Let X be a universe and A and B two interval-valued fuzzy sets. The
inclusion of A into B is defined as: A ⊆ B if and only if A(a) ⊆ B(a) for all a ∈ X and the
equality between A and B is defined as: A = B if and only if A(a) = B(a) for all a ∈ X .
Definition 1.3. [9] A triangular norm (t-norm) T is an increasing, associative, commutative and
[0, 1]× [0, 1] → [0, 1] mapping satisfying: T (1, x) = x for all x ∈ [0, 1].
The t-norm to be used in this paper is T (x, y) = min(x, y). The concept of a t-norm on [0, 1] can
be extended to subintervals of [0, 1].
Definition 1.4. An extended t-norm, Te, is an increasing, commutative, associative and
L([0, 1])× L([0, 1]) → L([0, 1]) mapping that satisfies:

Te([1, 1], [x
−, x+]) = [x−, x+] for all [x−, x+] ∈ L([0, 1]).

Let T be a triangular norm. The mapping Te defined as:

Te([a
−, a+], [b−, b+]) = [T (a−, b−), T (a+, b+)]

for [a−, a+], [b−, b+] ∈ L([0, 1]), is an extended t-norm on (L([0, 1]),⊆), where ⊆ represents the
crisp set inclusion.

The extended interval t-norm corresponding to the minimum-operator can be computed by:

Tmin([a
−, a+], [b−, b+]) = [min(a−, b−),min(a+, b+)]. (1)
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Definition 1.5. [15] A fuzzy preference relation R over a finite set X of alternatives, X =
{x1, x2, x3, ..., xn}, is a fuzzy set on the product set X×X, i.e., it is characterized by a membership
function µR : X ×X → [0, 1].

According to Definition 1.5, a fuzzy preference relation R on X can be conveniently expressed
by an n × n matrix R = (rij)n×n, where rij denotes the degree of preference of alternative xi
over the alternative xj with rij ∈ [0, 1], rii = 0.5, rij+rji = 1 (additive reciprocity) for 1 ≤ i ≤ n
and 1 ≤ j ≤ n. If rij = 0.5, then there is no difference between the alternatives xi and xj . If
rij > 0.5, then alternative xi is preferred over the alternative xj . If rij = 1, then the alternative
xi is definitely preferred over the alternative xj .
Definition 1.6. [18] Let R = (rij)n×n be a fuzzy preference relation over the set of alternatives
X = {x1, x2, x3, ..., xn} where rij = [r−ij , r

+
ij ], 0 ≤ r−ij ≤ r+ij ≤ 1, rij = [1, 1]−rji and rii = [0.5, 0.5]

for all i, j ∈ N , then R is called an interval-valued fuzzy preference relation.
Definition 1.7. An IVFPR R is said to be min-consistent, if for all i, j and k belonging to
{1, 2, 3, ..., n} it holds:

rik ≥ Tmin(rij , rjk) (min -transitivity).

Definition 1.8. An IVFPR relation R = (rij)n×n is said to be incomplete if it contains at least
one unknown preference value rij for which the expert has no idea about the degree of preference
of alternative xi over the alternative xj .

2 Method to repair an incomplete IVFPR

This section presents a new technique to estimate missing values in an incomplete
IVFPR. Further, the algorithm is used to construct a min-consistent matrix. In order to de-
termine unknown values in an incomplete IVFPR R = (rij)n×n, the pairs of alternatives for
known and unknown preference values are represented by the following sets:

KP = {(i, j)|rij is known}, (2)
UP = {(i, j)|rij is unknown}, (3)

where the preference value of alternative xi over xj belongs to the family of closed subintervals
of [0, 1] (i.e., rij ∈ L([0, 1])). Since rij = [1, 1]− rji, rii = [0.5, 0.5] for 1 ≤ i ≤ n and 1 ≤ j ≤ n,
therefore, the min-transitivity of definition 1.7 can be written as:

rik ≥ Tmin(rij , rjk); rik ≥ Tmin(1− rji, rjk); rik ≥ Tmin(rij , 1− rkj). (4)

Hence, the following sets can be defined to determine the unknown preference value rik of alter-
native xi over alternative xk:

S1
ik = {j|(i, j) ∈ KP , (j, k) ∈ KP and (i, k) ∈ UP }, (5)

S2
ik = {j|(j, i) ∈ KP , (j, k) ∈ KP and (i, k) ∈ UP }, (6)

S3
ik = {j|(i, j) ∈ KP , (k, j) ∈ KP and (i, k) ∈ UP }, (7)

for i = {1, 2, 3, ..., n}, j = {1, 2, 3, ..., n} and k = {1, 2, 3, ..., n}. Based on (5),(6) and (7), we can
determine the unknown preference value rik for xi over xk as follows:

rik =
r1ik + r2ik + r3ik

3
, (8)
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where

r1ik =


1

|S1
ik|
∑

j∈S1
ik

Tmin(rij , rjk), if |S1
ik| ≠ 0

[0.5, 0.5], otherwise
(9)

r2ik =


1

|S2
ik|
∑

j∈S2
ik

Tmin([1, 1]− rji, rjk), if |S2
ik| ̸= 0

[0.5, 0.5], otherwise
(10)

r3ik =


1

|S3
ik|
∑

j∈S3
ik

Tmin(rij , [1, 1]− rkj), if |S3
ik| ̸= 0

[0.5, 0.5], otherwise
(11)

where |S1
ik|, |S2

ik| and |S3
ik| are the cardinalities of the sets S1

ik, S
2
ik and S3

ik respectively.

K
′
P = KP ∪ {(i, k)}, (12)

U
′
P = UP − {(i, k)}. (13)

To achieve min-consistency of the IVFPR R, following scaling conditions will be used:

(i) If r−ij + r+ji < 1 and r+ij + r−ji < 1, then

rij =

[
r−ij +

1− (r−ij + r+ji)

2
, r+ij +

1− (r+ij + r−ji)

2

]
(14)

and

rji =

[
r−ji +

1− (r+ij + r−ji)

2
, r+ji +

1− (r−ij + r+ji)

2

]
. (15)

(ii) If r−ij + r+ji < 1 and r+ij + r−ji > 1, then

rij =

[
r−ij +

1− (r−ij + r+ji)

2
, r+ij −

r+ij + r−ji − 1

2

]
(16)

and

rji =

[
r−ji −

r+ij + r−ji − 1

2
, r+ji +

1− (r−ij + r+ji)

2

]
. (17)

(iii) If r−ij + r+ji > 1 and r+ij + r−ji < 1, then

rij =

[
r−ij −

r−ij + r+ji − 1

2
, r+ij +

1− (r+ij + r−ji)

2

]
(18)

and

rji =

[
r−ji +

1− (r+ij + r−ji)

2
, r+ji −

r−ij + r+ji − 1

2

]
. (19)

(iv) If r−ij + r+ji > 1 and r+ij + r−ji > 1, then

rij =

[
r−ij −

r−ij + r+ji − 1

2
, r+ij −

r+ij + r−ji − 1

2

]
(20)
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and

rji =

[
r−ji −

r+ij + r−ji − 1

2
, r+ji −

r−ij + r+ji − 1

2

]
. (21)

Example 2.1. Let R = (rij)4×4 be an incomplete IVFPR for the alternatives x1, x2, x3
and x4, given as follows:

R =


[0.5, 0.5] r12 [0.4, 0.6] [0.3, 0.7]

r21 [0.5, 0.5] [0.7, 0.8] r24

[0.4, 0.6] [0.2, 0.3] [0.5, 0.5] [0.3, 0.4]

[0.3, 0.7] r42 [0.6, 0.7] [0.5, 0.5]



where r12, r21, r24 and r42 are unknown preference values. Now applying (2)-(13) to esti-
mate the unknown preference values for the alternative xi over xk, 1 ≤ i ≤ 4 and 1 ≤ k ≤ 4,
we obtain:

KP = {(1, 1), (1, 3), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1),
(4, 3), (4, 4)},

UP = {(1, 2), (2, 1), (2, 4), (4, 2)}.
S1
12 = {3}, S2

12 = {3}, S3
12 = {3},

r112 = Tmin(r13, r32) = Tmin([0.4, 0.6], [0.2, 0.3]) = [0.2, 0.3],

r212 = Tmin([1, 1]− r31, r32) = Tmin([0.4, 0.6], [0.2, 0.3]) = [0.2, 0.3],

r312 = Tmin(r13, [1, 1]− r23) = Tmin([0.4, 0.6], [0.2, 0.3]) = [0.2, 0.3],

r12 =
1

3
(r112 + r212 + r312) = [0.2, 0.3].

K
′
P = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4),

(4, 1), (4, 3), (4, 4)},
U

′
P = UP − {(1, 2)} = {(2, 1), (2, 4), (4, 2)}.

S1
21 = {3}, S2

21 = {1, 3}, S3
21 = {2, 3},

r121 = Tmin(r23, r31) = Tmin([0.7, 0.8], [0.4, 0.6]) = [0.4, 0.6],

r221 =
1

2
[Tmin([1, 1]− r12, r11) + Tmin([1, 1]− r32, r31)]

=
1

2
[Tmin([0.7, 0.8], [0.5, 0.5]) + Tmin([0.7, 0.8], [0.4, 0.6])]

=
1

2
[[0.5, 0.5] + [0.4, 0.6]] = [0.45, 0.55],
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r321 =
1

2
[Tmin(r22, [1, 1]− r12) + Tmin(r23, [1, 1]− r13)]

=
1

2
[Tmin([0.5, 0.5], [0.7, 0.8]) + Tmin([0.7, 0.8], [0.4, 0.6]]

=
1

2
[[0.5, 0.5] + [0.4, 0.6]] = [0.45, 0.55],

r21 =
1

3
(r121 + r221 + r321) = [0.433, 0.567].

K
′′
P = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3), (3, 4),

(4, 1), (4, 3), (4, 4)},
U

′′
P = U

′ − {(2, 1)} = {(2, 4), (4, 2)}.
S1
24 = {1, 3}, S2

24 = {1, 3}, S3
24 = {1, 3},

r124 =
1

2
[Tmin(r21, r14) + Tmin(r23, r34)]

=
1

2
[Tmin([0.433, 0.567], [0.3, 0.7]) + Tmin([0.7, 0.8], [0.3, 0.4])]

=
1

2
[[0.3, 0.567] + [0.3, 0.4]] = [0.3, 0.484],

r224 =
1

2
[Tmin([1, 1]− r12, r14) + Tmin([1, 1]− r32, r34)]

=
1

2
[Tmin([0.7, 0.8], [0.3, 0.7]) + Tmin([0.7, 0.8], [0.3, 0.4])]

=
1

2
[[0.3, 0.7] + [0.3, 0.4]] = [0.3, 0.55],

r324 =
1

2
[Tmin(r21, [1, 1]− r41) + Tmin(r23, [1, 1]− r43)]

=
1

2
[Tmin([0.433, 0.567], [0.3, 0.7]) + Tmin([0.7, 0.8], [0.3, 0.4])]

=
1

2
[[0.3, 0.567] + [0.3, 0.4]] = [0.3, 0.484],

r24 =
1

3
(r124 + r224 + r324) = [0.3, 0.506].

K
′′′
P = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3),

(3, 4), (4, 1), (4, 3), (4, 4)},
U

′′′
P = U

′′ − {(2, 4)} = {(4, 2)}.
S1
42 = {1, 3}, S2

42 = {1, 2, 3}, S3
42 = {1, 3, 4},

r142 =
1

2
[Tmin(r41, r12) + Tmin(r43, r32)]

=
1

2
[Tmin([0.3, 0.7], [0.2, 0.3]) + Tmin([0.6, 0.7], [0.2, 0.3])]

=
1

2
[[0.2, 0.3] + [0.2, 0.3]] = [0.2, 0.3],

r242 =
1

3
[Tmin([1, 1]− r14, r12) + Tmin([1, 1]− r24, r22) + Tmin([1, 1]− r34, r32)]

=
1

3
[[0.2, 0.3] + [0.5, 0.494] + [0.2, 0.3]]

= [0.298, 0.367],
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r342 =
1

3
[Tmin(r41, [1, 1]− r21) + Tmin(r43, [1, 1]− r23) + Tmin(r44, [1, 1]− r24)]

=
1

3
[[0.3, 0.567] + [0.2, 0.3] + [0.494, 0.5]]

= [0.331, 0.456],

r42 =
1

3
(r142 + r242 + r342) = [0.276, 0.374].

K
′′′′
P = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3),

(3, 4), (4, 1), (4, 2), (4, 3), (4, 4)},
U

′′′′
P = ϕ.

Hence, the complete IVFPR is

R =


[0.5, 0.5] [0.2, 0.3] [0.4, 0.6] [0.3, 0.7]

[0.433, 0.567] [0.5, 0.5] [0.7, 0.8] [0.3, 0.506]

[0.4, 0.6] [0.2, 0.3] [0.5, 0.5] [0.3, 0.4]

[0.3, 0.7] [0.276, 0.374] [0.6, 0.7] [0.5, 0.5]

 (22)

By applying scaling condition on (18), R becomes a min-consistent IVFPR R̃ as follows:

R̃ =


[0.5, 0.5] [0.316, 0.434] [0.4, 0.6] [0.3, 0.7]

[0.566, 0.684] [0.5, 0.5] [0.7, 0.8] [0.463, 0.615]

[0.4, 0.6] [0.2, 0.3] [0.5, 0.5] [0.3, 0.4]

[0.3, 0.7] [0.385, 0.537] [0.6, 0.7] [0.5, 0.5]

 .

3 A new algorithm to choose the best alternative in GDM with
incomplete IVFPRs.

In this section, a new algorithm is presented for GDM with incomplete IVFPRs by using
min-consistency. An explanatory example is given to validate the anticipated technique. For
ease, the structure of the determination process is also shown in Figure1. Suppose that there are
n alternatives x1, x2, ..., xn and m experts E1, E2, ..., Em. Let R

q be the IVFPR for the expert
Eq shown as follows:

R
q
=
(
rqij

)
n×n

=


[0.5, 0.5] rq12 . . rq1n

rq21 [0.5, 0.5] . . rq2n
. . . .

. . . .

rqn1 rqn2 . . [0.5, 0.5]

 , (23)

where rqij ∈ L([0, 1]) is the preference value given by expert Eq for alternative xi over xj , r
q
ij =

[1, 1]− rqji, rqii = [0.5, 0.5], 1 ≤ i ≤ n, 1 ≤ j ≤ n and 1 ≤ q ≤ m. The proposed GDM technique
is given as follows:
Step 1: Determine the sets Kq

P and U q
P of pairs of alternatives for known and unknown preference

values respectively, shown as follows:

Kq
P = {(i, j)|rqij is known}, (24)

U q
P = {(i, j)|rqij is unknown}, (25)
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where 1 ≤ i ≤ n, 1 ≤ j ≤ n and 1 ≤ q ≤ m.
Step 2: If U = ϕ, then skip Step 2, otherwise construct the sets Sq1

ik , S
q2
ik and Sq3

ik based on the
sets Kq

P and U q
P . The constructed sets are used to estimate the unknown preference values rqik

for the alternative xi over xk by expert Eq as follows:

rik =
rq1ik + rq2ik + rq3ik

3
, (26)

Sq1
ik = {j|(i, j) ∈ Kq

P , (j, k) ∈ Kq
P and (i, k) ∈ U q

P }, (27)

Sq2
ik = {j|(j, i) ∈ Kq

P , (j, k) ∈ Kq
P and (i, k) ∈ U q

P }, (28)

Sq3
ik = {j|(i, j) ∈ Kq

P , (k, j) ∈ Kq
P and (i, k) ∈ U q

P }, (29)

rq1ik =


1

|Sq1
ik |

∑
j∈Sq1

ik

Tmin(r
q
ij , r

q
jk), if |Sq1

ik | ̸= 0

[0.5, 0.5], otherwise
(30)

rq2ik =


1

|Sq2
ik |

∑
j∈Sq2

ik

Tmin([1, 1]− rqij , r
q
jk), if |Sq2

ik | ≠ 0

[0.5, 0.5], otherwise
(31)

rq3ik =


1

|Sq3
ik |

∑
j∈Sq3

ik

Tmin(r
q
ij , [1, 1]− rqjk), if |Sq3

ik | ≠ 0

[0.5, 0.5], otherwise
(32)

where |Sq1
ik |, |S

q2
ik | and |Sq3

ik | are the cardinalities of the sets Sq1
ik , S

q2
ik and Sq3

ik respectively.

K
′q
P = Kq

P ∪ {(i, k)}, (33)

U
′q
P = U q

P − {(i, k)}. (34)

Step 3: To satisfy min-consistency of the complete interval-valued fuzzy preference relation
R

q
=
(
rqij

)
n×n

, the following scaling conditions are used:

(i) If rq−ij + rq+ji < 1 and rq+ij + rq−ji < 1, then

rqij =

[
rq−ij +

1− (rq−ij + rq+ji )

2
, rq+ij +

1− (rq+ij + rq−ji )

2

]
(35)

and

rqji =

[
rq−ji +

1− (rq+ij + rq−ji )

2
, rq+ji +

1− (rq−ij + rq+ji )

2

]
. (36)

(ii) If rq−ij + rq+ji < 1 and rq+ij + rq−ji > 1, then

rqij =

[
rq−ij +

1− (rq−ij + rq+ji )

2
, rq+ij −

rq+ij + rq−ji − 1

2

]
(37)

and

rqji =

[
rq−ji −

rq+ij + rq−ji − 1

2
, rq+ji +

1− (rq−ij + rq+ji )

2

]
. (38)
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(iii) If rq−ij + rq+ji > 1 and rq+ij + rq−ji < 1, then

rqij =

[
rq−ij −

rq−ij + rq+ji − 1

2
, rq+ij +

1− (rq+ij + rq−ji )

2

]
(39)

and

rqji =

[
rq−ji +

1− (rq+ij + rq−ji )

2
, rq+ji −

rq−ij + rq+ji − 1

2

]
. (40)

(iv) If rq−ij + rq+ji > 1 and rq+ij + rq−ji > 1, then

rqij =

[
rq−ij −

rq−ij + rq+ji − 1

2
, rq+ij −

rq+ij + rq−ji − 1

2

]
(41)

and

rqji =

[
rq−ji −

rq+ij + rq−ji − 1

2
, rq+ji −

rq−ij + rq+ji − 1

2

]
. (42)

A min-consistent matrix R̃
q
=
(
r̃
q
ij

)
n×n

is obtained under these conditions.

Step 4: Determine the collective matrix R
cagainst all experts, shown as follows:

R
c
=
(
rcij
)
n×n

=
1

m

(
r̃
1
ij + r̃

2
ij + r̃

3
ij ...+ r̃

m
ij

)
n×n

, (43)

where 1 ≤ i ≤ n, 1 ≤ j ≤ n.
Step 5: Calculate the average degree Ai of alternative xi over all other alternatives by using
interval normalizing method:

Ai =

n∑
j=1

rcij

n∑
i=1

n∑
j=1

rcij

, i = 1, 2, 3, ..., n. (44)

Step 6: [21] Calculate the possibility degree dij = d(Ai ≥ Aj) by using the formula:

d(Ai ≥ Aj) = min

{
max

(
A+

i −A−
j

A+
i −A−

j +A+
j −A−

i

, 0

)
, 1

}
(45)

and construct the complementry matrix D = (dij)n×n, where dij ≥ 0, dij + dji = 1, dii = 0,
i, j = 1, 2, 3, ..., n.
Step 7: [33] Calculate the ranking value RV (xi) of alternative xi by using formula:

RV (xi) =
2

n2

n∑
j=1

dij , (46)

where 1 ≤ i ≤ n and
n∑

i=1
RV (xi) = 1.
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Figure 1: Resolution process for GDM with IVFPRs.

Example 3.1. A firm produces solar water refiners. In its production process, the company
has to buy solar panels in different sizes and voltages from different suppliers. Presently, Japan
Solar Company has four potential suppliers in four different countries, namely, Korea, China,
Italy and Turkey, signified as xi(i = 1, 2, 3, 4), respectively. A committee consisting of three
experts Eq(q = 1, 2, 3) from different departments has been formed to assess the four suppliers
xi(i = 1, 2, 3, 4). Suppose that the experts Eq(q = 1, 2, 3) provide their assessments in the form
of following incomplete IVFPRs:

R
1
=


[0.5, 0.5] r112 [0.6, 0.8] r114

r121 [0.5, 0.5] r123 [0.3, 0.7]

[0.2, 0.4] r132 [0.5, 0.5] [0.6, 0.9]

r141 [0.3, 0.7] [0.1, 0.4] [0.5, 0.5]

 ,

R
2
=


[0.5, 0.5] r12 [0.4, 0.6] [0.3, 0.7]

r21 [0.5, 0.5] [0.7, 0.8] r24

[0.4, 0.6] [0.2, 0.3] [0.5, 0.5] [0.3, 0.4]

[0.3, 0.7] r42 [0.6, 0.7] [0.5, 0.5]

 ,

and

R
3
=


[0.5, 0.5] r312 [0.7, 0.8] r314
[0.4, 0.6] [0.5, 0.5] r323 [0.5, 0.7]

[0.2, 0.3] r332 [0.5, 0.5] r334
r341 [0.3, 0.5] r343 [0.5, 0.5]

 .

Step 1: For the fuzzy preference relation R
1
, the sets of pairs of alternatives for known and

unknown preference values are determined as follows:

K1
P = {(1, 1), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)},

U1
P = {(1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (4, 1)}.
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Step 2:

S11
12 = ϕ, S12

12 = ϕ, S13
12 = ϕ,

r1112 = [0.5, 0.5], r1212 = [0.5, 0.5], r1312 = [0.5, 0.5],

r112 =
1

3
(r1112 + r1212 + r1312)

= [0.5, 0.5].

K1
′

P = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 4), (3, 1), (3, 3), (3, 4), (4, 2), (4, 3),
(4, 4)},

U1
′

P = U1
P − {(1, 2)} = {(1, 4), (2, 1), (2, 3), (3, 2), (4, 1)}.

S11
14 = {2, 3}, S12

14 = {3}, S13
14 = {2, 3},

r1114 =
1

2
[Tmin(r

1
12, r

1
24) + Tmin(r

1
13, r

1
34)] =

1

2
[[0.3, 0.5] + [0.6, 0.8]]

= [0.45, 0.65],
r1214 = Tmin([1, 1]− r113, r

1
34) = Tmin([0.2, 0, 4], [0.6, 0.9]) = [0.2, 0.4],

r1314 =
1

2
[Tmin(r

1
12, [1, 1]− r142) + Tmin(r

1
13, [1, 1]− r143)]

=
1

2
[Tmin([0.5, 0.5], [0.3, 0.7]) + Tmin([0.6, 0.8], [0.6, 0.9])]

=
1

2
[[0.3, 0.5] + [0.6, 0.8]] = [0.45, 0.65],

r114 =
1

3
(r1114 + r1214 + r1314) = [0.3667, 0.5667].

K1
′′

P = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 1), (3, 3), (3, 4), (4, 2),
(4, 3), (4, 4)},

U1
′′

P = U1
′

P − {(1, 4)} = {(2, 1), (2, 3), (3, 2), (4, 1)}.

Hence, continuing as above the fuzzy preference relation R
1 against expert E1 is obtained as

follows:

R
1
=


[0.5, 0.5] [0.5, 0.5] [0.6, 0.8] [0.3667, .5667]

[0.4667, 0.5222] [0.5, 0.5] [0.2889, 0.4574] [0.3, 0.7]

[0.2, 0.4] [0.3055, 0.5389] [0.5, 0.5] [0.6, 0.9]

[0.2519, 0.4673] [0.3, 0.7] [0.1, 0.4] [0.5, 0.5]

 .

Step 3: min-consistency preference relation R̃
1

based on R
1 is obtained as follows:

R̃
1
=


[0.5, 0.5] [0.4889, 0.5166] [0.6, 0.8] [0.4497, .6574]

[0.4834, 0.5111] [0.5, 0.5] [0.375, 0.576] [0.3, 0.7]

[0.2, 0.4] [0.424, 0.625] [0.5, 0.5] [0.6, 0.9]

[0.3426, 0.5503] [0.3, 0.7] [0.1, 0.4] [0.5, 0.5]

 .

Likewise, min-consistency preference relations R̃
2

and R̃
3

against the experts E2 and E3 respec-
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tively, given as below:

R̃
2
=


[0.5, 0.5] [0.33, 0.46] [0.4, 0.6] [0.3, 0.7]

[0.54, 0.67] [0.5, 0.5] [0.7, 0.8] [0.46, 0.61]

[0.4, 0.6] [0.2, 0.3] [0.5, 0.5] [0.3, 0.4]

[0.3, 0.7] [0.39, 0.54] [0.6, 0.7] [0.5, 0.5]

 ,

R̃
3
=


[0.5, 0.5] [0.4166, 0.55] [0.7, 0.8] [0.4722, 0.599]

[0.45, 0.5834] [0.5, 0.5] [0.5333, 0.6592] [0.5, 0.7]

[0.2, 0.3] [0.3408, 0.4667] [0.5, 0.5] [0.384, 0.4994]

[0.401, 0.5278] [0.3, 0.5] [0.5006, 0.616] [0.5, 0.5]

 .

Step 4: The collective matrix against all the experts is shown as follows:

R
c
=


[0.5, 0.5] [0.4118, 0.5089] [0.5667, 0.7333] [0.4073, 0.6521]

[0.4911, 0.5882] [0.5, 0.5] [0.5361, 0.6784] [0.42, 0.67]

[0.2667, 0.4333] [0.3216, 0.4639] [0.5, 0.5] [0.428, 0.5998]

[0.3479, 0.5927] [0.33, 0.58] [0.4002, 0.572] [0.5, 0.5]


Step 5: The average degree Ai, i = 1, 2, 3, 4, of each alternative is derived by using interval
normalizing method given as:

A1 =

4∑
j=1

rc1j

4∑
i=1

4∑
j=1

rcij

=
[1.8858, 2.3943]

[6.9274, 9.0726]
= [0.2078, 0.3456];

A2 =

4∑
j=1

rc2j

n∑
i=1

n∑
j=1

rcij

=
[1.9472, 2.4366]

[6.9274, 9.0726]
= [0.2146, 0.3517];

A3 =

4∑
j=1

rc3j

n∑
i=1

n∑
j=1

rcij

=
[1.5163, 1.997]

[6.9274, 9.0726]
= [0.1671, 0.2883];

A4 =

4∑
j=1

rc4j

n∑
i=1

n∑
j=1

rcij

=
[1.5781, 2.2447]

[6.9274, 9.0726]
= [0.1739, 0.3240].

Step 6: By using eq. (45), the complementry matrix D = (dij)4×4 is obtained as follows:

D = (dij)4×4 =


0.5 0.4765 0.6892 0.5964

0.5235 0.5 0.7147 0.619

0.3108 0.2853 0.5 0.4217

0.4036 0.381 0.5783 0.5


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Step 7: The ranking value Rv(xi) of alternative xi, 1 ≤ i ≤ 4, is obtained as follows:

Rv(x1) =
2

42

4∑
j=1

d1j = 0.2827625;

Rv(x2) =
2

42

4∑
j=1

d2j = 0.29465;

Rv(x3) =
2

42

4∑
j=1

d3j = 0.189725;

Rv(x4) =
2

42

4∑
j=1

d4j = 0.2328625;

where
4∑

i=1
Rv(xi) = 1. Thus, the final ranking of the alternatives is derived as follows:

x2 > x1 > x4 > x3.

Therefore, x2 is the best alternative.
The numerical examples show the way to apply the proposed technique to construct the

complete IVFPR based on min-consistency. In general, the proposed approach is quite easy for
use in estimating unknown preference values.

4 Conclusion

In this paper the extended minimum t-norm has been used successfully to determine the
missing values in incomplete IVFPR and further extends to construct the min-consistent matrix.
Numerical studies show that the proposed technique can handle all type of incomplete IVFPR.
Consequently, another algorithm is established to deal with GDM problems with incomplete
IVFPRs. This process involves two stages, the estimation of unknown interval-valued preference
values and the choice of the best alternative(s).
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Abstract:
This paper describes a decision support tool which can be used for aiding the aca-
demic sraff in making the decision of including a specialty subject in an engineering
curriculum. The approach is based on building a list of competences that should be
acquired through the study of the specialty subjects. An evaluation of the compe-
tences is made by means of questionnaires and finally, a fuzzy model will be run.
The output of the fuzzy model reflects the need for the evaluated specialty subject
to be included in the curriculum. The proposed method takes into consideration the
opinions and experience of both the academic staff and the employers.
Keywords: curriculum design, decision support engineering studies, fuzzy logic.

1 Introduction

National regulations state that engineering curriculum in the Romanian universities is com-
posed mainly by four categories of subjects: fundamental subjects, domain subjects, specialty
subjects and complementary subjects.

The fundamental subjects include Mathematics, Physics, Chemistry and other fundamental
sciences which provide the future engineer the basic knowledge for operating with the laws and
principles of engineering.

The domain subjects are intended to provide the technical knowledge related to a specific
area of engineering, which at national level is called "domain". For example, some engineering
domains in Romania are Mechanical Engineering, Industrial Engineering, Chemical Engineering,
Electrical Engineering and many other.

The specialty subjects are intended to provide the specific knowledge which individualizes
a study programme (also called "specialization") within and engineering domain. For exam-
ple, Machine Building Technology and Machine-tools and Production Systems are two different
specializations within the Industrial Engineering domain.

The complementary subjects are intended to provide the graduates the transversal compe-
tences and for engineering study programmes are usually selected from a list that include Foreign
Language, History of Technics, Sports, Culture and Civilizations, Communication Techniques
and so other.

The national authority responsible with quality assurance within higher education system in
Romania, ARACIS (Romanian Agency of Quality Assurance in Higher Education) has estab-
lished several rules regarding the distribution of fundamental, domain, specialty and complemen-
tary subjects within the curriculum. There are rules regarding the percentages of every subject
category and there are also lists of subjects for every engineering domain from which the univer-
sities have to choose the subjects within the curriculum. However, while the lists of fundamental

Copyright © 2006-2015 by CCC Publications
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and domain disciplines are quite restrictive, for the specialty subjects, the constraints are more
flexible and the list of possible "subject-candidates"/options is richer.

The broader range of options, which in fact may be considered beneficial, creates a set
of problems and difficulties regarding the answer to the question: Which specialty subjects
have/have not to be included in the curriculum? These problems have to be solved by each
university, taking into consideration two aspects: the university autonomy, which encourage
every school to customize its curriculum and the rapid evolution of the labor market, which have
to be addressed by the universities by rapid adaptation of the curriculum.

The research presented in this paper was conducted in order to develop a tool for aiding the
university staff in the decision process of designing the engineering curriculum with regards of
the specialty subjects. The remaining part of this paper is as follows. In second section, a survey
of the state of the art regarding various approaches regarding engineering curriculum design is
presented. Third section is dedicated to building a competence list, considered necessary for
an engineering graduate to possess. In the fourth section the flowchart of the proposed method
is presented and the fifth section introduces the fuzzy model used for assessing the percent
of introducing an evaluated subject in the curriculum. The last section is dedicated to the
conclusion.

2 Previous work

Curriculum design for engineering studies should be oriented to final outcome of the higher
education process, providing the labor market with a graduate able to fulfill the requirements
of the employers [1]. The problem is that there is a certain conflict between education, which is
seen as the main objective by the universities and professional training on the other hand, which
is seen as mandatory requirement by the employers.

A literature survey shows that Competence-Based Learning [3, 4] is one of the concepts
considered as base for higher education curriculum design in order to bridge the gap between
education and professional training [2]. Competences are defined as a combination of skills and
knowledge and it is considered that an individual’s performance at work are hardly influenced by
them [3]. Moreover, it is considered that competences comprises also entrepreneurial elements
which are also needed by a higher education graduate [4, 5].

Consequently, university staff and other academic organizations involved in the curriculum
design process have to define and select the required competences in order to define and structure
a successful engineering study programme. In order to customize a specialization among other,
within the same domain, it is very important to define the specific competences and to provide
them by means of the specialty subjects, while keeping the curriculum as flexible as possible [6].
However, care has to be taken in order to avoid too much specialization or too much generalization
[7].

Fuzzy logic was used quite often to build decision support tools related to educational process.
Many works are related to applications of fuzzy logic in assessing the academic performance of
the students [8–10]. The results obtained by using the method presented in [8] were compared to
the values produced by statistical means. Another research, presented in [11], proposed a fuzzy
logic approach to the assessment of student centered learning.

With the widespread of e-learning and web-based learning, special software products called
Learning Management Systems (LMS) are used in order to provide the platform for learning
environment. Fuzzy logic algorithms are reported to be used for the evaluation of LMS systems
[12].

Competence-Based Learning had risen the problem of selection, analysis and evaluation the
required competences for a higher education study programme. A literature survey revealed
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that fuzzy logic was used for this purpose, using a revised DACUM method (13). DACUM
is the abbreviation for Developing A CurriculuUM and was invented by a group of scientists
from New Start Company in Canada’s Nova Scotia. By using fuzzy composite evaluation, the
work presented in [13]developed a very effective method of analyzing technical competences for
graduates of junior colleges.

An approach which uses both fuzzy logic and competence selection and analysis was presented
in [14] and [15]. A particular fuzzy model for assisting the decision of including a specialty subject
in the curriculum, for a specialization within Industrial Engineering domain. The approach was
developed by a team from "Lucian Blaga" University of Sibiu, which includes the authors of the
present paper.

3 The list of competences

The approach proposed in this work is intended to have high degree of generality, in order
to be applied practically to any engineering study programme which can be related to an indus-
trial process. For example, the method can be applied for machine-building and manufacturing
engineers, hydraulic and pneumatic machines engineers, welding engineers, textile and leather
engineers, chemical engineers, electrical engineers and many other engineering fields.

It is considered that in order to become a specialist in any of the above mentioned branch
of engineering, the specialty subjects have to provide the student knowledge in five major com-
ponents: technology, equipment, automation and control systems, CAD/CAE/CAM (computer
aided design/engineering/manufacturing) and research and development, as shown in figure 1.

Consequently, a generalized list of competences which should be provided by the study of
specialty subjects within the curriculum was built and presented below.

Figure 1: Major components of an industrial process

Competences related to TECHNOLOGY are grouped as follows:
- Competence to understand the basic principles of the technology (T1)
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- Competence to implement the technology and to assembly the logistic chain for its imple-
mentation (T2)

- Competence to design the technology (T3)
- Competence to troubleshoot and optimize the technology (T4)
Competences related to EQUIPMENT are grouped as follows:
- Competence to understand the structure and operation principles of the
equipment (E1)
- Competence to operate and maintain the equipment (E2)
- Competence to design the equipment (E3)
- Competence to troubleshoot and optimize the equipment (E4)
Competences related to AUTOMATION AND CONTROL SYSTEMS are grouped as follows:
- Competence to understand and apply the basic principles of automation and control systems

for the process (A1)
- Competence to identify the components of the process which are suited for automation (A2)
- Competence to design, operate and maintain automation systems for the process (A3)
- Competence to troubleshoot and optimize automation systems for the process (A4)
Competences related to CAD/CAE/CAM are grouped as follows:
- Competence to operate with CAD/CAE/CAM software developed for the process (C1)
- Competence to build 3D models of single parts and assemblies within the structure of the

process components (technology, equipment, automation systems) (C2)
- Competence to realize mathematical models and to simulate the behavior of the process

components (C3) - Competence to manufacture process components by means of computer au-
tomated machining (C4)

- Competence to use methods and software for optimizing the process components (C5)
Competences related to RESEARCH AND DEVELOPMENT are grouped as follows:
- Competence to investigate and analyze new processes, technologies, equipment and automa-

tion and control systems (R1)
- Competence to perform fundamental research for the process (R2)
- Competence to build experimental layouts for applicative researches for the process (R3)
- Competence to produce and test prototype products for the process (R4)
- Competence to write technical reports about the process (R5)
In order to exemplify the high degree of generality, for every competences from the list

the generalized item was italicized. It can be easily noticed that the italicized words can be
replaced with more specific items, related to a specialty subject form the curriculum of an
engineering specialization. For example, taking into consideration machine-building engineering
as specialization and "Plastic deformation technologies and equipment" as specialty subject, the
italicized items could be replaced by specific items as follows:

- technology → plastic deformation technology
- equipment → plastic deformation equipment
- process → plastic deformation process.

4 The flowchart of the proposed method

The flowchart of the proposed method is presented in figure 2.
The preliminary stage consists of two steps: developing a generalized set of competences and

building a portfolio of specialty subjects.
The final stage consist of four steps. The first one involves the customization of the general-

ized set of competences for every evaluated subject, according to the specific requirements and
characteristics of the study programme. As stated in the previous section, due to the high degree
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Figure 2: The flowchart of the proposed method

of generality of the generalized set of competences, the customization process is quite straight-
forward. The second step involves the evaluation of the customized set of competences by means
of questionnaires. Because the method itself, the set of generalized and customized competences
and the portfolio of specialty subjects are developed by the academic staff, the questionnaires
are distributed to the other main stakeholders of the educational process, the employers.

The questionnaire (one for each evaluated subject) includes the set of customized compe-
tences, and asks the employers to grade each competence within the list with a grade from 1 to
10.

The next step involves the construction of a fuzzy model, also for every evaluated subject,
which takes into consideration the results of the questionnaires for fuzzyfing the inputs.

Finally, after running the fuzzy model, the necessity of including the evaluated subject will
be assessed.

5 The fuzzy model

The general structure of the fuzzy model is presented in figure 3. The inputs are the compe-
tences from the list presented in section 3.

For a certain specialty subject, the generalized fuzzy model has to be customized, by cus-
tomizing the set of competences. Moreover, if the evaluated subject does not include one of the
five categories of competences (for example a specialty subject with does not include technology-
related chapters), that category can be removed from the inputs. Of course, for an engineering
specialty subject it is hard to encounter such a situation, but nevertheless, it could appear.

The output variable of the fuzzy model is the "percentage of inclusion of the discipline (PI)"
and will fluctuate as a percentage between 0 and 100%. Only the disciplines which obtain a
percentage of inclusion equal or greater than a threshold (for example 80%) will be considered
to be included in the curricula.

The linguistic variables used for the fuzzification of the inputs T1, T2, E1, E2, A1, A2, C1,
C2, C3 and C4 were chosen as:useless;necessary; mandatory.

The linguistic variables used for the fuzzification of the inputs T3, T4, E3, E4, A3, A4, C5,
R1, R2, R3, R4 and R5 were chosen as: inefficient; efficient.

The linguistic variables for the output were chosen as: low; medium; high.



808 O. Bologa, R.E. Breaz, S.G. Racz

The fuzzyfication of the inputs was done by using the membership functions presented in
figure 4 ( for T1, T2, E1, E2, A1, A2, C1, C2, C3 and C4) and figure 5 (for T3, T4, E3, E4, A3,
A4, C5, R1, R2, R3, R4 and R5).

Figure 3: The structure for a fuzzy model

The membership function used for the fuzzification of the output is shown in figure 6.
The membership functions from figures 3-5 were built using only triangular and trapezoidal

curves. The triangular curve is a function of a vector x and depends on three scalar parameters
a, b and c as given by:

f(x, a, b, c) =



0, x ≤ a
x− a

b− a
, a ≤ x ≤ b

c− x

c− b
, b ≤ x ≤ c

0, c ≤ x
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Figure 4: The membership function for fuzzyfication of the inputs T1, T2, E1, E2, A1, A2, C1,
C2, C3 and C4

Figure 5: The membership function for fuzzyfication of the inputs T3, T4, E3, E4, A3, A4, C5,
R1, R2, R3, R4 and R5

Figure 6: The membership function for fuzzyfication of the output
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The trapezoidal curve is a function of a vector x and depends on four scalar parameters a, b,
c and d as given by:

f(x, a, b, c, d) =



0, x ≤ 0
x− a

b− a
, a ≤ x ≤ b

1, b ≤ x ≤ c

d− x

d− c
, c ≤ x ≤ d

0, d ≤ x

As development tool, the Matlab (with Fuzzy Logic Tcoolbox) was used. The other char-
acteristics of the fuzzy model are: AND method minimum; OR method maximum; Implication
method minimum; Aggregation method maximum; Defuzzification method centroid (center of
gravity).

6 Conclusion

The main goal of this research was to develop a decision support tool, based on fuzzy logic for
the decision of including or eliminating a specialty discipline within an engineering curriculum.

The proposed tool will help the academic staff to choose from a portfolio of specialty subjects.
Usually, this portfolio is imposed by the national authorities for higher education in each country.
Of course, the number of disciplines within the portfolio is higher as the number of disciplines
which can be included in the curriculum, so the universities have to choose between them, a
process which is often extremely difficult.

A list of competences which a future graduate of a four years engineering programme (seen as
an industrial processes engineer) should possess after studying the subjects form above-mentioned
portfolio was built. The competences within the list were divided into technology related, equip-
ment related, automation and control systems related, CAD/CAM/CAE related and research
and development related.

The list of competences were distributed (as questionnaires) to industrial companies in order
to be assessed. The staff of companies, which are the main employer of the engineering graduates
were asked to grade every competence from the list with grades between 1 and 10. Using the
list of competences and the grades, fuzzy models were built for each subject within the portfolio.
The inputs of each fuzzy model were the set of customized competences selected from the list
and the output was the percent of inclusion in the curriculum. The fuzzyfication of the inputs
was made according to a chosen set of membership functions and to the grades received by each
competence.

Finally, the models were used to assist the decision of including the discipline in the curricula
by allowing the user to calculate the percent of inclusion.
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Abstract: The problem of fuzzy robust tracking control is investigated for uncer-
tain nonlinear time-delay systems. The nonlinear time-delay system is modeled as
fuzzy Takagi-Sugeno (T-S) system, and fuzzy logic systems are used to eliminate the
uncertainties of the system. A sufficient condition for the existence of fuzzy controller
is given in terms of linear matrix inequalities (LMIs) and adaptive law. Based on
Lyapunov stability theorem, the fuzzy control scheme guarantees the desired tracking
performance in sense that all the closed-loop signals are uniformly ultimately bounded
(UUB). Simulation results of 2-link manipulator demonstrate the effectiveness of the
developed control scheme.
Keywords: fuzzy T-S model; fuzzy logic systems; nonlinear system; time-delay;
tracking control.

1 Introduction

Fuzzy control approach offers a powerful and systematical control methodology to handle
nonlinear system. Owing to the superior approximation and reasoning abilities of the fuzzy
controller, fuzzy control approach has been applied in different applications. With the extensive
efforts of the researchers working on the fuzzy control discipline, fruitful stability analysis results
have been obtained to aid the design of stable fuzzy controllers. In [1], a fuzzy T-S model
was employed to represent the system dynamics of the nonlinear system. The fuzzy T-S model
represents the nonlinear system as a weighted sum of some linear subsystems. This particular
structure offers a general framework to represent the nonlinear system which is favorable for
system analysis. Fuzzy controllers [2-4] were proposed to handle the nonlinear system represented
by the fuzzy T-S model. To avoid the effect of the uncertainties, a matching condition is assumed
in [5–7], and an upper bound on uncertainties is introduced in [8–10]. The matching condition
and the upper bound in dealing with the uncertainties are effective and feasible. However, there
exists certain conservatism. The matching condition is a very conservative assumption and the
upper bound may be too big or too small, which adds some difficulties to the controller design.
On the other hand, it is well known that fuzzy logic systems can uniformly approximate nonlinear
continuous functions to arbitrary accuracy. Thus, fuzzy logic systems are used to model uncertain
nonlinear systems in [11–13].

Copyright © 2006-2015 by CCC Publications
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Time delays are frequently encountered in engineering systems. The existence of time delays
usually becomes the source of instability and degrading performance of systems. Therefore,
stability analysis and controller synthesis for nonlinear time-delay systems are important both
in theory and in practice.

By using fuzzy T-S model and fuzzy logic systems, we propose a novel robust tracking con-
trol scheme for a class of uncertain nonlinear time-delay system. Fuzzy T-S model is used to
approximate the nonlinear system, and a fuzzy state feedback controller is designed to guarantee
the stability of the fuzzy system. A compensator based fuzzy logic systems is introduced to
eliminate the uncertainties of the system. The fuzzy control scheme ensures the desired tracking
performance in sense that all the closed-loop signals are uniformly ultimately bounded (UUB).

The rest of the paper is organized as follows. Section 2 provides the problem formulation.
Section 3 develops a procedure of the controller design. Section 4 gives the main result. Section
5 presents simulation examples to illustrate the effectiveness of the proposed method. These are
followed by conclusions in Section 6.

2 Problem formulation

Consider the following uncertain nonlinear time-delay system:

ẋ1 = x2,

· · ·
ẋ(β1−1) = xβ1 ,

ẋβ1 = f1(x, x(t− τ1), · · · , x(t− τr), u) + f̃1(x, x(t− τ1), · · · , x(t− τr), u) + d1,

ẋ(β1+1) = x(β1+2),

· · ·
ẋn = fm(x, x(t− τ1), · · · , x(t− τr), u) + f̃m(x, x(t− τ1), · · · , x(t− τr), u) + dm,

(1)

where x = [x1, · · · , x(β1−1)
1 , · · · , x(n−βm+1), · · · , x

(βm−1)
(n−βm+1)]

T ∈ Rn with β1+β2+· · ·+βm = n and
u ∈ Rm are the system state and control input, respectively. fi (i = 1, · · · ,m) are known smooth
nonlinear functions, f̃i (i = 1, · · · ,m) are unknown nonlinear uncertainties, τi(i = 1, · · · , r) are
time delays, and di (i = 1, · · · ,m) are external bounded disturbances.

The control objective of this paper is to find a fuzzy tracking controller such that, while
maintaining all the closed-loop signals UUB, the system states of nonlinear system (1) follow
those of the given stable reference model.

3 Fuzzy model, reference model and fuzzy controller

A fuzzy-model-based control system, formed by a fuzzy model, a reference model, and fuzzy
controller connected in a closed-loop, is introduced.

3.1 Fuzzy model

A fuzzy dynamic model has been proposed by Takagi and Sugeno to represent a nonlinear
system. The fuzzy dynamic model is described by the following fuzzy IF-THEN rules and will
be employed here to deal with the control design problem for the nonlinear system in (1).
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Plant Rule i: IFz1(t) is F i
1 and , · · · , and zs(t) is F i

s ,THEN

ẋ(t) = Aix(t) +

r∑
l=1

Ailx(t− τl) +Biu(t) + d, i = 1, · · · , L (2)

where z1(t), · · · , zs(t) are the premise variables, F i
j (j = 1, · · · , s) are the fuzzy sets, L is

the number of IF-THEN rules, Ai,Bi and Ail are some constant matrices with compatible
dimensions, Bi=[0, · · · , bTi1, · · · , 0, · · · , bTim]T ∈ Rn×m with bi1 ∈ Rm, · · · , bim ∈ Rm , and
d = [0, · · · , d1, · · · , 0, · · · , dm]T .

Then, the final output of the fuzzy system is inferred as follows:

ẋ(t) =

L∑
i=1

µi[Aix(t) +

r∑
l=1

Ailx(t− τl)] +

L∑
i=1

µiBiu(t) + d, (3)

where

µi = vi(z(t))

/
L∑
i=1

vi(z(t)), vi(z(t)) =

s∏
j=1

F i
j (zj(t)) (4)

for all t ≥ 0, and F i
j (zj(t)) is the grade of membership of zj(t) in F i

j . It can be seen that
L∑
i=1

vi(z(t)) > 0, and vi ≥ 0(i = 1, · · · , r) for all t ≥ 0. We have µi ≥ 0(i = 1, · · · , r),
L∑
i=1

µi = 1.

Hence, the nonlinear system (1) can be rearranged as the following equivalent system :

ẋ(t) =

L∑
i=1

µi[Aix(t) +

r∑
l=1

Ailx(t− τl)] +

L∑
i=1

µiBiu(t) +B∆(x, x(t− τ)) + d, (5)

where B∆(x, x(t−τ)) = B∆(x, x(t−τ1), · · · , x(t−τr)) denotes the uncertainties between the non-
linear system (1) and the fuzzy model (3), and B = diag[B1, · · · , Bm] with Bi = [0, · · · , 0, 1]T ∈
Rβi .

3.2 Reference model

The system states of nonlinear systems (1) are driven to follow those of the following stable
reference model

ẋr(t) = Arxr(t) + r(t), (6)

where xr(t) is a reference state, r(t) is a bounded reference input, and Ar is an asymptotically
stable matrix.

3.3 Fuzzy controller

A fuzzy controller is chosen as

u(t) = ul(t)− uf (t), (7)

where ul(t) denotes the fuzzy state feedback control based on T-S model, and uf (t) is the
adaptive compensator based on fuzzy logic systems. The former is used to stabilize the linear
part of system (11), and the latter is used to compensate the uncertainties. ul(t) and uf (t) are
designed as (8) and (10), respectively.

For the fuzzy model represented by (2) or (3), fuzzy state feedback control ul(t) shares the
same IF parts with the following structure.
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Control Rule i: IF z1(t) is F i
1 and , · · · , and zs(t) is F i

s , THEN

ul(t) = Ki(x(t)− xr(t)), i = 1, · · · , L.
Hence, the overall state feedback controller ul(t) is given by

ul(t) =

L∑
i=1

µiKi(x(t)− xr(t)), (8)

where Ki(i = 1, 2, · · · , L) are matrices with proper dimensions and satisfy the following inequal-
ities

ĀT
ijP + PĀij +

r∑
l=1

α−1
l PĀilĀ

T
ilP +

r∑
l=1

αlI +
1

ρ2
PP + Q̄ < 0, i, j = 1, · · · , L, (9)

where Āij =

[
Ai +BiKj −BiKj

0 Ar

]
, Āil =

[
Ail 0

0 0

]
, Q̄ = diag{2Q, 2Q}, P and Q are some

symmetric and positive definite matrices, and αl(l = 1, · · · , r) are positive constants.
The adaptive compensator based on fuzzy logic systems uf (t) are as follows:

uf (t) =

{
E−1û(x, x(t− τ)|Θ), if E is nonsigular
ET (I + EET )−1û(x, x(t− τ)|Θ), if E is sigular (10)

where Ei = [bTi1, · · · , bTim]T ∈ Rm×m,E =
L∑
i=1

µiEi, and û(x, x(t − τ)|Θ) is constructed by fuzzy

logic systems. The weight Θ is an adaptive parameter, which is adapted by

Θ̇ = η1Ψ
T (x, x(t− τ))B̄TPx̃, (11)

where η1 is a positive constant, Ψ(x, x(t−τ)) is a fuzzy basis-function matrix, and x̃ = [xT , xTr ]
T .

In the following, we explain the solution of the inequalities (9) and the construction of fuzzy
logic systems û(x, u|Θ).

1) By Schur complements, the inequalities (9) are transformed into the LMIs. For the conve-
nience of design, P is chosen as the formP = diag{P1, P2}, where P1, P2 are some symmetric and
positive definite matrices. The inequalities (9) are equivalent to the following matrix inequalities S11 −P1BiKj 0

−(BiKj)
TP1 S22 P2

0 P2 −ρ2I

 < 0, i, j = 1, 2, · · · , L, (12)

Where S11 = P1(Ai +BiKj) + (Ai +BiKj)
TP1 +

r∑
l=1

α−1
l P1AilA

T
ilP1 +

r∑
l=1

αlI +
1
ρ2
P1P1 + 2Q,

S22 = P2Ar +AT
r P2 +

r∑
l=1

αlI + 2Q.

The matrix inequalities (12) imply S11 < 0. Let W = P−1
1 and Yj = KjW . S11 < 0 is

equivalent to the LMIs with prescribed Q and αl(l = 1, · · · , r), S W

W −(
r∑

l=1

αlI + 2Q)−1

 < 0, i, j = 1, 2, · · · , L (13)
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where S = AiW +WAT
i +BiYj + (BiYj)

T +
r∑

l=1

α−1
l AilA

T
il + (ρ2)−1I.

By solving the LMIs (13), P1 and Kj(j = 1, 2, · · · , L) could be obtained. And then, by
substituting P1 and Kj(j = 1, 2, · · · , L) into (12), (12) becomes standard LMIs. We can easily
solve P2 from (12). Therefore, the common solution P and Kj(j = 1, 2, · · · , L) could be found.

Remark 1: Either the matching condition or the upper bound is related to a large number
of matrix operations. Without the matching condition and the upper bound, the dimension of
the LMIs of this paper is reduced.

2) Fuzzy adaptive systems consist of four main components: fuzzy rule base, fuzzy inference
engine, fuzzifier and defuzzifier [11]. The fuzzy rule base is composed of a collection of IF-THEN
inference rules:

Rl: IF x1 is Al
1, · · · , xn is Al

nŁŹTHEN y is Gl(l = 1, · · · p)
where Al

i(i = 1, · · · , l) and Gl(l = 1, · · · p) are fuzzy sets. The kth element of ∆(x, x(t− τ)) is of
the following form:

∆̂k(x, x(t− τ)|θk) = ξTk (x, x(t− τ))θk,

where θk = (θ1k, · · · , θ
p
k)

T ∈ Rp, ξTk (x, x(t− τ)) = (ξ1k, · · · , ξ
p
k) ∈ Rp,

ξlk =

n∏
i=1

µF l
i
(xi, xi(t− τ))

/
p∑

l=1

n∏
i=1

µF l
i
(xi, xi(t− τ)), µF l

i
(xi, xi(t−τ)) = µF l

i
(xi)

r∏
j=1

µF l
i
(xi(t− τj)),

and µF l
i
(xi)(i = 1, 2, · · · , n) are the membership functions.

In this paper, fuzzy logic systems are constructed to eliminate the uncertainties ∆(x, x(t−τ)).
The approximation form is given as follows:

∆̂(x, x(t− τ)|Θ) = Ψ(x, x(t− τ))Θ, (14)

where Ψ(x, x(t− τ)) = diag[ξT1 (x, x(t− τ)), · · · , ξTm(x, x(t− τ))],Θ = [θT1 , θ
T
2 , · · · , θTm]T .

Define the optimal the parameter Θ∗ as

Θ∗ = arg min
Θ∈Ω1

[ sup
x∈U1

|û(x, x(t− τ)|Θ)−∆(x, x(t− τ))|], (15)

where U1 = {x ∈ Rn : ∥x∥ ≤ N}, Ω1 = {Θ ∈ Rpm: ∥Θ∥ ≤ M}. U1, Ω1 denote the sets of suitable
bounds on x,Θ respectively, N,Mare upper bounds.

The approximation error for the function ∆(x, x(t− τ))can be expressed as

∆̂(x, x(t− τ)|Θ)−∆(x, x(t− τ)) = Ψ(x, x(t− τ))Θ̃ + w, (16)

where Θ̃ = Θ−Θ∗ the estimation error for Θ, w = [w1, · · · , wm]T is a residual term.
Remark 2: In order to guarantee ∥Θ∥ ≤ M, the adaptive law (11) must be modified by the
projection algorithm [11] as follows:

Θ̇ =

{
η1Ψ

T (x, x(t− τ))B̄TPx̃, if(∥Θ∥<M)or(∥Θ∥=M and x̃TPB̄ Ψ(x, x(t− τ))Θ ≤ 0)

PΘ[.], if ∥Θ∥=M and x̃TPB̄ Ψ(x, x(t− τ))Θ > 0

where PΘ[.]=η1Ψ
T (x, x(t− τ))B̄TPx̃− η1

x̃TPB̄ Ψ(x,x(t−τ))Θ

∥Θ∥2 .
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4 Stability analysis

Substituting (11) into (11) yields

ẋ(t) =

L∑
i=1

µi[Aix(t) +

r∑
l=1

Ailx(t− τl)] +

L∑
i=1

L∑
j=1

µiµjBiKj(x(t)− xr(t))

−B(û(x, x(t− τ)|Θ)−∆(x, x(t− τ))) + d. (17)

Let x̃(t) = [xT (t), xTr (t)]
T , andB̄ = [ B

T 0 ]T . By using (11) and (17), a new extended closed-
loop system is as follows:

˙̃x(t) =

L∑
i=1

L∑
j=1

µiµj [Āij x̃(t)+

r∑
l=1

Āilx̃(t− τl)]+B̄(−(û(x, x(t−τ)|Θ)−∆(x, x(t−τ)))+d′, (18)

where d′ = [dT , rT (t)]T . When fuzzy logic systems û(x, x(t−τ)|Θ) could eliminate ∆(x, x(t−τ)),
the closed-loop system (18) is stable.

By denoting w′ = [w̄T , rT (t)]T , w̄ = [0, · · · , d1 − w1, · · · , 0, · · · , dm − wm]T and using (14),
the closed-loop system (18) could be rewritten as

˙̃x(t) =
L∑
i=1

L∑
j=1

µiµj [Āij x̃(t) +
r∑

l=1

Āilx̃(t− τl)] + B̄(−Ψ(x, x(t− τ))Θ̃) + w′. (19)

From the above analysis, we have the following conclusion.

Theorem 1. Given a matrixQ > 0, scalarsρ > 0,αl(l = 1, · · · , r) > 0, η1 > 0.If there exist
matricesP > 0,Kj(j = 1, 2, · · ·, L) such that the inequalities (9) hold. If the updating law for
fuzzy logic systems is chosen as (11). Then there exists a controller (11) with the fuzzy state
feedback controller (8) and the adaptive compensator (10) such that, while maintaining all the
closed-loop signals UUB, the following tracking performance(20) is achieved∫ T

0
(x(t)− xr(t))

TQ(x(t)− xr(t))dt ≤ x̃T (0)Px̃(0) +
1

η1
Θ̃T (0)Θ̃(0) + ρ2

∫ T

0
(w′Tw′)dt. (20)

Proof: Consider the following Lyapunov-Krasoviskii candidate

V =
1

2
x̃TPx̃+

1

2

r∑
l=1

∫ t

t−τl

αlx̃
T (v)x̃(v)dv +

1

2η1
Θ̃T Θ̃, (21)

where V̇ = V̇1 + V̇2, V̇1and V̇2 are given in (22) and (26), respectively.

V̇1 =
1

2
(

L∑
i=1

L∑
j=1

µiµj [Āij x̃(t) +
r∑

l=1

Āilx̃(t− τl)])
TPx̃(t) +

1

2
x̃T (t)P (

L∑
i=1

L∑
j=1

µiµj [Āij x̃(t)

+

r∑
l=1

Āilx̃(t− τl)]) +
1

2
w′TPx(t) +

1

2
xT (t)Pw′+ 1

2

r∑
l=1

αlx̃
T (t)x̃(t)− 1

2

r∑
l=1

αlx̃
T (t− τl)x̃(t− τl)

≤ 1

2
(

L∑
i=1

L∑
j=1

µiµj [x̃
T (t)ĀT

ijPx̃(t)+x̃T (t)PĀij x̃(t)+
r∑

l=1

α−1
l x̃T (t)PĀilĀ

T
ilPx̃(t)+

r∑
l=1

αlx̃
T (t− τl)x̃(t− τl)]
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−1

2
(
1

ρ
Px(t)− ρw′)T (1

ρ
Px(t)− ρw′) + 1

2
ρ2w′Tw′+ 1

2ρ2
x̃T (t)PPx̃(t) +

1

2

r∑
l=1

αlx̃
T (t)x̃(t)

−1
2

r∑
l=1

αlx̃
T (t− τl)x̃(t− τl)

≤ 1

2

L∑
i=1

L∑
j=1

µiµj x̃
T (t)(ĀT

ijP+PĀij+

r∑
l=1

α−1
l PĀilĀ

T
ilP+

r∑
l=1

αlI+
1

ρ2
PP )x̃(t)+

1

2
ρ2w′Tw′. (22)

Substituting (9) into (22) yields

V̇1 ≤ −1

2
x̃T (t)Q̄x̃(t) +

1

2
ρ2w′Tw′. (23)

By using (11),

V2 = [x̃TPB̄(−(Ψ(x, x(t− τ))Θ̃) +
1

η1
Θ̃T Θ̇] = 0. (24)

From (23)-(24),

V̇ ≤ −1

2
x̃T (t)Q̄x̃(t) +

1

2
ρ2w′Tw′. (25)

When∥x̃(t)∥ > ρ
λmin(Q̄)

∥w′∥,V̇ < 0.Thus, the closed-loop system consisting of (1), (11), (8) and
(10) is UUB . 2

Note that ∫ T

0
(x(t)− xr(t))

TQ(x(t)− xr(t))dt ≤
∫ T

0
x̃T (t)Q̄x̃(t)dt.

Integrating the above equation (25) from t = 0 to Tyields (20).

5 Simulation example

In this section, we provide an example to verify the effectiveness of the proposed control
scheme.

Example: Consider the following 2-link manipulator system in [14]

q̈(t) + C(q, q̇)q̇(t) + g(q) = B(q)u(t) +

r∑
i=1

ξi(t)q(t− τi) + d′, (26)

where C(q, q̇) = H−1(q)C′(q, q̇), g(q) = H−1(q)g′(q), B(q) = H−1(q),d′ = H−1(q)d,q = [q1, q2]
T ,

ξi(t)(i = 1, · · · , r)are uncertain and bounded, and dis the external bounded disturbance.
The reference model is as follows:

ẋr(t) = Arxr(t) + r(t), (27)

whereAr = diag{Ar1, Ar2},Ar1 = Ar2 =

[
0 1

−6 −5

]
, r(t) = [0, r1(t), 0, r2(t)]

T , r1(t) = r2(t) =

3 sin(2t).
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Step1: Denote x1 = q1, x2 = q̇1, x3 = q2, and x4 = q̇2. Then, (26) can be written as a fourth-
dimension system. A nine-rule fuzzy T-S model is used to approximate the nonlinear 2-link
manipulator system at x1 = −π

2 , 0,
π
2 and x3 = −π

2 , 0,
π
2 , where

A1 =


0 1 0 0

5.927 −0.001 −0.315 −0.0000084

0 0 0 1

−6.859 0.002 3.155 0.0000062

 , A2 =


0 1 0 0

3.0428 −0.0011 −0.1791 −0.0002

0 0 0 1

−3.5436 0.0313 2.5611 0.0000114

 ,

A3 =


0 1 0 0

6.2728 0.003 0.4339 −0.0001

0 0 0 1

−9.1041 0.0158 −1.0574 −0.000032

 , A4 =


0 1 0 0

6.4535 0.0017 1.2427 −0.0002

0 0 0 1

−3.1873 0.0306 −5.1911 −0.000018

 ,

A5 =


0 1 0 0

11.1336 0 −1.8145 0

0 0 0 1

−9.0918 0 9.1638 0

 , A6 =


0 1 0 0

6.1702 −0.001 1.687 −0.0002

0 0 0 1

−2.3559 0.0314 4.5298 −0.000011

 ,

A7 =


0 1 0 0

6.1206 0.0041 0.6205 0.0001

0 0 0 1

8.8794 0.0193 −1.0119 0.000044

 , A8 =


0 1 0 0

3.6421 −0.0018 0.0721 0.0002

0 0 0 1

2.429 −0.0305 2.9832 −0.000019

 ,

A9 =


0 1 0 0

6.2933 −0.0009 0.2188 −0.000012

0 0 0 1

−7.4649 0.0024 3.2693 −0.0000092

 ,

A11 = A21 = A31 = A41 = A51 = A61 = A71 = A81 = A91 =


0 0 0 0

0.01 0 0 0

0 0 0 0

0 0 0 0

 ,

A12 = A22 = A32 = A42 = A52 = A62 = A72 = A82 = A92 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0.01 0

 ,

B1 =

[
0 1 0 −1

0 −1 0 2

]T
, B2 =

[
0 0.5 0 0

0 0 0 1

]T
, B3 =

[
0 1 0 1

0 1 0 2

]T
,

B4 =

[
0 0.5 0 0

0 0 0 1

]T
, B5 =

[
0 1 0 −1

0 −1 0 2

]T
, B6 =

[
0 0.5 0 0

0 0 0 1

]T
,
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B7 =

[
0 1 0 1

0 1 0 2

]T
, B8 =

[
0 0.5 0 0

0 0 0 1

]T
, B9 =

[
0 1 0 −1

0 −1 0 2

]T
.

The membership functions are adopted as the triangle type.
Step 2: On the basis of Theorem1, withα1 = 0.005, α2 = 0.005, andρ = 1,we have

K1 =

[
-76.9685 -42.9566 -19.6919 -8.9116
6.0025 -0.4619 -51.4252 -25.0336

]
,

K2 =

[
-77.7828 -42.8754 -13.6211 -5.9413
8.7179 1.2251 -50.6614 -24.6859

]
,

K3 =

[
-76.8347 -42.9089 -19.8204 -8.9785
5.8595 -0.5257 -51.3739 -25.0109

]
,

K4 =

[
-77.7828 -42.8754 -13.6211 -5.9413
8.7179 1.2251 -50.6614 -24.6859

]
,

K5 =

[
-77.7828 -42.8754 -13.6211 -5.9413
8.7179 1.2251 -50.6614 -24.6859

]
,

K6 =

[
-77.7828 -42.8754 -13.6211 -5.9413
8.7179 1.2251 -50.6614 -24.6859

]
,

K7 =

[
-79.8424 -43.4072 -6.0780 -2.2626
12.7745 3.6898 -50.2150 -24.4989

]
,

K8 =

[
-77.7828 -42.8754 -13.6211 -5.9413
8.7179 1.2251 -50.6614 -24.6859

]
,

K9 =

[
-80.1162 -43.5088 -5.8152 -2.1328

13.0509 3.8147 -50.3242 -24.5472

]
.

Step 3: In fuzzy adaptive compensator, the membership functions are selected as

µF 1
i
(xi) =

1

1 + exp[5(xi + 0.8)]
, µF 2

i
(xi) = exp[−(xi + 0.6)2], µF 3

i
(xi) = exp[−(xi + 0.4)2],

µF 4
i
(xi) = exp[−(xi)

2], µF 5
i
(xi) = exp[−(xi − 0.4)2], µF 6

i
(xi) = exp[−(xi − 0.6)2],

µF 7
i
(xi) =

1

1 + exp[5(xi − 0.8)]
, i = 1, 2, · · · , 4.

Step 4: Some parameters are choose as
η1 = 10, r = 2, τ1 = 0.5, τ2 = 1, ξ1(t) = 5 + 20sin(5t), andξ1(t) = 1 + 15cos(5t),

Θ(0) = [0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2],

(x1(0), x2(0), x3(0), x4(0), xr1(0), xr2(0), xr3(0), xr4(0)) = (0.4, 0,−0.4, 0, 0, 0, 0, 0).

By using the method in Theorem 1, the tracking performances of x1(t), x2(t), x3(t), x4(t) are
shown in Fig.1,and the control efforts u1(t) and u2(t) are given in Fig.2,respectively.
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Figure 1: The responses of x1,x2,x3,x4, xr1,xr2,xr3andxr4
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Figure 2: The control inputs u1,u2
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Figure 3: The responses of x1,x2,x3,x4, xr1,xr2,xr3andxr4
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Figure 4: The responses of x1,x2,x3,x4, xr1,xr2,xr3andxr4
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Figure 5: The responses of x1,x2,x3,x4, xr1,xr2,xr3andxr4
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Whenτ1 = 1,τ2 = 1, simulation results are shown in Fig.3.Whenτ1 = 1,τ2 = 2, simulation
results are shown in Fig.4.

When r1(t)andr2(t) are square waves having an amplitude ±0.2 with a period of 2π, the
tracking performances of x1(t), x2(t), x3(t), x4(t) are shown in Fig. 5, and the control efforts
u1(t) and u2(t) are given in Fig.6.

Simulation results illustrate that the proposed controller design is effective and feasible.

6 Conclusion

Based on fuzzy technique, a novel tracking control scheme is presented for uncertain non-
linear time-delay system. As main contribution of this paper, we design a novel fuzzy tracking
controller, which is independent of the matching condition or the upper bound for the uncer-
tainties. Furthermore, the tracking control design for discrete nonlinear systems is also developed.
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Abstract: In many practical situations, the relation between the experts’ degrees of
confidence in different related statements is well described by Fuzzy Cognitive Maps
(FCM). This empirical success is somewhat puzzling, since from the mathematical
viewpoint, each FCM relation corresponds to a simplified one-neuron neural network,
and it is well known that to adequately describe relations, we need multiple neurons.
In this paper, we show that the empirical success of FCM can be explained if we take
into account that human’s subjective opinions follow Miller’s seven plus minus two
law.
Keywords: fuzzy cognitive maps, neural networks, seven plus minus two law.

1 Introduction: Fuzzy Cognitive Maps and Their Puzzling Suc-
cess

Need for (imprecise) expert estimates. To characterize a real-life system, we must know its
properties. Some of these properties come from measurements and are thus represented by real
numbers. However, in many cases, a large amount of information comes from expert estimates.

For example, to describe the current state of a patient, it is rarely enough to collect the
corresponding measurement results – such a temperature, blood pressure, etc. Medical doctors
supplement this information by providing imprecise ("fuzzy") estimates, such as "somewhat
soft", "small", "rather high", etc.

Similarly, to adequately describe the financial situation of a company or of a country, it
is important to supplement the corresponding numbers with expert estimates describing how
probable is a default or, vice versa, how probable in an increase in profitability (and how big this
increase can be). A typical expert’s opinion sounds like this: "a vert big increase is improbable,
but it is reasonable to expect a modest increase in reasonable time".

Fuzzy techniques as a natural way to describe imprecise expert estimates. When an
expert completely agrees or completely disagrees with a precise statement (such as "the price
of this stock will increase by at least 5% in a year"), in the computer, the resulting expert-
estimated truth value of a statement is either "true" or "false". In the computer, "true" is
usually represented as 1, and "false" as 0.

When the statement is imprecise, like the one above about a modest increase, the expert
is not 100% sure that the price will increase by 5%. Instead, the expert has some degree of

Copyright © 2006-2015 by CCC Publications
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confidence in this 5% increase. Since full confidence in a statement is described by the number 1,
and full confidence in its negation is described by the number 0, a reasonable way to describe the
expert’s partial confidence is by using numbers between 0 and 1: the higher the value, the larger
the expert’s degree of confidence. The use of numbers from the interval [0, 1] for describing the
experts’ degrees of confidence is the main idea behind fuzzy logic [6, 9, 15].

From individual fuzzy properties to Fuzzy Cognitive Maps. Fuzzy properties describing
a system are often interrelated, in the sense that some properties imply others. For example, in
medicine, if a person is overweight and not very physically fit, this increases the possibility that
this person may get diabetes and thus, may be in a pre-diabetic stage. In financial situations, if a
company has many new patents, especially patents in a "hot" area like advanced bioinformatics,
it is usually a good indication of its future financial prosperity, etc.

Fuzzy Cognitive Maps (FCM) are a way to describe the relations between different fuzzy
properties. To describe these relations, for each property P , we first need to list all the properties
P1, . . . , Pn that directly affect the property P . Once this list is produced, we need to describe
how the numerical values x1, . . . , xn ∈ [0, 1] of the properties Pi affect the value x of the property
P . In computational terms, we need to come up with an algorithmic function f(x1, . . . , xn) that
predicts the value x based on the known values x1, . . . , xn.

Which functions should we choose? A natural idea is to start with the simplest functions.
The simplest possible functions are linear functions, in which case we have

x = w0 + w1 · x1 + . . .+ wn · xn. (1)

However, we cannot simply use general linear functions:

• the predicted value should be within the interval [0, 1], but

• for different combinations of weights, the above linear expression can be any real number,
not necessarily a number between 0 and 1.

A reasonable idea is that, after we get the above linear combination, we then apply an additional
transformation s(x) that maps the whole real line to a number from the interval [0, 1]. In other
words, instead of the linear expression (1), we use a slightly more complex expression

x = s(w0 + w1 · x1 + . . .+ wn · xn), (2)

where s(x) is a pre-selected function that maps the real line into a unit interval [0, 1]. This
function s(x) is called an activation function.

This is the main idea behind Fuzzy Cognitive Maps (FCM); see, e.g., [2,3,7,8,11,12,16–20,22,
24–29]. The FCM model is used when experts provide estimates only for some of the properties.
In this case, the values of other properties are estimates by using the corresponding formulas of
type (2).

Which activations functions are used? Several different activation functions s(x) have been
used in FCM; the most frequently used is the sigmoid function

s(x) =
1

1 + exp(−x)
. (3)

The main reason why this function is used is the same reason why the same function is used
in artificial neural networks: our goal is to describe human reasoning, and the sigmoid function
provides a good approximate description of how similar processing in performed by the biological
neurons in the brain; see, e.g., [1].
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Comment. There are also theoretical reasons explaining why the sigmoid function is, in some
reasonable sense, optimal; see, e.g., [10, 14, 23]. These theoretical reasons may also explain why
evolution resulted in selecting this particular function in the actual brain – since this function is
indeed optimal.

Fuzzy Cognitive Maps are efficient. In many practical applications, Fuzzy Cognitive Maps
have led to a reasonably good description of human reasoning; see, e.g., [2, 3, 7, 8, 11, 12, 16–20,
22,24–29].

This empirical success is puzzling. From the theoretical viewpoint, this empirical success is
puzzling. Indeed, as we have mentioned, the output (3) of each corresponding fuzzy rule is the
same as the output of a standard non-linear neuron [1, 24].

It is known that a 3-layer neural network has the universal approximation property; see,
e.g., [1]. This means that if we use several (K) nonlinear neurons, with the outputs

x(k) = s
(
w

(k)
0 + w

(k)
1 · x1 + . . .+ w(k)

n · xn
)
, (4)

and then use an additional linear neuron to combine these output into a single combination

x = W (0) +
K∑
k=1

W (k) · x(k), (5)

then, for each continuous function x = f(x1, . . . , xn) on any box – in particular, on the box
[0, 1]× [0, 1] – and for every ε > 0, we can find the values of the weights w(k)

i and W (k) for which,
for every inputs, the final output (5) is ε-close to the desired value f(x1, . . . , xn).

It is also known that we need several neurons to get the universal approximation property,
a single neuron does not have this property; see, e.g., [9]. And here, we have an opposite
phenomenon: in many practical cases, already a single neuron provides a good approximation
for the desired dependence! This is very puzzling.

Comment. The fact that a single neuron does not have a universal approximation property can
be explained if we take into account that when the dependence x = f(x1, . . . , xn) is described
by the formula (2), then for every i, we get

∂f

∂xi
= s′ · wi,

where s′(x) is the derivative of the activation function s(x). Thus, for every i ̸= j, we have

∂f

∂xi
= const · ∂f

∂xj
,

where the constant is the ratio
wi

wj
. This property is already not satisfied by the simplest non-

linear operation of multiplication f(x1, x2) = x1 · x2, for which

∂f

∂x1
= x2 ̸= const · ∂f

∂x2
= const · x1.

What we do in this paper. In this paper, we provide a possible explanation for the (puzzling)
empirical success of Fuzzy Cognitive Maps.
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2 Possible Explanation for the Puzzling Empirical Success of FCMs

Main idea behind our explanation. Our main idea is to take into account the following
difference between the general universal approximation property (as used in neural network
theory) and what we want in Fuzzy Cognitive Maps.

The difference is that in the general applications of neural networks, the values x1, . . . , xn,
and x are usually well-defined physical quantities, quantities which can be, in principle, measured
with an arbitrary accuracy ε. For example, if we use neural networks to design an appropriate
control, we want the resulting control value x to be as close to the optimal value f(x1, . . . , xn)
as possible.

In contrast, in Fuzzy Cognitive Maps, all the variables x1, . . . , xn, and x are degrees of
confidence describing expert opinions. These degrees are, by definition, imprecise, so computing
them with too much for an accuracy simply does not make sense. An expert may be able to
mark his or her degree of confidence by marking 6 on a scale from 0 to 10 – which corresponds
to the degree of confidence 0.6 – but a normal expert cannot meaningfully distinguish between
degrees of confidence 0.61 and 0.62.

Let us show that this difference can explain the puzzling empirical success of Fuzzy Cognitive
Maps.

How accurate are expert estimates: 7 ± 2 rule. Psychologists have found out that we
usually divide each quantity into 7 plus plus minus 2 categories – this is the largest number of
categories whose meaning we can immediately grasp; see, e.g., [13, 21] (see also [30]). For some
people, this "magical number" is 7 + 2 = 9, for some it is 7 − 2 = 5. This rule is in good
accordance with the fact that in fuzzy logic, to describe the expert’s opinion on each quantity,
we usually use 7±2 different categories (such as "small", "medium" , etc.).

Since on the interval [0, 1], we can only have 7±2 meaningfully different degrees of confidence,
the accuracy of these degrees ranges from 1/9 (for those who use 9 different categories) to 1/5
(for those who use only 5 different categories).

What is the overall accuracy of the corresponding degrees. A Fuzzy Cognitive Map
usually combines knowledge of a large number of experts. Since we have a large number of
experts, it is practically certain that these experts include experts of all types: namely, those
who can estimate their degree of confidence with a higher accuracy of 1/9, as well as those who
can only estimates their degree of confidence with a much lower relative accuracy of 1/5 = 20%.

In general, if we process a large amount of data of different accuracy, the accuracy of the
result is determined by the lowest accuracy of the inputs. For example, if we estimate the overall
amount of money m = m1 + m2 + m3 owned by three people, and we know m1 and m2 with
an accuracy of 1 cent, but we only know m3 with an accuracy of 50% (i.e., we only know the
ballpark estimate for m3), then clearly our estimate for the sum m will be very inaccurate as
well.

From this viewpoint, since FCM contains lower-accuracy data, with the accuracy 20%, we
cannot expect the estimation results to be more accurate than that.

How accurate should our predictions be? Based on the above arguments, it makes sense to
estimate the dependence of x on x1, . . . , xn with accuracy 20%. Attempts to get a more accurate
estimation would be, in general, a useless computational exercise which is not related to the
desired problem – of estimating the expert’s degrees of confidence.

For example, if the expert’s degree is 0.6, and our formula predicts 0.65, it is a very good
match, and there is no need to come up with a formula that predicts exactly 0.6.

So, how many neurons do we need to make predictions with this accuracy: let us
start our analysis. Let us show that in general, if we want predictions with accuracy 20%,
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then one neuron is sufficient.
Specifically, we will show that if, instead of taking the neuron that provides the largest

contribution to the prediction, we consider both neurons, then – within the given accuracy – the
result will not change.

It makes sense to treat the outputs of two neurons as random variables. As we
have mentioned, for a general neural network, the result is a sum of the terms corresponding to
different neurons. Let t1 and t2 be terms corresponding to the two neurons.

In general, these terms depends on many factors, so it makes sense to treat them as random
variables.

As usual in statistics, we can somewhat simplify the problem by subtracting the means E[ti]
from the corresponding variables. In precise terms, instead of the original random variables ti,
we can consider the differences di

def
= ti − E[ti] for which the mean value is 0: E[di] = 0.

What we compare. We compare the two situations:

• a situation in which we consider the sum d1 + d2 of both neural terms, and

• a situation in which we only have a single neuron, the one that provides the largest contri-
bution:

– we consider d1 if |d1| ≥ |d2|, and
– we consider d2 if |d2| ≥ |d1|.

It is reasonable to assume that the variables corresponding to different neurons are
independent. Since we have no reason to believe that the variables corresponding to different
neurons are correlated, it makes sense to assume that the variables t1 and t2 – and thus, the
corresponding differences d1 and d2 – are independent. This conclusion is in line with the general
Maximum Entropy approach to dealing with probabilistic knowledge: if there are several possible
probability distributions consistent with our knowledge, it makes sense to select the one which
has the largest uncertainty (entropy; see, e.g., [4, 5]), i.e., to select a distribution for which the
entropy

S = −
∫

ρ(x) · ln(ρ(x)) dx

attains the largest possible value, where ρ(x) is the probability density function (pdf).
In particular, for the case when for two random variables, we only know their marginal

distributions, with probability densities ρ1(x1) and ρ2(x2), the Maximum Entropy approach
selects the joint probability distribution with the probability density ρ(x1, x2) = ρ1(x1) · ρ2(x2)
that corresponds exactly to the case when these two random variables are independent.

This independence make perfect sense for neural networks: when we train a neural network,
we want to get a model which is as accurate as possible, and if we use two highly correlated
neurons, we waste the second neuron to describe what the first neuron describes already.

How can we estimate the size of each random variable? For a random quantity with 0
mean, a natural measure of its size is its standard deviation σ.

If we only consider the term ds corresponding to a single neuron, then this size can be
described by the corresponding standard deviation σs. If we consider both neurons, then the size
of the sum d1+d2 can be similarly characterized by its standard deviation σ12. Since the variables
are independent, the variance σ2

12 of this sum is equal to the sum σ2
1 + σ2

2 of the corresponding
variances. Thus, the standard deviation σ12 of the sum has the form

σ12 =
√

σ2
1 + σ2

2. (6)
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What we plan to prove. We plan to prove that the change caused by adding the second
neuron is, in general, below the desired accuracy bound, i.e., that∣∣∣∣σ12 − σs

σs

∣∣∣∣ ≤ 0.2. (7)

Let us estimate the sizes σs and σ12 corresponding to two possible situations. We do
not have much information about the size of the signals di corresponding to different neurons.
We may guess some bounds d ≤ di ≤ d.

If all know about the probability distribution is that its values are always located on the
interval

[
d, d

]
, then the Maximum Entropy approach recommends that we select a uniform

distribution on this interval. This recommendation is in perfect accordance with common sense:
if we have no reason to believe that some values from this interval are more probable or less
probable then others, then it is reasonable to assume that all these values have the exact same
probability, i.e., that the distribution is indeed unform.

For a uniform distribution on the interval
[
d, d

]
, the mean value is known to be equal to the

midpoint
d+ d

2
of this interval. Since we are interested in random variables di with 0 mean, this

means that this point must be equal to 0, i.e., that we have d = −d.
Since the mean is 0, the variance is equal to the expected value of d2i . Here, d2i = a2i , where by

ai
def
= |di| we denoted the absolute value of the di. One can easily check that this absolute value

ai is uniformly distributed on the interval [0, d], with a constant probability density ρi(x) =
1

d
,

so its variance σ2 =
∫
x2 · ρ(x) dx is equal to

σ2
i =

∫ d

0
x2 · 1

d
dx =

1

3
·
(
d
)3 · 1

d
=

1

3
·
(
d
)2

. (8)

Due to the formula (6), we thus have

σ12 =

√
1

3
·
(
d
)2

+
1

3
·
(
d
)2

=

√
2

3
· d. (9)

Now, we need to estimate the variance σ2
s of the case when we only select one of the neurons,

i.e., the expected value of the square of the selection ds. Similarly to the one-neuron case, since
d2s = |ds|2, this variance is equal to the expected value of a2s, where we denoted as

def
= |ds|. By

definition, as = |ds| = max(|d1|, |d2|) = max(a1, a2).
We know that a1 and a2 are two independent random variables which are uniformly dis-

tributed on the interval
[
0, d

]
. The distribution of the maximum can be described in terms of

the cumulative distribution functions (cdf) F (x)
def
= Prob(X ≤ x).

For the uniformly distributed variable a1, we have F1(x) = Prob(a1 ≤ x) =
x

d
. Similarly,

F2(x) = Prob(a2 ≤ x) =
x

d
. For the maximum as = max(a1, a2), we have

Fs(x) = Prob(as ≤ x) = Prob(max(a1, a2) ≤ x).

Since the maximum of the two numbers is smaller than or equal to x if and only both of these
numbers are ≤ x, we conclude that Fs(x) = Prob((a1 ≤ x) & (a2 ≤ x)). The variables a1 and
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a2 are independent, so

Fs(x) = Prob(a1 ≤ x) · Prob(a2 ≤ x) =
x

d
· x

d
=

x2(
d
)2 . (10)

From this cdf, we can compute the corresponding pdf ρs(x):

ρs(x) =
dFs(x)

dx
=

2x(
d
)2 . (11)

Thus, the desired variance σ2
s has the form

σ2
s =

∫ d

0
x2 · 2x(

d
)2 dx =

2(
d
)2 ·

∫ d

0
x3 dx =

2(
d
)2 · 1

4
·
(
d
)4

=
1

2
·
(
d
)2

. (12)

Thus,

σs =

√
1

2
· d. (13)

Final step: checking that the desired inequality (7) is indeed satisfied. Now that we
have expressions (9) and (13) for the sizes σ12 and σs, we can plug them into the inequality (7)
and check that this inequality is satisfied – i.e., that within the desired accuracy of 20%, adding
the second neuron, on average, does not matter. Indeed, substituting expressions (9) and (13)
into the left-hand side of the formula (7) and dividing both the numerator and the denominator
by the common factor d, we get the ratio

r =

∣∣∣∣∣∣∣∣
√

2

3
−
√

1

2√
1

2

∣∣∣∣∣∣∣∣ .
Dividing both terms in the numerator by the denominator, we get

r =

∣∣∣∣∣
√

4

3
− 1

∣∣∣∣∣ =
∣∣∣∣ 2√

3
− 1

∣∣∣∣ = ∣∣∣∣23 ·
√
3− 1

∣∣∣∣ .
For

√
3 = 1.73 . . ., we get

r =

∣∣∣∣2 · 1.73 . . .3
− 1

∣∣∣∣ = ∣∣∣∣3.46 . . .3
− 1

∣∣∣∣ = |1.15 . . .− 1| = 0.15 . . . < 0.2.

The statement is proven.

3 Conclusion

Thus, we have explained why Fuzzy Cognitive Maps (i.e., 1-neuron neural networks) are
adequate for describing the dependence between the experts’ degree of confidence, when the
relative accuracy of 20% is quite sufficient.
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Comment.

We have proven that, on average, the relative error does not exceed 20%. This explains why
Fuzzy Cognitive Maps are efficient in many practical situations. However, the fact that this
inequality is satisfied on average does not necessarily mean that it is satisfied always. There
may be cases when Fuzzy Cognitive Maps do not work that well – in this case, it makes sense
to describe the corresponding dependencies x = f(x1, . . . , xn) by generic (multi-neuron) neural
networks.
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Abstract: In this paper we continue the study of fuzzy continuous mappings in fuzzy
normed linear spaces initiated by T. Bag and S.K. Samanta, as well as by I. Sadeqi
and F.S. Kia, in a more general settings. Firstly, we introduce the notion of uniformly
fuzzy continuous mapping and we establish the uniform continuity theorem in fuzzy
settings. Furthermore, the concept of fuzzy Lipschitzian mapping is introduced and
a fuzzy version for Banach’s contraction principle is obtained. Finally, a special
attention is given to various characterizations of fuzzy continuous linear operators.
Based on our results, classical principles of functional analysis (such as the uniform
boundedness principle, the open mapping theorem and the closed graph theorem) can
be extended in a more general fuzzy context.
Keywords: Fuzzy normed linear spaces; fuzzy continuous mapping; fuzzy bounded
linear operators.

1 Introduction and preliminaries

The concept of fuzzy set was introduced by L. Zadeh [14] in 1965. If X is a nonempty set,
a fuzzy set in X is a function µ from X into the unit interval [0, 1]. The classical union and
intersection of ordinary subsets of X can be extended by the following formulas, proposed by L.
Zadeh (∨

i∈I
µi

)
(x) = sup{µi(x) : i ∈ I} ,

(∧
i∈I

µi

)
(x) = inf{µi(x) : i ∈ I} .

From here to the notion of fuzzy topological space, there was one more step to be taken.
Thus, in 1968, C.L. Chang [4] introduced the notion of fuzzy topological space. The definition
is a natural translation to fuzzy sets of the ordinary definition of topological space. Indeed, a
fuzzy topology is a family T , of fuzzy sets in X, such that T is closed with respect to arbitrary
union and finite intersection and every constant function belong to T .

One of the important problems concerning the fuzzy topological spaces is to obtain an ad-
equate notion of fuzzy metric space. Many authors have investigated this question and several
notions of fuzzy metric space have been defined and studied. We just mention the definition
given by I. Kramosil and J. Michálek [9] in 1975.

Definition 1. The pair (X,M) is said to be a fuzzy metric space if X is an arbitrary set and
M is a fuzzy set in X ×X × [0,∞) satisfying the following conditions:

(M1) M(x, y, 0) = 0, (∀)x, y ∈ X;

(M2) (∀)x, y ∈ X,x = y if and only if M(x, y, t) = 1 for all t > 0;

(M3) M(x, y, t) = M(y, x, t), (∀)x, y ∈ X, (∀)t > 0;

(M4) M(x, z, t+ s) ≥ M(x, y, t) ∗M(y, z, s), (∀)x, y, z ∈ X, (∀)t, s > 0;

Copyright © 2006-2015 by CCC Publications
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(M5) (∀)x, y ∈ X,M(x, y, ·) : [0,∞) → [0, 1] is left continuous and lim
t→∞

M(x, y, t) = 1 .

We note that, in previous definition, ∗ denotes a continuous t-norm (see [13]). The basic
examples of continuous t-norms are ∧, ·, ∗L, which are defined by a ∧ b = min{a, b}, a · b = ab
(usual multiplication in [0, 1]) and a ∗L b = max{a+ b− 1, 0} (the Lukasiewicz t-norm).

In studying fuzzy topological linear spaces, A.K. Katsaras [8], in 1984, first introduced the
notion of fuzzy norm on a linear space. Since then many mathematicians have introduced several
notions of fuzzy norm from different points of view. Thus, C. Felbin [6] in 1992 introduced an
idea of fuzzy norm on a linear space by assigning a fuzzy real number to each element of linear
space. In 1994, S.C. Cheng and J.N. Mordeson [5] introduced a concept of fuzzy norm on a linear
space whose associated metric is Kramosil and Michálek type. Following S.C. Cheng and J.N.
Mordeson, in 2003, T. Bag and S.K. Samanta [2] proposed another concept of fuzzy norm.

In this paper we continue the study of fuzzy continuous mappings in fuzzy normed linear
spaces initiated by T. Bag and S.K. Samanta [3], as well as by I. Sadeqi and F.S. Kia [12], in a
more general settings:

Definition 2. [10] Let X be a vector space over a field K (where K is R or C) and ∗ be a
continuous t-norm. A fuzzy set N in X × [0,∞) is called a fuzzy norm on X if it satisfies:

(N1) N(x, 0) = 0, (∀)x ∈ X;

(N2) [N(x, t) = 1, (∀)t > 0] if and only if x = 0;

(N3) N(λx, t) = N
(
x, t

|λ|

)
, (∀)x ∈ X, (∀)t ≥ 0, (∀)λ ∈ K∗;

(N4) N(x+ y, t+ s) ≥ N(x, t) ∗N(y, s), (∀)x, y ∈ X, (∀)t, s ≥ 0;

(N5) (∀)x ∈ X, N(x, ·) is left continuous and lim
t→∞

N(x, t) = 1.

The triple (X,N, ∗) will be called fuzzy normed linear space (briefly FNLS).

Remark 3. a) T. Bag and S.K. Samanta [2], [3] gave a similar definition for ∗ = ∧, but in order
to obtain some important results they assumed that the fuzzy norm also satisfied the following
conditions:

(N6) N(x, t) > 0, (∀)t > 0 ⇒ x = 0 ;

(N7) (∀)x ̸= 0, N(x, ·) is a continuous function and strictly increasing on the subset {t : 0 <
N(x, t) < 1} of R.

The results obtained by T. Bag and S.K. Samanta [3], as well as by I. Sadeqi and F.S. Kia [12],
can be found in this more general setting.
b) I. Goleţ [7], C. Alegre and S. Romaguera [1] also gave this definition in the context of real
vector spaces.
c) N(x, ·) is nondecreasing, (∀)x ∈ X.

Example 4. [2] Let X be a linear space and || · || be a norm on X. Let

N(x, t) :=

{
1 if |x| < t

0 if |x| ≥ t

Then (X,N,∧) is a FNLS. In particular, (C, N,∧) is a FNLS.
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Theorem 5. [10] Let (X,N, ∗) be a FNLS. For x ∈ X, r ∈ (0, 1), t > 0 we define the open ball

B(x, r, t) := {y ∈ X : N(x− y, t) > r} .

Then
TN := {T ⊂ X : x ∈ T iff (∃)t > 0, r ∈ (0, 1) : B(x, r, t) ⊆ T}

is a topology on X.
Moreover, if the t-norm ∗ satisfies sup

x∈(0,1)
x ∗ x = 1, then (X, TN ) is Hausdorff.

Theorem 6. [10] Let (X,N, ∗) be a FNLS. Then (X, TN ) is a metrizable
topological vector space.

Definition 7. [2] Let (X,N, ∗) be a FNLS and (xn) be a sequence in X.

1. The sequence (xn) is said to be convergent if (∃)x ∈ X such that

lim
n→∞

N(xn − x, t) = 1 , (∀)t > 0 .

In this case, x is called the limit of the sequence (xn) and we denote
lim
n→∞

xn = x or xn → x.

2. The sequence (xn) is called Cauchy sequence if

lim
n→∞

N(xn+p − xn, t) = 1 , (∀)t > 0, (∀)p ∈ N∗ .

3. (X,N, ∗) is said to be complete if any Cauchy sequence in X is convergent to a point in
X. A complete FNLS will be called a fuzzy Banach space.

Theorem 8. Let (X,N, ∗) be a FNLS and

pα(x) := inf{t > 0 : N(x, t) > α}, α ∈ (0, 1) .

Then, for x ∈ X, s > 0, α ∈ (0, 1), we have:

pα(x) < s if and only if N(x, s) > α .

Proof: The proof is entirely the same as in [10], where there are considered FNLSs of type
(X,N,∧). 2

The structure of the paper is as follows: in Section 2, we introduce the notion of uniformly
fuzzy continuous mapping and we establish the uniform continuity theorem in fuzzy settings. The
concept of fuzzy Lipschitzian mapping is introduced and a fuzzy version for Banach’s contraction
principle is obtained. In Section 3, special attention is given to various characterizations of fuzzy
continuous linear operators. Based on our results, classical principles of functional analysis (such
as the uniform boundedness principle, the open mapping theorem and the closed graph theorem)
can be extended in a more general fuzzy context.

Even if the structure of fuzzy F-spaces, recently introduced in [11], is much more complicated
than that of fuzzy Banach spaces, we intent to study, in a further paper, fuzzy continuous linear
operators on fuzzy F-spaces and to prove that the well-known principles of functional analysis
are valid in this context too.

In the following sections (X,N1, ∗1), (Y,N2, ∗2) will be FNLSs with the t-norms ∗1, ∗2 which
satisfy sup

x∈(0,1)
x ∗i x = 1, (∀)i = 1, 2.
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2 Fuzzy continuous mappings

Definition 9. [3] A mapping T : X → Y is said to be fuzzy continuous at x0 ∈ X, if

(∀)ε > 0, (∀)α ∈ (0, 1), (∃)δ = δ(ε, α, x0) > 0, (∃)β = β(ε, α, x0) ∈ (0, 1)

such that (∀)x ∈ X : N1(x− x0, δ) > β we have that N2(T (x)− T (x0), ε) > α .

If T is fuzzy continuous at each point of X, then T is called fuzzy continuous on X.

Theorem 10. [3] A mapping T : X → Y is fuzzy continuous at x0 ∈ X, if and only if
(∀)(xn) ⊆ X, xn → x0, we have that T (xn) → T (x0).

Definition 11. A mapping T : X → Y is said to be uniformly fuzzy continuous on X, if

(∀)ε > 0, (∀)α ∈ (0, 1), (∃)δ = δ(ε, α) > 0, (∃)β = β(ε, α) ∈ (0, 1)

such that (∀)x, y ∈ X : N1(x− y, δ) > β we have that N2(T (x)− T (y), ε) > α .

Remark 12. If T is uniformly fuzzy continuous, then T is fuzzy continuous.

Theorem 13. (Uniform continuity theorem). Let (X,N1, ∗1) be a compact FNLS and
(Y,N2, ∗2) be a FNLS. If T : X → Y is a fuzzy continuous mapping, then T is uniformly fuzzy
continuous.

Proof: Let ε > 0 and α ∈ (0, 1).
As sup

x∈(0,1)
x ∗2 x = 1, then there exists α0 ∈ (0, 1) such that α0 ∗2 α0 > α.

As T : X → Y is a fuzzy continuous on X, for all x ∈ X, there exist δx = δ
(
ε
2 , α0, x

)
> 0,

βx = β
(
ε
2 , α0, x

)
∈ (0, 1) such that

(∀)y ∈ X : N1(x− y, δx) > βx ⇒ N2

(
T (x)− T (y),

ε

2

)
> α0 .

As sup
x∈(0,1)

x ∗1 x = 1, we can take γx > βx such that γx ∗1 γx > βx.

Since X is compact and
{
B
(
x, γx,

δx
2

)}
x∈X is an open covering of X, there exist x1, x2, · · · , xn

in X such that X =
n∪

i=1
B
(
xi, γxi ,

δxi
2

)
. Let β = max{γxi} and δ = min

{
δxi
2

}
, for i =

1, 2, · · · , n.
Let x, y ∈ X arbitrary, such that N1(x − y, δ) > β. As x ∈ X, there exists

i ∈ {1, 2, · · · , n} such that x ∈ B
(
xi, γxi ,

δxi
2

)
, namely N1

(
x− xi,

δxi
2

)
> γxi . Hence

N1(x− xi, δxi) ≥ N1

(
x− xi,

δxi

2

)
> γxi > βxi .

Thus
N2

(
T (x)− T (xi),

ε

2

)
> α0 .

We remark that

N1(y − xi, δxi) ≥ N1

(
y − x,

δxi

2

)
∗1 N1

(
x− xi,

δxi

2

)
≥

≥ N1(y − x, δ) ∗1 N1

(
x− xi,

δxi

2

)
> β ∗1 γxi ≥ γxi ∗1 γxi > βxi .
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Thus N2

(
T (y)− T (xi),

ε
2

)
> α0.

In conclusion

N2(T (x)− T (y), ε) ≥ N2

(
T (x)− T (xi),

ε

2

)
∗2 N2

(
T (xi)− T (y),

ε

2

)
>

> α0 ∗2 α0 > α .

2

Definition 14. A mapping T : X → Y is said to be fuzzy Lipschitzian on X if (∃)L > 0 such
that

N2(T (x)− T (y), t) ≥ N1

(
x− y,

t

L

)
, (∀)t > 0, (∀)x, y ∈ X .

If L < 1 we say that T is a fuzzy contraction.

Remark 15. It is clear that a fuzzy Lipschitzian mapping is necessarily fuzzy continuous.

Theorem 16. (Banach’s contraction principle). Let (X,N, ∗) be a fuzzy Banach space and
T : X → X be a fuzzy contraction. Then T has a unique fixed point z ∈ X and

lim
n→∞

Tn(x) = z, (∀)x ∈ X .

Proof: Let x ∈ X be arbitrary. Then {Tn(x)} is a Cauchy sequence. Indeed, for t > 0 and
p ∈ N∗, we have

N(Tn+p(x)− Tn(x), t) ≥ N

(
Tn+p−1(x)− Tn−1(x),

t

L

)
≥

≥ · · · ≥ N

(
T p(x)− x,

t

Ln

)
.

As L ∈ (0, 1), we have that lim
n→∞

t
Ln = ∞. Thus

lim
n→∞

N

(
T p(x)− x,

t

Ln

)
= 1 .

Hence lim
n→∞

N(Tn+p(x)− Tn(x), t) = 1, namely {Tn(x)} is a Cauchy sequence.

Since X is complete, we have that {Tn(x)} is a convergent sequence. Thus (∃)z ∈ X such
that lim

n→∞
Tn(x) = z. We note that

z = lim
n→∞

Tn+1(x) = lim
n→∞

T (Tn(x)) = T (z) .

Now we show the uniqueness. Suppose that there exist z, y ∈ X, z ̸= y with the property
z = T (z), y = T (y). As z ̸= y, there exists s > 0 such that N(z − y, s) = a < 1. Then, for all
n ∈ N, we have

a = N(y − z, s) = N(Tn(y)− Tn(z), s) ≥ N
(
y − z,

s

Ln

)
→ 1 .

Thus a = 1, which contradicts our assumption. 2
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3 Fuzzy continuous linear operators

Theorem 17. Let T : X → Y be a linear operator. Then T is fuzzy continuous on X, if and
only if T is fuzzy continuous at a point x0 ∈ X.

Proof: ” ⇒ ” It is obvious.
” ⇐ ” Let y ∈ Y be arbitrary. We will show that T is fuzzy continuous at y. Let ε > 0, α ∈ (0, 1).
Since T is fuzzy continuous at x0 ∈ X, there exist δ > 0, β ∈ (0, 1) such that

(∀)x ∈ X : N1(x− x0, δ) > β ⇒ N2(T (x)− T (x0), ϵ) > α .

Replacing x by x+ x0 − y, we obtain that

(∀)x ∈ X : N1(x+ x0 − y − x0, δ) > β ⇒ N2(T (x+ x0 − y)− T (x0), ϵ) > α ,

namely
(∀)x ∈ X : N1(x− y, δ) > β ⇒ N2(T (x)− T (y), ϵ) > α .

Thus T is fuzzy continuous at y ∈ Y . As y is arbitrary, it follows that T is fuzzy continuous on
D(T ). 2

Corollary 18. Let T : X → Y be a linear operator. Then T is fuzzy continuous on X, if and
only if

(∀)ε > 0, (∀)α ∈ (0, 1), (∃)δ = δ(ϵ, α) > 0, (∃)β = β(ϵ, α) ∈ (0, 1)such that

(∀)x ∈ X : N1(x, δ) > β we have that N2(T (x), ε) > α .

Theorem 19. A linear operator T : X → Y is fuzzy continuous on X, if and only if
(∀)α ∈ (0, 1), (∃)β = β(α) ∈ (0, 1), (∃)M = M(α) > 0 such that

(∀)t > 0, (∀)x ∈ X : N1(x, t) > β ⇒ N2(T (x),Mt) > α .

Proof: ” ⇐ ” Let ε > 0, α ∈ (0, 1) be arbitrary. Then there exist β = β(α) ∈ (0, 1),
M = M(α) > 0 such that

(∀)t > 0, (∀)x ∈ X : N1(x, t) > β ⇒ N2(T (x),Mt) > α .

In particular, for t = ε
M , we obtain

N1

(
x,

ε

M

)
> β ⇒ N2(T (x), ε) > α .

Applying Corollary 18, for δ = ε
M > 0, we obtain that T is fuzzy continuous on X.

” ⇒ ” We suppose that (∃)α0 ∈ (0, 1) such that

(∀)β ∈ (0, 1), (∀)M > 0, (∃)t0 = t0(β,M) > 0, (∃)x0 = x0(β,M) ∈ X,

N1(x0, t0) > β and N2(T (x),Mt0) ≤ α0 .

The set V0 = {y ∈ Y : N2(y, t0) > α0} is an open neighborhood of 0Y . We will prove that,
for all neighborhood U of 0X , we have T (U) ̸⊆ V0, which contradicts the fuzzy continuity of T
at 0X . As {B(0, β, s)}β∈(0,1),s>0 is a fundamental system of neighborhoods of 0X , it is enough
to show that for all β ∈ (0, 1), s > 0 we have T (B(0, β, s)) ̸⊆ V0.

As M > 0 is arbitrary, we can chose s = t0
M . We note that, for z0 =

1
M x0 ∈ X, we have

N1

(
z0,

t0
M

)
= N1

(
1

M
x0,

t0
M

)
= N1(x0, t0) > β .
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Hence z0 ∈ B
(
0, β, t0

M

)
. We will prove that T (z0) ̸∈ V0, namely N2(T (z0), t0) ≤ α0. Indeed,

N2(T (z0), t0) = N2

(
T

(
1

M
x0

)
, t0

)
= N2(T (x0),Mt0) ≤ α0 .

2

Corollary 20. A linear functional f : (X,N1, ∗) → (C, N,∧) is fuzzy continuous, if and only if
(∃)β ∈ (0, 1), (∃)M > 0 such that

(∀)t > 0, (∀)x ∈ X,N1(x, t) > β ⇒ |f(x)| < Mt .

Proof: According to the previous theorem f is fuzzy continuous if and only if

(∀)α ∈ (0, 1), (∃)β ∈ (0, 1), (∃)M > 0 such that

(∀)t > 0, (∀)x ∈ X : N1(x, t) > β ⇒ N(f(x),Mt) > α .

But
N(f(x),Mt) > α ⇔ N(f(x),Mt) = 1 ⇔ |f(x)| < Mt .

Hence (∃)β ∈ (0, 1), (∃)M > 0 such that

(∀)t > 0, (∀)x ∈ X,N1(x, t) > β ⇒ |f(x)| < Mt .

2

Corollary 21. Let (X,N1, ∗1), (Y,N2, ∗2) be FNLSs and

pα(x) := inf{t > 0 : N1(x, t) > α}, α ∈ (0, 1) ,

qα(x) := inf{t > 0 : N2(x, t) > α}, α ∈ (0, 1) .

A linear operator T : X → Y is fuzzy continuous on X if and only if

(∀)α ∈ (0, 1), (∃)β = β(α) ∈ (0, 1), (∃)M = M(α) > 0

such that qα(Tx) ≤ Mpβ(x) , (∀)x ∈ X .

Proof: According to the previous theorem,

(∀)α ∈ (0, 1), (∃)β = β(α) ∈ (0, 1), (∃)M = M(α) > 0 such that

(∀)t > 0, (∀)x ∈ X : N1(x, t) > β ⇒ N2(T (x),Mt) > α .

Thus, for x ∈ X, we have

{t > 0 : N1(x, t) > β} ⊆ {t > 0 : N2(Tx,Mt) > α} .

Hence
inf{t > 0 : N1(x, t) > β} ≥ inf{t > 0 : N2(Tx,Mt) > α} ,

namely inf{t > 0 : N1(x, t) > β} ≥ inf
{

t
M > 0 : N2(Tx, t) > α

}
. Therefore

pβ(x) ≥
1

M
qα(Tx), ∀)x ∈ X .

2
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Corollary 22. A linear functional f : (X,N1, ∗) → (C, N,∧) is fuzzy continuous, if and only if
(∃)β ∈ (0, 1), (∃)M > 0 such that

|f(x)| ≤ Mpβ(x), (∀)x ∈ X .

Remark 23. We note that a subset A of a topological linear space X is said to be bounded if
for every neighbourhood V of 0X , there exists a positive number k such that A ⊂ kV . A linear
operator T : X → Y is said to be bounded if T maps bounded sets into bounded sets. Based on
this remark the following definitions are natural.

Definition 24. [12] A subset A of X is called fuzzy bounded, if (∀)α ∈ (0, 1), (∃)tα > 0 such
that A ⊂ B(0, α, tα).

Definition 25. [12] A linear operator T : X → Y is said to be fuzzy bounded if T maps fuzzy
bounded sets of X into fuzzy bounded sets of Y .

We must note that the following result was established by I. Sadeqi and F.S. Kia [12] for
FNLSs of type (X,N,∧) which satisfy (N7). Since the proof is entirely the same as in [12], it is
omitted.

Theorem 26. Let T : X → Y be a linear operator. The following sentences are equivalent:

1. T is fuzzy continuous;

2. T is topological continuous;

3. T is fuzzy bounded;

4 Conclusion

As fuzzy continuity and topological continuity are equivalent and since FNLSs are metrizable
topological linear spaces, all results and theorems in topological linear spaces hold for FNLSs.
Particularly, we can obtain fuzzy versions for the classical principles of functional analysis (such
as the uniform boundedness principle, the open mapping theorem and the closed graph theorem).
This remark was made by I. Sadeqi and F.S. Kia [12] for FNLSs of type (X,N,∧). Based on our
results, these principles remain true without assuming (N7) as in [12].
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Abstract: This paper proposes the unified treatment of an anti-windup technique
for fuzzy and sliding mode controllers. A back-calculation and tracking anti-windup
scheme is proposed in order to prevent the zero error integrator wind-up in the struc-
tures of state feedback fuzzy controllers and sliding mode controllers. The state
feedback sliding mode controllers are based on the state feedback-based computation
of the switching variable. An example that copes with the position control of an
electro-hydraulic servo-system is presented. The conclusions are pointed out on the
basis of digital simulation results for the state feedback fuzzy controller.
Keywords: Anti-windup technique, electro-hydraulic servo-system, fuzzy control,
saturation, sliding mode control, digital simulation.

1 Introduction

There are many situations in industrial control applications when a mismatch between the
control signal (controller output) and the input of the process occurs. The saturation of controller
output due to the functionality of the controller is such a natural process. The anti-windup
techniques correct the controller output in the case of controllers with integral (I) component,
but other components of the controllers can cause the saturation. Some discussions on the strong
or weak impacts of the integrator wind-up and of saturation are presented in [1–5].

The anti-windup is applied to nonlinear systems including sliding mode control systems and
fuzzy control systems, with representative examples given in [6–9]. A static anti-windup compen-
sator for linear sliding mode controllers is designed in [10] on the basis of Linear Matrix Inequality
(LMI) conditions derived from Lyapunov stability and L2-gain performance. The switching func-
tion of sliding mode controllers is modified in [11] to reduce the discontinuous component of the
control signal during saturation. An adaptive anti-windup PID sliding mode scheme is proposed
in [12]. The sliding surface for robust saturated sliding mode control is designed in [13] as a prob-
lem of root clustering. A dead-zone technique is employed in [9] in the framework of adaptive
sliding mode control combined with fuzzy logic. The necessity of anti-windup measures in fuzzy

Copyright © 2006-2015 by CCC Publications
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control is pointed out in [14] and focused on Mamdani proportional-integral-fuzzy controllers.
The fuzzy models of nonlinear models are involved in [15] in the design of piecewise fuzzy anti-
windup dynamic output feedback controllers based on piecewise quadratic Lyapunov functions.
Starting with a stabilizing dynamic output feedback fuzzy controller, an anti-windup block is
designed in [16] to maximize the size of estimate of the domain of attraction, and sufficient
Lyapunov-Krasovskii stability conditions are derived.

This paper suggests the application of a back-calculation and tracking anti-windup scheme to
the zero error integrator in the framework of state feedback fuzzy controllers and state feedback
sliding mode controllers. The specific feature of state feedback sliding mode controllers is the state
feedback-based computation of the switching variable. The paper is supported by our previous
results in fuzzy control [17–24], and proposes the unified treatment of anti-windup techniques
in fuzzy and sliding mode controllers. This leads to good effects on the overall control system
performance. The expression of the parameters of the anti-windup block is given, but these
parameters can be optimized in terms of, for example, the optimal tuning of the anti-windup
tracking gain carried out in [25].

This paper represents a step forward in the systematic design of fuzzy control systems, pointed
out by Prof. Zadeh in [26] and [27]. The mathematics of fuzzy sets must be incorporated in the
structure of fuzzy controllers by appropriate operators and parameters [28–30, 32, 32–34]. The
model-based design using fuzzy models is emphasized in [35–45], but neural networks are used
in [46–48]. This paper also represents a step forward in the systematic design of sliding mode
control systems in the context of other popular techniques [49–53]. The parameters of both
fuzzy and sliding mode controllers can be optimally tuned by means of appropriate optimization
problems and algorithms [54–58].

The paper is organized as follows: Section 2 is dedicated to the modeling of state feedback
sliding mode and fuzzy control systems. The proposed back-calculation and tracking anti-windup
scheme is presented in Section 3. Section 4 applies the scheme to the position control of an
electro-hydraulic servo-system and simulation results are included. The conclusions are outlined
in Section 5.

2 Models of State Feedback Sliding Mode and Fuzzy Control Sys-
tems

The unified structure of state feedback sliding mode and fuzzy control systems is presented
in Figure 1, where: w - the reference input, v - the disturbance input, u - the control signal,
y - the controlled output, e = w = y - the control error, xp - the state vector of the process
P, supposed to be observable and controllable, xp ∈ Rn, ZEI - the zero error integrator (to
obtain the zero steady-state value of the control error), xR - the nominal integrator output, xRL-
the saturated (limited) integrator output, RB - the reference block, SB - the switching block,
g - the switching variable, {kR, kw, Ti, u0,k

T
p } - the parameters of the sliding mode controller

(SMC), T stands for matrix transposition, kT
p ∈ R1×n, {−xL, xL} - the limits of the saturation

element that belongs to ZEI, xL = const > 0. The structure given in Figure 1 is obtained
by the appropriate transformation and extension of the sliding mode control scheme presented
in [59], the abbreviation FC indicates the fuzzy controller, and the detailed structure of SMC is
illustrated in the lower part of Figure 1. Both controllers are presented as nonlinear blocks in
Figure 1.

The P in the SMC is described by the nth order state-space model:
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Figure 1: Unified structure of state feedback sliding mode and fuzzy control systems.

ẋp = Apxp + bpu+ bpvv,

y = cTp xp,
(1)

where Ap ∈ Rn×n, bp ∈ Rn×1, bpv ∈ Rn×1, cTp ∈ R1×n. Introducing the extended state vector:

x = [ xT
p xR ]T , (2)

the state-space model of CP and ZEI is:

ẋ = Ax+ bu+ bvv + bww,

y = cTx,
(3)

with the matrices:

A =

[
Ap 0

−(1/Ti)c
T
p 0

]
,b =

[
bp

0

]
,bv =

[
bpv

0

]
,bw =

[
0

1/Ti

]
, cT = [ cTp 0 ]. (4)

The variable structure control law specific to SMC is of relay type:

u = u0sgn(g(x)), g(x) = −kTx+ kww,k
T = [ kT

p −kR ], (5)

where the matrix kT characterizes the switching hyper-plane and u0 = const > 0 is the absolute
value of the control signal. The analysis of the control system in sliding mode is supported by
the equivalent control method [60] resulting in the state-space equations of the control system
in sliding mode:

ẋ = Asx+ bs
vv + bs

ww + bs
ẇẇ, (6)

with the matrices:

As =

[
MpAp − [kR/(Tik

T
p bp)]bpc

T
p 0

−(1/Ti)c
T
p 0

]
,bs

v =

[
Mpbpv

0

]
,Mp = I− [1/(kT

p bp)]bpk
T
p ,

bs
w =

[
[kR/(Tik

T
p bp)]bp

1/Ti

]
,bs

ẇ =

[
kw/(k

T
p bp)

0

]
,

(7)
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and I is the nth order identity matrix. Equation (6) does not highlight the reaching mode, but its
effect can be highlighted by the proper modification of the initial conditions. The sliding mode
existence condition involves the equivalent control signal ueq:

|ueq| < u0, ueq = [1/(kT
p bp)] · [kRxR − kT

p (Apxp + bpvv) + kwẇ]. (8)

All above equations specific to SMC correspond to the case of ZEI that operates in its linear
operating mode, i.e. the ZEI is not in saturation:

xRL = xR. (9)

It is very convenient to use equation (6) in the analysis and design of the SMC as it is linear
and it characterizes with an acceptable accuracy the behavior of a nonlinear control system (the
sliding mode one). Similar models for the FC will be presented as follows.

The rule base of the continuous-time dynamic Takagi-Sugeno (T-S) fuzzy model of P consists
of nR rules, Ri, i = 1...nR. Each rule is assigned to the following continuous-time state-space
model in its consequent, namely to a local linear model of P:

ẋp = Apixp + bpiu,

y = cTpixp, i = 1...nR,
(10)

where Api ∈ Rn×n, bpi ∈ Rn×1, cTpi ∈ R1×n, and the disturbance input is omitted for simplicity.
The complete rule base of the continuous-time dynamic T-S fuzzy model of P is:

Ri : IF z1IS LT i
z1 AND z2 IS LT i

z2 AND ... AND zm IS LT i
zm

THEN

{
ẋp = Apixp + bpiu

y = cTpixp
, i = 1...nR,

(11)

where z = [ z1 z2 ... zm ]T is the scheduling vector, i.e., the input vector, which contains the
measurable variables of P, zk, k = 1...m, and LT i

zk
are the input linguistic terms with the input

membership functions µi
zk
(zk).

Using the SUM and PROD operators in the inference engine and the weighted average de-
fuzzification method, the firing strengths (of the rules) are:

wi(z) =

m∏
k=1

µi
zk
(zk), i = 1...nR, (12)

the normalized firing strengths are:

hi(z) = wi(z)/[

nR∑
i=1

wi(z)], i = 1...nR, (13)

and the continuous T-S fuzzy model of P is expressed in the state-space form:

ẋp =
nR∑
i=1

[hi(z)(Apixp + bpiu)],

y =
nR∑
i=1

[hi(z)c
T
pixp].

(14)

In parallel distributed compensation (PDC) the structure of the FC model matches the
structure of the fuzzy model of P given in (11). Considering the absence of the blocks RB and
ZEI, the PDC controller for the system (11) is:
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u = −
nR∑
i=1

[hi(z)f
T
i xp], (15)

and the goal of FC design is to obtain the gain matrices fTi , i = 1...nR, fTi ∈ R1×n, of the nonlinear
state-feedback control law (15) such that the closed-loop system is stable and eventually robust.
As outlined in [61], many design problems derive the least conservative conditions related to the
condition:

nR∑
i=1

nR∑
j=1

[hi(z)hj(z)Γij ] < 0,Γij = Γij
T . (16)

Considering the fuzzy control system structure according to Figure 1, the control law of the
FC given in (15) is modified as follows in the specific case of ZEI that operates in its linear
operating mode:

u = kww + kRxR −
nR∑
i=1

[hi(z)f
T
i xp]. (17)

Using (2), (17) and Figure 1 in (14), the state-space equations of the fuzzy control system are:

ẋ = Asx+ bs
ww, (18)

with the matrices:

As =


nR∑
i=1

[hi(z)Api]−
[
nR∑
i=1

[hi(z)bpi]

]
·
[
nR∑
i=1

[hi(z)f
T
i ]

]
kR

nR∑
i=1

[hi(z)bpi]

−(1/Ti)
nR∑
i=1

[hi(z)c
T
pi] 0

 ,

bs
w =

 kw
nR∑
i=1

[hi(z)bpi]

1/Ti

 .

(19)

The models (6) (of the sliding mode control system) and (18) (of the fuzzy control system)
are similar. Moreover, the gain matrices fTi of FC are similar to the gain matrix kT

p of SMC
(illustrated in Figure 1). This justifies the unified treatment of anti-windup techniques for fuzzy
and sliding mode controllers. However, sliding mode and fuzzy control systems have different
structures; although the fuzzy control system is more complicated, it is not constrained to enter
the sliding mode related to the sliding mode existence condition.

If ZEI enters saturation, i.e.:

xRL = xR lim, xR lim ∈ {−xL, xL}, (20)

the updated expression of the switching variable is:

g(xp) = −kT
p xp + kww + kRxR lim, (21)

and the equivalent control method leads to the updated equivalent control signal:

ueq = [1/(kT
p bp)] · [−kT

p (Apxp + bpvv) + kwẇ], (22)

and to the updated state-space equations of P in sliding mode:

ẋp = As
pxp + bs

pvv + bs
pẇẇ, (23)
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with the matrices:

As
p = MpAp,b

s
pv = Mpbpv,b

s
pẇ = [kw/(k

T
p bpv)]bp. (24)

Hence, at least one negative effect on control system behavior can be observed when the
saturation of the ZEI occurs or when the integrator output is maintained in saturation/outside
the limits on a too large time interval. This consists in the difficult fulfillment of the sliding
mode existence condition due to the different expressions of ueq in (8) and (22). Therefore,
anti-windup techniques are necessary not just to get ZEI out of saturation, but just to avoid
exaggerate exceeds of limitation.

3 Back-Calculation and Tracking Anti-Windup Scheme

The state-space equation of I that belongs to ZEI is:

ẋR = (1/Ti)e. (25)

Equation (25) is also kept in the presence of windup, but with the substitution of e with another
I input, eL, chosen such that to keep ZEI in saturation, i.e., (9) is applied, therefore:

ẋRL = (1/Ti)eL. (26)

Equation (25) holds in the absence of windup, and equation (26) corresponds to the presence of
windup. Subtracting (26) from (25) results in:

eL = e− Ti(ẋR − ẋRL). (27)

The structure of ZEI with back-calculation and tracking anti-windup scheme is built using
(27) and given in Figure 2. BCT in Figure 2 represents the back-calculation and tracking block,
with pure derivative character, modeled by the transfer function:

HBCT (s) = Tis. (28)

Figure 2: Unified structure of ZEI with back-calculation and tracking anti-windup scheme.

The proposed anti-windup technique has a shortcoming, namely it does not operate if xR
enters saturation, and it is constant, or if the difference (xR − xRL) is constant. Therefore, the
modified BCT block (MBCT) is of lead-lag type with the following transfer function:

HMBCT (s) = (Tis+ kAW )/(1 + TAW s), (29)

where the time constant TAW (a small value) is necessary in order to make possible the imple-
mentation of MBCT. The anti-windup tracking gain kAW can take any positive value. However,
an as small as possible value of kAW is recommended because: (i) the strong feedback derivative
action already determines the integrator to stay very close to the saturation limit, (ii) a large
value of kAW could lead to stability problems investigated in [62].
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4 Position Control Application. Simulation Results

An example of nonlinear electro-hydraulic system [63] is taken into consideration in order
to illustrate the advantages of the proposed back-calculation and tracking anti-windup scheme
in the context of state feedback sliding mode control. The simplified structure of the electro-
hydraulic system meant for position (y) control is presented in Figure 3. The parameters of P
are: g0 = 0.0625, Ti1 = 0.002s, Ti2 = 0.065s, xL = 0.5.

Figure 3: Simplified structure of P.

The design of the SMC is performed according to [59], but for n = 2, and the following values
of controller parameters are obtained: kx1 = 1, kx2 = 0.13, kT

p = [ kx1 kx2 ] = [ 1 0.13 ],
kw = 0.13, kR = 32.5, Ti = 0.1s, u0 = 15. The overall control system is referred to as electro-
hydraulic servo-system.

The designed sliding mode control system was tested with respect to the modifications of w
using the nonlinear model of P. Figure 4 gives the control system response (the control system
output y with continuous line, w with dash dotted line, xRL with continuous line) without
limitations imposed to ZEI. Figure 4 shows that y tracks the imposed w. Figure 5 gives the

Figure 4: Control system response without limitations.

control system response without anti-windup technique. The harmful effect of the limitation is
illustrated by the fact that y does not track anymore w, and xR stays during a relatively long
time period in limitation within the time interval [1s, 3s].

Figure 6 gives the control system response with classical back-calculation and tracking anti-
windup scheme using the same w and conditions as in Figure 4. The control system performance
is improved in comparison with the case without back-calculation and tracking anti-windup
scheme.

Figure 7 gives the control system response that incorporates the proposed modified back-
calculation and tracking anti-windup scheme using the same w and conditions as in Figure 4, and
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Figure 5: Control system response without BCT.

Figure 6: Control system response with BCT.

for kAW = 0.02 and TAW = 0.01s. Figure 7 shows the control system performance improvement
compared to all previous cases. One relatively minor shortcoming concerns the slightly larger
effect of the chattering phenomenon.

5 Conclusions

The paper has proposed an approach to the unified treatment of anti-windup in fuzzy and
sliding mode controllers. The unified models of fuzzy control systems and sliding mode control
systems have been suggested.

An analysis of the possibility to apply the back-calculation and tracking anti-windup scheme
to the zero error integrator belonging to a state feedback sliding mode controller has been carried
out. A modified back-calculation and tracking anti-windup scheme applicable to these controller
structures has been suggested.

The future work will be dedicated to the discrete time formulation of the controllers and of
the anti-windup schemes and to the stability analysis because the control systems stability can
be affected or not by windup. The parameters of the anti-windup schemes will be tuned by
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Figure 7: Control system response with MBCT.

several optimization algorithms in the context of appropriate optimization problems.
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Abstract: Granular computing is a new intelligent computing method based on
problem solving, information processing and pattern classification. Granular com-
puting based attribute reduction method is an important application of Granular
computing. These algorithms are mostly based on reduction core. However, some
information systems may have no reduction core, especially in the actual application
data. For this case, those algorithms are powerless. In this paper, an improved reduc-
tion algorithm based on granular computing is proposed. The algorithm is validated
by the experimental result.
Keywords: attribute reduction, granular computing, rough set, attribute signifi-
cance.

1 Introduction

Granular computing is a method for analysis of multi-layer granular structure based on prob-
lem solving, pattern classification and information processing. It’s also a newly cross discipline
among rough set theory, fuzzy set theory, data mining and artificial intelligence. With less than
20 years’ development, granular computing has already made remarkable achievements and great
contribution to the field of computer science [1, 2]. Through rapid development of society and
continuous progress in science and technology, a variety of data is increasing gradually, and then
we entered the so-called "Big Data Time". The main goal of data mining is to find potential,
desired and useful knowledge from those big data. Rough set theory is an efficient mathematical
tool to deal with imprecise, incomplete and inconsistent data. It has already made great strides
in its theory and has been widely used in practical application.

Attribute reduction is the main content of rough set theory. The core task of attribute reduc-
tion is that dimensionality and storage space may be reduced under the condition of maintaining
classification capacity, so as to improve the efficiency of system classification [3, 4]. Therefore,
it is not only the hot spot of intelligence computing, but also the important task of information
processing.

In 1979, professor L.A. Zadeh discussed the theory of fuzzy information granulation in his
paper "Fuzzy Sets and Information Granularity", and first proposed the concept of information
granulation. Then, professor J.R. Hobss of Stanford University introduced granularity theory

Copyright © 2006-2015 by CCC Publications
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in his paper "Granularity" published on International Joint Conference on Artificial Intelligence
held in Los Angeles [5]. The granularity theory is presented firstly. The idea of granularity
theory is that the bigger, whole, unresolved questions can be broken into several smaller ones
by granulating, and these small questions can be combined into the bigger, whole questions.
In 1990, the Chinese scholar Zhang Bo and Zhang Ling proposed the theory of quotient space
based on problem solving [6]. They thought that human beings can analyze the same problem
from different granulation, and make an easy conversion in different knowledge granularity. If
people can formalize the analysis process to make the computer possess the ability, it will greatly
improve the development of artificial intelligence. Furthermore, professor L.A. Zadeh raised the
theory of Computing with Words in his paper "Fuzzy Logic=Computing with Words", and thus
the fuzzy granularity theory was born [7]. This theory is to do fuzzy reasoning and judgments
by using natural language, so as to realize the fuzzy intelligent control. In the same year, when
Professor L.Y. Lin visited in Professor Zadeh’s Key Laboratory of UC-Berkeley University, he
presented the subject "Granular Computing" and got approval from Zadeh, it marked the birth
of granular computing.

Professor Miao, et al. [8] gave the definition of knowledge granularity and knowledge discerni-
bility in fuzzy set theory model, and pointed out the relationship between knowledge granularity
and knowledge discernibility: the smaller knowledge granularity is, the stronger knowledge dis-
tinguishable ability is; on the contrary, the bigger knowledge granularity is, the weaker knowledge
distinguishable ability is. Reference [9] defined the concept of the difference of granularity and
granularity entropy on the basis of fuzzy set’s algebraic method and information theory approach,
and proposes attribute reduction algorithm based on granular computing. Reference [10] pre-
sented attribute reduction algorithm based on Granular Computing, using the equivalent relation
in rough set to construct granule, and attribute significance is regarded as heuristic information.
Reference [11] put forward attribute reduction method based on model of granular computing
in information systems. Reference [12] proposed an improvement of attribute reduction algo-
rithm based on Granular Computing. This algorithm is to get attribute core using discernibility
matrix, and then make attribute reduction based on attribute significance as heuristic informa-
tion. Reference [13] proposed an incomplete order decision table reduction algorithm based on
granular computing.

These reduction methods based on granular computing are mainly first to calculate reduc-
tion core of system, then get reduction based on core. However, in practical application, some
information systems may have no reduction core. In this case, this paper proposes an improved
reduction algorithm based on attribute significance of granular computing, and numerical exper-
iments show the effectiveness of the algorithm.

2 Basic Concepts of Rough Sets

2.1 Rough sets

Let a quadruple S = (U,A, V, f) be an information systems (IS), in which U = {x1, x2, · · · , xn}
is a non-empty finite set called the domain of discourse; A = {a1, a2, · · · , am} is a non-empty
and finite set of attributes; V is a set of attribute values domain, V = ∪

a∈A
Va; f : U ×A → V is

a mapping, each attribute of the object in the domain of discourse by the mapping has a corre-
sponding information value, i.e. ∀a ∈ A, x ∈ U, f(x, a) ∈ Va. If the attributes set A is composed
of condition attributes set C and decision attributes set D, the quadruple S = (U,A, V, f) is also
called decision information system (DIS). The information system, also known as knowledge
representation system, is the main expression of knowledge of rough sets. It is simply expressed
in (U,A). If P is a subset of attributes set A , each subset P ⊆ A determines a binary indistin-
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guishable relation IND(P ), IND(P ) = {(u, v) ∈ U × U | ∀a ∈ P, a(u) = a(v)}. A set X ⊆ U
represent a concept and partition included by IND(P ) is called a knowledge base and denoted
by U/IND(P ). In particular, the partition U/IND(P ) = {Y1, Y2, · · · , Yk} is the knowledge base
of decision classes.

A knowledge base (U,R) is also called an approximation space, where U is the domain of
discourse and R is an equivalence relation on U . Let X ⊆ UandR ⊆ A, the sets R(X) = {x ∈
U | [x]R ⊆ X} and R̄(X) = {x ∈ U | [x]R∩X ̸= ϕ} are respectively called lower approximation set
and upper approximation set. Where [x]R refers to an equivalence class of IND(P ) = ∩IND(R)
determined by element x. If R(x) = R̄(x), then X is called a definable set on U ; If R(x) ̸= R̄(x),
then X is called a rough set on U .

If IND(R) ̸= IND(R− |a|), then a is indispensable in the set R, otherwise a is dispensable.
If every a ∈ R is indispensable, then R is called independent. Let Q ⊆ P , that is, Q is a subset
of P , if Q is independent and IND(Q) = IND(P ), then Q is a reduction of P , denoted as
Q = red(P ). The union set of indispensable attribute in the set A is called a core set, denoted
as core(P ), core(P ) = ∩ red(P ).

2.2 Knowledge granulation and partition

Definition 1[8]. Let (U,R) be an approximation space, P ∈ R is an equivalence relation on
U , called knowledge. The approximation space is also called knowledge base. The equivalence
class [x]P = {x ∈ U, (xi, xj) ∈ P} is called knowledge granule. The quotient set U/P =
{[x ]P |x ∈ U} is called a P − granularity partition. The granularity of knowledge is defined as
GD(P ),

GD(P ) =
|P |

|U × U |
=

|P |
|U |2

(1)

Where |P | denotes the cardinality of the set P ⊆ U × U .
The granularity of knowledge P can express its distinguishable ability. For ∀u, v ∈ U , if

(u, v) ∈ P , then they belong to the same equivalence class, i.e. they are indistinguishable. The
knowledge P ’s discernibility could be defined as Dis(P ), Dis(P ) = 1−GD(P ). In general, the
greater the granularity is, the weaker the distinguishable ability will be, vice versa.
Theorem 1[8]. Let P ∈ R be a knowledge of knowledge base K = (U,R), if U/P = {X1, X2, · · · ,
Xn}, then

GD(P ) =

(
n∑

i=1

|Xi|2
)/

|U |2. (2)

Property 1. Let P,Q ∈ R be an equivalence relations on U , U/P = {X1, X2, · · · , Xn},
U/Q = {Y1, Y2, · · · , Yn}, if P = Q, then GD(P ) = GD(Q) and Dis(P ) = Dis(Q); if P ≺ Q,
GD(P ) < GD(Q) and Dis(Q) < Dis(P ).
proof. (a) If P = Q, then m = n, Xi = Yi, so GD(P ) = GD(Q), Dis(Q) = Dis(P ).

(b) If P ≺ Q, then |P | < |Q|, so GD(P ) < GD(Q). Since Dis(P ) = 1 − GD(P ), we could
observe that Dis(Q) < Dis(P ).
Property 2. Let P ∈ R be an equivalence relation on U , U/P = {X1, X2, · · · , Xn}, if the equiv-
alence relation P divides from knowledge granules in U/R, then GD(P ) ≤ GD(R), Dis(R) ≤
Dis(P ).
Proof. We suppose that the knowledge granule Xi from U/R is divided into two knowledge gran-
ules Xi1 and Xi2, that is Xi = Xi1∪Xi2 and Xi1∩Xi2 = ∅, U/P = {X1, X2, · · · , Xi−1, Xi1, Xi2,
Xi+1, · · · , Xn}, so

GD(R) =

(
n∑

j=1
|Xj |2

)/
|U |2



An Improved Attribute Reduction Algorithm based on Granular Computing 859

=

(
i−1∑
j=1

|Xj |2
)/

|U |2 + |Xi|2
/
|U |2 +

(
n∑

j=i+1
|Xj |2

)/
|U |2

=

(
i−1∑
j=1

|Xj |2
)/

|U |2 + [|Xi1|+ |Xi2|]2
/
|U |2 +

(
n∑

j=i+1
|Xj |2

)/
|U |2

≥

(
i−1∑
j=1

|Xj |2
)/

|U |2 +
[
|Xi1|2 + |Xi2|2

]/
|U |2 +

(
n∑

j=i+1
|Xj |2

)/
|U |2

= GD(P ),

Dis(R) = 1−GD(R) ≤ 1−GD(P ) = Dis(P ).
Property 3. Let (U,R) be a knowledge base and P ∈ R be an equivalence relation on U ,
U/R = {X1, X2, · · · , Xn}, Q is the union of knowledge granules in U/R, then GD(R) ≤ GD(Q),
Dis(Q) ≤ Dis(R).
Proof. We suppose that the knowledge granule Xk is the union of Xi and Xi + 1, then
U/Q = {X1, X2, · · · , Xi−1, Xk, Xi+2, · · · , Xn}, so

GD(R) =

(
n∑

j=1
|Xj |2

)/
|U |2

=

(
i−1∑
j=1

|Xj |2
)/

|U |2 + |Xi|2
/
|U |2 + |Xi+1|2

/
|U |2 +

(
n∑

j=i+2
|Xj |2

)/
|U |2

≤

(
i−1∑
j=1

|Xj |2
)/

|U |2 + [|Xi|+ |Xi+1|]2
/
|U |2 +

(
n∑

j=i+2
|Xj |2

)/
|U |2

=

(
i−1∑
j=1

|Xj |2
)/

|U |2 + |Xk|2
/
|U |2 +

(
n∑

j=i+2
|Xj |2

)/
|U |2

= GD(Q),

Dis(Q) ≤ Dis(R).

Property 4. Let S = (U,A, V, f) be an information system,P,Q ⊆ A,
(1) If P ⇒ Q, then GD(P ) ≤ GD(Q);
(2) If P ⇔ Q, then GD(P )=GD(Q).

Proof. (1) If P ⇒ Q, then IND(P ) ⊆ IND(Q), this is |IND(P )| ≤ |IND(Q)|. On the
other hand, GD(P ) = GD(IND(P )) = |IND(P )|

/
|U |2, and GD(Q) = GD(IND(Q)) =

|IND(Q)|
/
|U |2, so GD(P ) ≤ GD(Q).

(2) If P ⇔ Q, then P ⇒ Q and Q ⇒ P . By (1), we could see that GD(P ) ≤ GD(Q) and
GD(Q) ≤ GD(P ), soGD(P )=GD(Q).
Property 5. Let S = (U,A, V, f) be an information system,P,Q ⊆ A,

(1) If P ⇒ Q, then Dis(P ) ≥ Dis(Q);
(2) If P ⇔ Q, then Dis(P )=Dis(Q).

Proof. It follows immediately from Definition 1 and Property 4.
Deduction 1. Let S = (U,A, V, f) be an information system, if P ⊆ Q ⊆ A, then GD(Q) ≤
GD(P ) and Dis(Q) ≥ Dis(P ).
Remark. Deduction 1 illustrates that for the subset of A, when the attribute number increased,
the knowledge granularity is reduced, thus, the discernibility is increased.

3 Attribute reduction algorithm based on attribute significance

Definition 2[8]. Let S = (U,A, V, f) be an information system, the attribute significance
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could be defined as SigA−{a}(a),

SigA−{a}(a) = GD(A− {a})−GD(A). (3)

Remark. In an information system S = (U,A, V, f), the attribute significance of each attribute
a ∈ A could be measured by knowledge granularity.
Definition 3[8]. Let S = (U,A, V, f) be an information system, C is a subset of A, C ⊆ A, for
∀a ∈ A−C, the attribute significance of attribute a relative to attribute set C could be defined
as SigC(a),

SigC(a) = GD(C)−GD(C ∪ {a}). (4)

Remark. Definition 3 illustrates that the attribute significance of attribute a relative to attribute
set C could be measured by change of the knowledge granularity. When a attribute is added to
attribute set C, C’s knowledge granularity may change. If C’s knowledge granularity change,
then attribute a is indispensable.
Definition 4[8]. Let S = (U,A, V, f) be an information system, a ∈ A, if GD(A − {a}) =
GD(A), then attribute a is dispensable, otherwise, attribute a is indispensable. If every a ∈ A
is indispensable, then A is called independent.
Definition 5[8]. Let S = (U,A, V, f) be an information system, P ⊆ A, if P is independent and
GD(P ) = GD(A), then P is a reduction of A, denoted as red(A). The union set of indispensable
attribute in the set A is called a core set, denoted as core(P ), core(P ) = ∩ red(P ).
Property 6. Attribute a is indispensable, if and only if

SigA−{a}(a) > 0. (5)

Proof. ⇒ If attribute a is indispensable, then GD(A − {a}) ̸= GD(A). As we know that
GD(A− {a}) ≥ GD(A), so SigA−{a}(a) = GD(A− {a})−GD(A) > 0.

⇐ Obviously.
Property 7. Core(A) = ∪

{
a ∈ A|SigA−{a}(a) > 0

}
.

Proof: It follows immediately from Definition 3 and Property 6.
Remark. The attribute significance from the perspective of knowledge granularity provides
a method of attribute reduction: We could judge the significance of attribute a by discussing
whether GD(A − {a}) is equal to GD(A). If GD(A − {a}) = GD(A)ŁŹthen a is dispens-
able, otherwise a is indispensable. Thus we could obtain the reduction core Core(A). Next
calculate the significance of the rest attribute relative to Core(A). If GD(Core(A) ∪ a) =
GD(A), then the set Core(A) ∪ a is the reduction of the information system, where a ={
a ∈ A− Core(A )|maxSigCore(A)(a)

}
.

Algorithm 1:
Input: An information system S = (U,A, V, f), where U = {x1, x2, · · · , xn}, A = {a1, a2, · · · ,

am}.
Output: red(A) and Core(A) // the sets of reductions and core.
Step 1: For i = 1, i ≤ n, ++ i; j = 1, j ≤ m, ++ j begin, calculate GD(A)// the knowledge

granularity of attribute set A.
Step 2: Calculate SigA−{a}(a) // the significance of attribute a ∈ A.
Step 3: Calculate Core(A), Core(A) =

{
a ∈ A|SigA−{a}(a) > 0

}
.

Step 4: If GD(Core(A)) = GD(A), output red(A) = Core(A), end.
If GD(Core(A)) > GD(A), turn next.
Step 5: Calculate max

b∈B
SigCore(A)(b ), B = A − Core(A) // the significance of attribute

b ∈ B = A− Core(A) for Core(A).
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Step 6: If GD(Core(A) ∪ a′) = GD(A), output red(A) = Core(A) ∪ b and Core(A), end.
If GD(Core(A) ∪ b) > GD(A), repeat step 5,
Step 7: Calculate max

c∈C
SigCore(A)∪b(b ) ∪ (Core(A) ∪ b) // the significance of attribute c ∈

C = A− Core(A) ∪ b for Core(A) ∪ b,
Step 8: For j = 1 to |C|, repeat step 7 until the knowledge granularity is equal to GD(A)
Step 9: Output red(A) = Core(A) ∪ b ∪ c ∪ · · · and Core(A).
Example 1. Let S = (U,A, V, f) be an information system (Table 1). There are 6 objects

and 4 attributes, where U = {x1, x2, x3, x4, x5}, A = {a1, a2, a3, a4}. Calculate the reduction of
the system.

Table1. An information system

U a1 a2 a3 a4

x1 1 0 2 2

x2 0 1 1 1

x3 2 0 0 1

x4 1 1 0 2

x5 2 2 0 0

x6 2 1 1 1

It is easy to calculate that

U/A = {x1, x2, x3, x4, x5, x6}, GD(A) =

(
n∑

i=1
|Xi|2

)/
|U |2 = 6

36 = 1
6 ,

U/A− {a1} = {x1, {x2, x6}, x3, x4, x5}, GD(A− {a1}) = 8
36 ,

SigA−{a1}(a1) = GD(A− {a1})−GD(A) = 8
36 − 6

36 = 2
36 ,

U/A− {a2} = {x1, x2, x3, x4, x5, x6}, GD(A− {a2}) = 6
36 ,

SigA−{a2}(a2) = GD(A− {a2})−GD(A) = 6
36 − 6

36 = 0,

U/A− {a3} = {x1, x2, x3, x4, x5, x6}, GD(A− {a3}) = 6
36 ,

SigA−{a3}(a3) = GD(A− {a3})−GD(A) = 6
36 − 6

36 = 0,

U/A− {a4} = {x1, x2, x3, x4, x5, x6}, GD(A− {a4}) = 6
36 ,

SigA−{a4}(a4) = GD(A− {a4})−GD(A) = 6
36 − 6

36 = 0.
Based on the result above, we can see that the core of the system is

Core(A) =
{
a ∈ A|SigA−{a}(a) > 0

}
= {a1}, GD(Core(A)) = 14

36 > 6
36 = GD(A).

Let a set B = A − Core(A) = {a2, a3, a4}, calculate the significance of the rest attribute
relative to Core(A):

SigCore(A)(a2) = GD(Core(A))−GD(Core(A) ∪ a2) =
14
36 − 6

36 = 8
36 ,

SigCore(A)(a3) = GD(Core(A))−GD(Core(A) ∪ a3) =
14
36 − 8

36 = 6
36 ,

SigCore(A)(a4) = GD(Core(A))−GD(Core(A) ∪ a4) =
14
36 − 10

36 = 4
36 .

Since max
b∈B

SigCore(A)(b ) = 8
36 , U/Core(A) ∪ a2 = {x1, x2, x3, x4, x5, x6}, GD(Core(A) ∪

a2) = GD(A), we can see that Core(A)∪a2 = {a1, a2} is the reduction, that is red(A) = {a1, a2},
Core(A) = {a1}.

4 An improved reduction algorithm

The reduction of an information system is not the only, some may have more than one
reductions. But the reduction results may not be able to get reduction core, especially in the
actual application data. For this case, Algorithm 1 is powerless. Now we will improve the
algorithm, which can deal with the system with reduction core and no reduction core.
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In an information system S = (U,A, V, f), if SigA−{a}(a) = 0, then then a is dispensable.
For ∀a ∈ A, if SigA−{a}(a) = 0, then the system has no reduction core.
Definition 6. Let S = (U,A, V, f) be an information system, P is a subset of A, P ⊆ A, the
attribute significance of P relative to A could be defined as SigA−P (P ),

SigA−{P}(P ) = GD(A− P )−GD(A). (6)

Particularly, if P = A, Sig∅(P ) is represented as Sig(P ), and Sig(P ) = Sig∅(P ) = GD(∅)−
GD(A) = 1−GD(P ) = Dis(P ). Where GD(∅) = 1 (since U/IND(∅) = {U}).

Algorithm 2:
Input: An information system S = (U,A, V, f), where U = {x1, x2, · · · , xn}, A = {a1, a2, · · · ,

am}.
Output: red(A) and Core(A) // the sets of reductions and core.
Step 1: For i = 1, i ≤ n, ++ i; j = 1, j ≤ m, ++ j begin, calculate GD(A).// the knowledge

granularity of attribute set A
Step 2: Calculate SigA−{a}(a). // the significance of attribute a ∈ A
If SigA−{a}(a) ̸= 0 // the system has reduction core, turn step 8;
If SigA−{a}(a) = 0 // the system has no reduction core, next;
Step 3: Calculate SigA−{ai,aj}(ai, aj), 1 ≤ i ̸= j ≤ m // the significance of the combination

of any two attributes in A,
Step 4: For i = 1, i ≤ n, ++ i; j = 1, j ≤ m, ++ j, find out

red′(A) =

{
(ai, aj)| max

1≤i̸=j≤m
SigA−{ai,aj}(ai, aj)

}
. // the suboptimal reduction of the system

Step 5: If GD(red′(A)) = GD(A), then output the reduction red(A) = red′(A), end. If
GD(red′(A)) > GD(A), turn next;

Step 6: Calculate max
b∈B

Sigred′(A)(b ), B = A − red′(A). // the significance of attribute

b ∈ B = A− red′(A) for red′(A)
Step 7: If GD(red′(A) ∪ b) = GD(A), then output red(A) = red′(A) ∪ b, end.
If GD(red′(A)∪ b) > GD(A), repeat step 6 until GD(red′(A)∪ b) = GD(A), output red(A),

end.
Step 8: Calculate Core(A) =

{
a ∈ A|SigA−{a}(a) > 0

}
.

Step 9: If GD(Core(A)) = GD(A), output red(A) = Core(A), end.
If GD(Core(A)) > GD(A), turn next;
Step10: Calculate max

b∈B
SigCore(A)(b ), B = A − Core(A) // the significance of attribute

b ∈ B = A− Core(A) for Core(A)
Step11: If GD(Core(A) ∪ b) = GD(A), output red(A) = Core(A) ∪ b and Core(A), end.
If GD(Core(A) ∪ b) > GD(A), repeat step 10.
Step12: Calculate max

c∈C
SigCore(A)∪b(b ) ∪ (Core(A) ∪ b) // the significance of attribute c ∈

C = A− Core(A) ∪ b for Core(A) ∪ b.
Step13: Output red(A) = Core(A) ∪ b ∪ c ∪ · · · and Core(A), end.
Example 2. Let S = (U,A, V, f) be an information system (Table 2). There are 5 objects

and 4 attributes, where U = {x1, x2, x3, x4, x5}, A = {a1, a2, a3, a4}. Calculate the reduction of
the system.
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Table2. An information system

U a1 a2 a3 a4

x1 1 0 2 1

x2 2 1 2 1

x3 0 1 2 0

x4 2 0 1 1

x5 1 2 2 0

It is easy to calculate that

U/A = {x1, x2, x3, x4, x5}, GD(A) =

(
n∑

i=1
|Xi|2

)/
|U |2 = 5

25 = 1
5 ,

U/A− {a1} = {x1, x2, x3, x4, x5}, GD(A− {a1}) = 1
5 ,

SigA−{a1}(a1) = GD(A− {a1})−GD(A) = 0;
U/A− {a2} = {x1, x2, x3, x4, x5}, GD(A− {a2}) = 1

5 ,
SigA−{a2}(a2) = GD(A− {a2})−GD(A) = 0;
U/A− {a3} = {x1, x2, x3, x4, x5}, GD(A− {a3}) = 1

5 ,
SigA−{a3}(a3) = GD(A− {a3})−GD(A) = 0;
U/A− {a4} = {x1, x2, x3, x4, x5}, GD(A− {a4}) = 1

5 ,
SigA−{a4}(a4) = GD(A− {a4})−GD(A) = 0.
Based on the result above, we can see that the system has no core. Next we calculate the

significance of attribute combination SigA−{ai,aj}(ai, aj), 1 ≤ i ̸= j ≤ 4:
GD(A− {a1, a2}) = 9

25 , SigA−{a1,a2}(a1, a2) = GD(A− {a1, a2})−GD(A) = 4
25 ;

GD(A− {a1, a3}) = 7
25 , SigA−{a1,a3}(a1, a3) = GD(A− {a1, a3})−GD(A) = 2

25 ;
GD(A− {a1, a4}) = 7

25 , SigA−{a1,a4}(a1, a4) = GD(A− {a1, a4})−GD(A) = 2
25 ;

GD(A− {a2, a3}) = 5
25 , SigA−{a2,a3}(a2, a3) = GD(A− {a2, a3})−GD(A) = 0;

GD(A− {a2, a4}) = 7
25 , SigA−{a2,a4}(a2, a4) = GD(A− {a2, a4})−GD(A) = 2

25 ;
GD(A− {a3, a4}) = 5

25 , SigA−{a3,a4}(a3, a4) = GD(A− {a3, a4})−GD(A) = 0.
We can see that GD(a1, a2) = GD(A), so red(A) = {a1, a2} is the reduction of the system.

5 Results and Discussion

The idea of Algorithm 1 is listed as follow: At first, work out the reduction core Core(A)
by finding out the set

{
a ∈ A|SigA−{a}(a) > 0

}
. Then calculate the significance of the rest

attribute relative to Core(A). If GD(Core(A) ∪ a) = GD(A), then the set Core(A) ∪ a is the
reduction of the information system. The time complexity of the algorithm is T ≈ O(|C|3 · |U |2).
The precondition of Algorithm 1 is working out reduction core. However, some information
systems may have no reduction core. In this case, Algorithm 1 is powerless. In this paper, an
improved algorithm is proposed. In an information system with no reduction core, the suboptimal
reduction red′(A) replaces the reduction core. The improved algorithm does not increase in time
complexity. It can deal with the system with reduction core and no reduction core.
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Abstract: Voice and speech communication is a major topic covering simultaneously
’communication’, ’control’ (because it often involves control in the coding algorithms),
and ’computing’ - from speech analysis and recognition, to speech analytics and to
speech coding over communication channels. While fuzzy logic was specifically con-
ceived to deal with language and reasoning, it has yet a limited use in the referred
field. We discuss some of the main current applications from the perspective of half
a century since fuzzy logic inception.
Keywords: fuzzy logic, fuzzy system, speech, communication, VAD, speech segmen-
tation, speech coding, speech analytics.

1 Introduction

At 50 years since the advent of fuzzy logic, 40 years since by Lotfi A. Zadeh introduced the
concept of linguistic variable [50] and at more than 60 years since the mathematician Grigore C.
Moisil argued that a new logic must be invented for describing human language and reasoning, it
is compelling to ask: How much fuzzy logic did contributed to our understanding and technical
use of language and speech in communications? As fuzzy logic (FL) was specifically conceived
to model the human language and logic vagueness, one could expect that it played a central part
in improving voice communications and speech recognition. Yet, the current situation does not
seem to fully support this expectation – at least not at the level FL gained popularity in (fuzzy)
control theory. In the review [44], not a single mention to fuzzy logic is made in connection to
voice communication, showing no penetration in the mainstream of communication applications
after almost 30 years since the first paper on FL. The situation has not much improved. The
recent review [11] deplores the fact that there are very few if any papers using FL in the major
conferences devoted to speech. Major journals publish only seldom papers on FL in speech
applications and voice communications. As a matter of example, there is a single paper in
this Journal to refer to the control and optimization of voice communications, rather indirectly,
namely [16]. That paper does not use FL-based methods. There is also another paper referring
to fuzzy control for data and indirectly, but not directly to voice communication, [48]. Sparsely,
there are however papers on the topic in major journals, see for example the approach in [14] on a
fuzzy traffic controller for ATM networks. An hypothesis for explaining this astonishing, general
situation of the low number of papers on voice communication and speech is that something
is still missing to allow for the expected eruption of FL applications in the field. We critically
review the state of the art and search for answers for the current state of affairs. In this paper
we assess the use of FL in four narrow sub-domains: voice activity detection (VAD), speech
segmentation, and speech coding, which are strongly related, on one side, respectively speech
analytics, on the other side.

Copyright © 2006-2015 by CCC Publications
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2 Some Applications of FL to Voice Communications and Speech
Coding

2.1 Fuzzy VADs and FL in Speech Segmentation

Voice communication in telephony systems and over Internet is done in digital form, by
packets of data with speech coded using PCM or other coding techniques. It is a matter of
minimizing the transmission effort and thus optimizing transmission capacity and minimizing
energy to send only useful packets. Speech is full of pauses that may include ambient noise.
Sending over the networks pause (noise) packets is useless. Therefore, detection of speech and
noise (pause) segments, and next coding and sending only the speech segments may significantly
improve communication efficiency and channel useful capacity. The so-called voice-activity de-
tectors (VADs) are meant to separate useful and useless segments before transmission and are
included in virtually all communication equipment. The main difficulty in building high quality
VADs is to differentiate between consonants and noise, because some of the consonants, espe-
cially the fricative ones are noise-like. Both the frequency spectra and the amplitude of the
fricatives as /s/, /f/ are close to white noise of low amplitude, as one encounters in offices. That
makes difficult the task of the voice activity detectors. Compounded with that is the variability
of the noise, which is typically nonstationary and may be white, pink, impulsive or a mixture
of them, with variable amplitudes. Discerning between noise and unvoiced consonants is a mat-
ter of classification, possibly solved with fuzzy voice activity detection (FVAD) algorithms as
in [3], [4], [5], [6], [7], [8], [12].

The VA detection needs several preliminary stages. In one approach, one detects and sepa-
rates the periodical and a-periodical segments (PAP analysis) in the speech [3], [4], [5] using a
linear predictor (LP). LPs approximate the sampled speech signal sn as a linear combinations
of the previous samples, according to san =

∑M
k=0 aksn−k +

∑Q
j=1 bjs

a
n−j , where sa denotes the

approximated samples and ak, bj are the LP coefficients. LPs are able to model well periodic sig-
nals, with low error en = sn−san, while they are inefficient for a-periodic signals (large prediction
errors). Signal parameters as the energy and the number of zero-crossings (NZC) are also used
for supplementing the LP PAP analysis, where NZC is computed as the number of times, in a
specified length segment of signal (signal window), successive samples satisfy sn−1sn ≤ 0. Alter-
natively, one may use only amplitude, spectral properties such as the ratio of powers in the low
and high frequency bands and NZC, possibly supplemented with the values of the self-correlation
function, or properties of the cepstrum or of the Mel-spectrum (Mel-Frequency Cepstral Coeffi-
cients - MFCC) etc., to discriminate between voiced, unvoiced and noise segments. In VAD, as
well as in speech segmentation and speech and emotion recognition, the decision is made based
on the original parameters, such as LPC coefficients, energy, and NZC, or based on a set of
derived, fused parameters – the representation space. In the second case, several parameters in
the primary parameter space are processed together and a new representation (representation
space) is derived, for example, the coherence between the periodic part of the signal and the
noise (remaining part), as in [3], or the fuzzy information space representation as in [42].

VADs are included in communication standards, but none of the standards refers to FL and
FVADs. Yet, [3] found that employing a decision based on FL rules applied to the ’coherence
measure between the noisy speech and its prediction residue’, the performances of the FVAD
performs ’globally better than G.729B and presents moderate improvement when compared to
UMTS 3G TS 26.094 VAD.’ They used the coherence function computed on every frame k,
C(f, k), C2(f, k) = S2

sn(f,k)
Ss(f,k)×Sn(f,k)

, where f is the frequency, S denotes spectra in the frame
for the noise n and signal s, and Ssn stands for the inter-signal spectral density [3], [4]. After
defining a set of frequency bands, Bi, the coherence function on each band is computed as
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CB
i (k) =

∑
f∈Bi

|C(f, k)| and these values are fuzzified according to three membership functions
[3]. A fuzzy decision is optimized for determining the type of signal segment and thus the VA.

Beretelli et al. [6], [7], [8] tested another approach, using the same parameters employed
by the ITU-T G.729 VAD standard, namely the energy differences between successive speech
frames, for full-band ∆Et and low-frequency band ∆EL, the difference of the NZCs, ∆ZC, and
the spectral distortion ∆S between successive frames. In their VAD algorithm, the decision is
made based on a set of simple fuzzy rules given in [7], such as ’IF (∆S is medium or low )
THEN (voice is active)’ and ’IF (∆EL is low) AND (∆S is very low) AND (∆ZC is high) THEN
(voice is active)’ (rules form [12]). Further improving the system, these authors considered
multi-channel (two or several microphone) systems and took into account the delays between the
signals. Using the output of the basic FVAD and the delays as inputs to a fuzzy network, after
training the complex FVAD, and thus obtained better performing VADs than the simpler FVAD
and than the G.729 standard VAD. Further refinements to increase the robustness in noise are
given in [6], [7], [8], [12]. These authors report in [9] an improvement, compared with the VAD
G.729, of more than 80% improvement in false activity detection.

A close topic is that of acoustic event detectors; we notice the interesting approach in [45],
where information fusion for classification of non-speech sounds is performed by a skilled use
of fuzzy integrals. Similarly, FL-based techniques applied to speech segmentation have been
proposed by many authors, but the penetration of these techniques in the mainstream of speech
segmentation is still limited. Speech segmentation may regard several levels, from voice activity
to vowel (voiced sound)-consonant phoneme boundaries, to phonemic and syllabic unit segmen-
tation, under various conditions of noise. Lin et al. [35] improved the noisy speech segmentation
using neural fuzzy networks based on so-called ’adaptive time-frequency (ATF) and refined time-
frequency (RTF) parameters’. Hsieh et al. [24] presented a neuro-fuzzy segmentation method
specific for the Mandarin language, while [47] combined a context-dependent phonetic HMM rec-
ognizer with a fuzzy logic post-correction system that takes into account the conditions specific
for each phonetic boundary for improving the precision of phoneme boundary determination.
They report remarkable improvements, from errors of 400% for a basic HMM segmenter, com-
pared to the durations determined by human operators, to a few percents after the corrections
made by the fuzzy rules block.

There are three main classes of techniques for speech coding [44]: the waveform (direct)
coding, coding in the model space, typically named parametric coding, and hybrid coding that
is mixing the first two techniques. Speech coding is based on a compromise between speech
perceived quality and the used bandwidth, and thus cost. The best quality is obtained by
waveform coding methods, which are also the most costly in terms of transmitted bandwidth.
Parametric (model) coding achieves low bandwidths, but the quality is poor-to-good at best.

Today speech coding, as in MPEG and telephony, is based on detailed psychoacoustic models
derived from CELP. In brief, the low delay (LD) CELP coder standardized by CCITT as G.728
uses a 50th order linear predictor (LP) excited by (i.e, having as input) predefined signals. The
set of excitation signals is predefined and indexed on a ’codebook’ (memory). After the LPC
coefficients are determined on a speech frame, one searches the type of excitation and the best
value of its amplitude (codebook gain) that produces at the LPC synthesizer output a signal
that is the closest to the original speech frame (minimal error). The ’codebook’ waveform index
and the code of the best matching amplitude, together with the LPC coefficients code the speech
frame. A perceptual filter is also used to improve the perceptual quality of the decoded speech
signal. While the LP is computed with performant algorithms, the best choice of excitation and of
its gain as available in the codebooks are time consuming. Sheikhan et al. [43] proposed a fuzzy
adaptive resonance theory mapping (ARTMAP) for achieving fast codebook index selection.
However, these authors have not justified their choice (the ARTMAP) in terms of the required
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computation power and time (complexity) and one could suspect that a simpler NN could have
performed more efficiently in this application.

2.2 FL in Speech Analytics - A Surprising Low Development

Already in 2006 a Gartner report [18] found that audio search and speech analytics is one of
the new technologies companies are adopting. Beyond marketing and services, speech analytics
are used in various applications as security [49], learning and teaching [19]. Carlsson [10] argues
that analytics and FL could be profitably combined in management.

There are multiple reasons to believe that FL may play an essential role both in interpreting
the text and uncovering emotional states in speech; see for example the comparison of methods
for emotion detection in [1], the example of method in [2] and the recent excellent paper [32].
However, many approaches applying FL to emotional speech are somewhat mechanistic, with no
direct relevance for psychological, neurologic, and phonetic processes. There is virtually no FL or
analytics-related study on the influence of the emotions on the articulatory processes (changes in
vocal fold vibration and non-vocal fold vibration frequencies, degree of creakiness, changes in the
articulation place and other elements of interest in articulatory phonetics). There are exceptions
from the mechanistic approach to assessing the speaker state; such exceptions deserve recognition,
e.g., [21], [22], [23], who study correlations between qualitative representations of emotions such as
valence, activation, and dominance and the acousto-physical parameters (acoustic features). On
the other hand, one has to recognize the market value of the mechanistic approaches in analytics
and other applications: they aim to produce real-life applications such as synthesizing emotional
speech for the games and movies industry [40], monitoring the state of drivers [26], [27], [28],
call center control and crowd/social state monitoring and control. There was little research on
differentiating simulated emotions with variable degrees of likeness to the true ones. Some studies
addressed simulated emotions by non-actors, aiming to voice communication enhancement and
education; e.g., [19], [38] found significant differences in emotion detection when comparing acted
emotions by layman (corpus described in [19]) and actors. Genuine emotions, as studied in several
other researches, were found more challenging to determine than the acted ones. We expect that
FL can help represent the degree of likeness by actors and laymen, moreover help build emotion
simulation detectors.

Because FL found reputed applications in classification, e.g., the kNN method and neuro-
fuzzy classifiers [51] moreover because the analytics extensively use concepts easier interpretable
by people than by current machines, one could expect that FL is largely present in analytics
modules, including speech analytics. While this is not true, fuzzy ontologies are quite popular
and at least some analytics have FL-based modules, see SAP-Hana [?] which considers fuzzy
search as one of the ’few important techniques being used in Text Analysis’; namely fuzzy search
stands for ’finding strings that match a pattern approximately’. Although this use relates to
language, the technique simply applies FL in defining a fuzzy distance over the set of strings.
The search is based on a minimal matching value and the respective command is like CONTAINS
(<string-tolook-for>, FUZZY (0.x)), with 0.x the minimal accepted similarity [53]. Note that
this analytics provides the function SCORE() that determines the degree of similarity for every
string in a specified set and the given string, but this is simplistic and far from what would
may be expected as level of use of FL in understanding people’s language communication. An
interesting direction was opened in [39], who proposed the use of prosodic features to prioritize
the call servicing. While not using FL, the approach in [39] is an example of applications
where FL looks promising for speech analytics. Similarly, there is an interesting paper, [13],
thoroughly analyzing the possibilities of mining fuzzy association rules in texts; that track could
be followed and applied on step further to finding fuzzy associations between textual information
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and prosody and emotions in speech. Another remarkable approach to analytics based on FL but
not related to speech is constituted by a series of papers [30], [31] that apply fuzzy data analysis
and inductive fuzzy classification using a normalization of the likelihood ratio to metadata and
for knowledge discovery. Surprisingly, there are few reports on research on FL applied to speech
analytics related to emotions. Maybe this is due to the fact that sentiment analysis on texts
have developed earlier and that it is considered sufficient for deriving the mood of the speaker.

3 Discussion and Conclusions

While the contributions of FL to speech technology, specifically to VAD, speech segmenta-
tion, and coding cannot be disregarded, these contributions seem to be less significant than one
may expect from applying FL to speech. Few researches compare the results and the advan-
tages or disadvantages of the FL approach to non-fuzzy approaches, or even try to justify the
FL-based approach. While some good results obtained using FL-approaches are expected based
on the known power of universal approximation (and thus nonlinear classification) of FLSs, the
capabilities of others, including their generalization power are less clear. A more systematic
research program for employing FL in speech analysis is needed to overcome the current limits.
An explanation for this state of affairs could be that FL requires extensive computations, while
systems as cellular phones and even PCs are restricted in computation power. However, the
recent processors have tremendously increased in computation power, favoring a larger use of
FL. Thus, one can look forward with the hope that FL will achieve more in this field, in the near
future.
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Abstract: The purpose of this article is to propose a fuzzy multi-attribute perfor-
mance measurement (MAPM) framework using the merits of both a novel Weighted
Aggregated Sum-Product Assessment method with Fuzzy values (WASPAS-F) and
Analytical Hierarchy Process (AHP). The object of this study is to select the best
shopping centre construction site in Vilnius. A number of conflicting qualitative and
quantitative attributes exist for evaluating alternative construction sites. Qualitative
attributes are accompanied by ambiguities and vagueness. This makes fuzzy logic a
more natural approach to this kind of multi-attribute decision making (MADM) prob-
lems. Fuzzy AHP is applied for assigning weights of the attributes and WASPAS-F
method is used to determine the most suitable alternative.
Keywords: AHP, WASPAS-F, Fuzzy AHP, multi-attribute decision making
(MADM), key performance attributes, construction site, shopping centre.

1 Introduction

The increasing competition cause a lot of construction site selection problems. Making de-
cisions is a complex process that involves multiple, usually conflicting, objectives or attributes.
They are ill-structured. Multi-criteria decision aid (MCDA, the European School) or multi-
attribute decision making (MADM, the American School) constitutes an advanced field of op-
erations research which is devoted to the development and implementation of decision support
methodologies to confront complex decision problems. The problem of how decisions are or ought
to be taken by individuals, organisations and institutions was previously discussed by Aristo-
tle [1]. Later, in the 18th century Bernoulli [2] concentrated research on probability theory,
Borda [3] on social choice procedures. The foundations of MCDA can be traced back in the
works of von Neumann and Morgenstern [4] and Fishburn [5] on utility theory. Multi-attribute
utility theory (MAUT) is an extension of the classical utility theory. The theory underlying
multi-attribute performance measurement models was developed in the 1960s, as summarised in
Keeney and Raiffa [6] and Zeleny [7].

Most of these methods have been developed based on the concepts of accurate measurements
and crisp evaluation. The performance measurement parameters cannot be given precisely. The
imprecision comes from different sources: unquantifiable information, incomplete information,
no obtainable information, and partial ignorance. The real-world problems in performance mea-
surement involve numerous aspects of uncertainty, contain a mixture of fuzzy and crisp data
and may have a large number of alternatives and dozens of attributes. The solution is highly
dependent on the preferences of the decision maker. It is common that people may not be 100%
sure when making subjective judgments. If all or some of the alternatives are imprecise, then
fuzzy MADM methods are required. Zimmermann’s description of uncertainty is as follows:

Copyright © 2006-2015 by CCC Publications
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Uncertainty implies that in a certain situation a person does not possess the information which
quantitatively and qualitatively is appropriate to describe, prescribe or predict deterministically
and numerically a system, its behaviour or other characteristics [8]. Fuzzy set theory is devel-
oped for solving problems, taking into account uncertainty, imprecision, vagueness. A pioneering
and outstanding works on fuzzy sets are done by Zadeh [9] - [12]. The papers introduced a new
perspective on the treatment of uncertainty, ambiguity, linguistic variables, and a fundamental
aspect of formal languages: fuzzy set theory. Fuzzy measures can be introduced for two different
uses: either they can represent a concept imprecisely known (although well defined) or a con-
cept which is vaguely perceived such as in the case of a linguistic variable. The basic concepts
and algorithms from classical MADM methods have been used in the development of the fuzzy
MADM methods.
Fuzzy direct aggregation procedures of MADM methods generally consist of two stages:

1. The aggregation of the performance scores with respect to all attributes (goals) and per
decision alternative, and

2. The rank ordering of the aggregated judgments of decision alternatives determine the op-
timal alternative.

Construction site selection is an important task. Proper construction site selection can im-
prove project’s success. Construction site selection for shopping centre requires a good visibility
and accessibility, proper access to suppliers, customers, suitable transportation network and suf-
ficient customer traffic and socio-economic population characteristics. The evaluation data of
location performance of the construction site for various subjective attributes, and the weights
of the attributes are usually expressed in linguistic terms. This makes fuzzy logic a more natu-
ral approach to this kind of problems. There is a limited number of papers evaluating suitable
locations. Usually GIS in combination with decision making methods is applied for selecting the
best site for ecologically and economically important objects such as renewable energy systems,
including solar or wind farms [13] - [15]. Prioritizing the best sites for waste management is sug-
gested by applying fuzzy TOPSIS [16] or VIKOR [17] methods. AHP is applied for warehouse [18]
or solar farm [19] construction site selection. Also fuzzy MCDM frameworks for locating plants
are suggested [20], [21]. Application of interval type-2 fuzzy sets for watershed site selection is
presented [22]. Hybrid approach of fuzzy analytic network process (ANP), fuzzy DEMATEL and
fuzzy ELECTRE for site selection is suggested [23].

The purpose of this article is to propose a novel fuzzy multi-attribute performance measure-
ment framework using the merits of both a novel Weighted Aggregated Sum-Product Assessment
method with Fuzzy values (WASPAS-F) and fuzzy Analytical Hierarchy Process (AHP).

2 Methodology

The high value of a problem-solving process is that it helps to align human’s thinking and
action around a common approach for winning team problem solving to the following nine steps:

1. Selecting the problem;

2. Exploring the problem and gathering data;

3. Establishing success attributes;

4. Developing a clear problem statement;

5. Generating alternatives;
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6. Evaluating alternatives;

7. Selecting a preferred solution;

8. Developing a plan for action;

9. Testing and modifying the solution.

There is no evidence in the literature of publications evaluating the shopping centre construc-
tion sites were applied in Lithuania. This is the most powerful motivation to consider the site
selection problem. Flowchart of proposed problem solving process is shown in Fig. 1. The first
part of methodology, i.e. the fuzzy AHP was used to calculate attributes weights. In the second
part, the WASPAS-F method was developed and used to rank and select the alternatives. First

Figure 1: Flowchart of the proposed problem solving process

of all expert group was formed. The creditability of a group of experts depends on the expertise
of the people who are involved and how they can give full play to their professional expertise and
make wise and fair decisions. The group of experts was formed based on three main problem
solving skills:

1. Communications patience (techniques that help members share information and perspec-
tives by working hard to understand one another and working hard to be understood,
members with controversial or divergent views are not ignored or blocked);

2. Synergy creation (techniques that equip members to expand their thinking by generating
many ideas, building on those ideas, and evaluating ideas to create synergistic solutions);

3. Disciplined use of a problem solving process (members become disciplined in using a sys-
tematic process for analysing data, creating options, and evaluating and selecting preferred
solutions).
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In the absence of good data, members waste time in pointless debates over opinions, and the
problem with opinions is that we all have different ones. The members were asked to generate
as many ideas or options as they can without censorship or judgment. Ideas were evaluated
considering all factors consequences and sequels of all the probable consequences of a particular
scenario in the short term, the medium term, and the longer term. The members were asked to
identify important criteria for assessing the feasibility of several ideas.

2.1 Preliminairies

A fuzzy set is a class of objects with a continuum of membership grades. Such set is charac-
terized by a membership function which assigns to each object a grade of membership ranging
between zero and one [9]. A fuzzy set A defined in space X is a set of pairs:

A = {(x, µA(x)), x ∈ X}, (1)

where the fuzzy set A is characterized by its membership function µA : X → [0; 1], which
associates with each element x ∈ X, a real number µA(x) ∈ [0; 1]. The value µA(x) at x
represents the grade of membership of x in A and is interpreted as the membership degree to
which x belongs to A . So the closer the value µA(x) is to 1, the more x belongs to A.

A crisp or ordinary subset A of X can also be viewed as a fuzzy set in X with membership
function as its characteristic function, i.e.

µA(x) =

{
1 x ∈ A;

0 x /∈ A.
(2)

The set X is called a universe of discourse and can be written ⊆ X. Sometimes a fuzzy set
A in X is denoted by list the ordered pairs (x, µA(x)), where the elements with zero degree are
usually not listed. Thus a fuzzy set A in X can be represented as A = {(x, µA(x))}, where x ∈ X
and µA : X → [0; 1].

When the universe of discourse is discrete and finite with cardinality n, that is X = {x1, x2, . . . , xn},
the fuzzy set A can be represented as

A =
n∑

i=1

µA(xi)

xi
=

µA(x1)

x1
+

µA(x2)

x2
+ . . .+

µA(xn)

xn
, (3)

when the universe of discourse X is an interval of real numbers, the fuzzy set A can be expressed
as

A =

∫
X

µA(x)

x
. (4)

A fuzzy number A is defined to be a fuzzy triangular number, with α - lower, β - modal, and
γ -upper values, if its membership function µA : X → [0; 1] is fully described as follows:

µA(x) =


x− α

β − α
if x ∈ [α, β],

x− α

β − γ
if x ∈ [β, γ],

0 otherwise.

α 6 β 6 γ. (5)

In order to obtain a crisp output, a defuzzification process is needed to be applied. De-
fuzzification is the process of producing a quantifiable result in fuzzy logic, given fuzzy sets and
corresponding membership degrees. The output of the defuzzification process is a single num-
ber. Various types of membership functions are used. The most commonly used membership
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functions are the following [24]: triangular, trapezoid, linear, sigmoidal, π-type, and Gaussian.
A fuzzy number is generally a subjective data given by one expert or several (after collective

agreement). The most typical fuzzy set membership function is triangular membership function
(Fig. 2).

Figure 2: Triangular membership function

Van Laarhoven and Pedrycz [25] introduced the basic operations of fuzzy triangular numbers
x̃1 and x̃2 (Table 1). In the Table 1 α is a lower value of fuzzy number, β - modal value of fuzzy
number, γ -upper value of fuzzy number.

Values of weight 0 < w̃j < 1,
∑n

j=1 w̃j = 1 are usually determined by experts. There
are various approaches for assessing weights. Decision makers data which cannot be exactly
described by means of numerical values, commonly describe the different ways they measure
things numerically in terms of scales of measurement, which come in four flavours: nominal,
ordinal, interval, or ratio scales. Likert items were first introduced in 1932 [26]. Likert scales
can indeed be analysed effectively as interval or fuzzy scales [27] in which categories are labelled
with numerical values.

2.2 Fuzzy AHP

The earliest work in fuzzy AHP appeared in van Laarhoven and Pedrycz [25], which com-
pared fuzzy ratios described by triangular membership functions. Chang [28] introduced a new
approach for handling fuzzy AHP, with the use of triangular fuzzy numbers for pairwise compar-
ison scale of fuzzy AHP, and the use of the extent analysis method for the synthetic extent values
of the pairwise comparisons. This study concentrates on a fuzzy AHP approach introduced by
Chang [28], in which triangular fuzzy numbers are preferred for pairwise comparison scale. This
questionnaire sought the satisfaction level of the experts concerning the candidate alternatives
using a Likert-type five-point scale. The linguistic variables matching TFNs are provided in
Fig.3.

Fuzzy group weight is determined as follows:
After obtaining the attributes weights from AHP the synthesising of ratio judgements is done.
W̃ = [w̃1, w̃n] = [w̃j ] fuzzy group weights for n attributes are determined as follows (w̃j is fuzzy
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Table 1: Basic operations on fuzzy triangular numbers
Equation Operation

x̃1 = (x1α, x1β , x1γ),

x̃2 = (x2α, x2β , x2γ)
(6) fuzzy triangular numbers

x̃1 ⊕ x̃2 =

 x1α + x2α,

x1β + x2β ,

x1γ + x2γ

 (7) addition

x̃1 ⊖ x̃2 =

 x1α − x2γ ,

x1β − x2β ,

x1γ − x2α

 (8) substraction

x̃1 ⊗ x̃2 =

 x1αx2α,

x1βx2β ,

x1γx2γ

 (9) multiplicaction

k ⊗ x̃1 =

 kx1α,

kx1β ,

kx1γ

 (10) multiplicaction by constant

x̃1 ÷ x̃2 =

 x1α/x2γ ,

x1β/x2β ,

x1γ/x2α

 (11) division

x̃−1
1 =

 1/x1γ ,

1/x1β ,

1/x1α

 (12) reverse number

x̃x̃2
1 =

 x
x2γ

1α ,

x
x2β

1β ,

xx2α
1γ

 (13) raising a fuzzy triangular number of the power of an-
other fuzzy triangular number, if x1α 6 x1β 6 x1γ 6 1
and x2α 6 x2β 6 x2γ 6 1 is special for this case study

triangular number):

x̃j = (xjα, xjβ , xjγ), (14)

where yjk is j attribute weight determined by k expert, p is number of experts, wjα = min
k

yjk, j =

1, n, k = 1, p is minimum possible value, wjβ =

(
p∏

k=1

yjk

)1/p

, j = 1, n is the most possible value

and wjγ = max
k

yjk, j = 1, n, k = 1, p is maximum possible value of j attribute weight.
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Figure 3: Linguistic variables for the importance weight of each attribute.

2.3 A novel fuzzy multi-attribute performance measurement model:
Weighted Aggregated Sum-Product Assessment method with Fuzzy val-
ues (WASPAS-F)

This subsection extends WASPAS to the fuzzy environment. The merit of using a fuzzy
approach is to assign the relative importance of attributes using fuzzy numbers instead of precise
numbers. MADM method, namely WASPAS, was introduced in 2012 by Zavadskas et al. [29].
Later, modification of the method WASPAS-IFIV was introduced [30]. There are a number of
applications of WASPAS method, including site selection for wind turbine [31], deciding shopping
mall locating [32] or assessing sites for implementation of solar projects [33]. Also the method was
successfully applied for evaluating alternative technological or design solutions in construction
[34] - [37], manufacturing [38], business issues [39] or even for performance analysis and ranking
of scholarly journals [40].
The WASPAS method consists of two aggregated parts:

1. The Weighted Sum Model (WSM);

2. The Weighted Product Model (WPM).

The WSM method is simple, easy to use and understood. It determines overall score of an
alternative as a weighted sum of the attribute values. It is the best known and most widely used
method [41]. The WPM is developed in order to avoid alternatives with poor attribute values. It
determines score of each alternative as a product of the scale rating of each attribute to a power
equal to the importance weight of the attribute [42].

Based on the briefly summarized fuzzy theory above, WASPAS-F steps can be outlined as
follows:
Step 1. Forming of fuzzy decision-making matrix (FDMM). The performance values x̃ij and
the attributes weights w̃j are entries of a DMM. Choose the linguistic ratings.

The system of attributes as well as the values and initial weights of attributes are determined
by experts. The discrete optimization problem is represented by the preferences for m reasonable
alternatives (rows) rated on n attributes (columns):
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X̃ =



x̃11 . . . x̃1j . . . x̃1n
...

. . .
...

. . .
...

x̃i1 . . . x̃ij . . . x̃in
...

. . .
...

. . .
...

x̃m1 . . . x̃mj . . . x̃mn


; i = 1,m, j = 1, n, (15)

where x̃ij – fuzzy value representing the performance value of the i alternative in terms of the j
attribute. A tilde ˜ is placed above a symbol if the symbol represents a fuzzy set.

Then the determination of the priorities of alternatives is carried out in several steps.
Step 2. The initial values of all the attributes x̃ij are normalised – defining values ˜̄xij of
normalised decision-making matrix ˜̄X = [˜̄xij ]m×n.

˜̄xij =


x̃ij

max
i

x̃ij
if max

i
x̃ij is preferable,

min
i

x̃ij

x̃ij
if min

i
x̃ij is preferable;

i = 1,m, j = 1, n. (16)

Step 3a. Calculate the weighted normalised fuzzy decision matrix ˜̂
Xq for WSM:

˜̂
Xq =



˜̂x11 . . . ˜̂x1j . . . ˜̂x1n
...

. . .
...

. . .
...

˜̂xi1 . . . ˜̂xij . . . ˜̂xin
...

. . .
...

. . .
...

˜̂xm1 . . . ˜̂xmj . . . ˜̂xmn


; ˜̂xij = ˜̄xijw̃j , i = 1,m, j = 1, n. (17)

Step 3b. Calculate the weighted normalised fuzzy decision matrix ˜̂
Xp for WPM:

˜̂
Xp =



˜̄̄x11 . . . ˜̄̄x1j . . . ˜̄̄x1n
...

. . .
...

. . .
...

˜̄̄xi1 . . . ˜̄̄xij . . . ˜̄̄xin
...

. . .
...

. . .
...

˜̄̄xm1 . . . ˜̄̄xmj . . . ˜̄̄xmn


; ˜̄̄xij = ˜̄x

w̃j

ij , i = 1,m, j = 1, n. (18)

Step 4. Calculate values of the optimality function:
a) according to the WSM for each alternative:

Q̃i =

n∑
j=1

˜̂xij , i = 1,m, (19)

b) according to the WPM for each alternative:

P̃i =
n∏

j=1

˜̄̄xij , i = 1,m. (20)
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The result of fuzzy performance measurement for each alternative are fuzzy numbers Q̃i and P̃i.
The centre-of-area is the most practical and simple to apply for defuzzification:

Qi =
1

3
(Qiα +Qiβ +Qiγ). (21)

Pi =
1

3
(Piα + Piβ + Piγ). (22)

Step 5. The integrated utility function value of the WASPAS-F method for an alternative could
be determined as follows:

Ki = λ
m∑
j=1

Qi + (1− λ)
m∑
j=1

Pi, λ = 0, ..., 1, 0 6 Ki 6 1. (23)

λ is determined based on the assumption that total of all alternatives WSM scores must be equal
to the total of WPM scores:

λ =

m∑
i=1

Pi

m∑
i=1

Qi +

m∑
i=1

Pi

. (24)

Step 6. Rank preference order. Choose an alternative with maximal Ki value.

3 Construction site for shopping centre site selection in Vilnius

In this case study, an investor company conducted a feasibility study to establish strategies to
locate an appropriate shopping centre in strategic demand areas of Vilnius. The identification of
feasible sites and the selection of the one will optimize the company’s performance strategically.
The problem was solved according to the presented above methodology. The MAPM model has
been designed by considering the interests and objectives of all stakeholders, customers, local
community, employees and suppliers. First of all, expert’s team determined the potential critical
errors of construction site location selection (Fig. 4). Then, based on expert team questionnaire
they determined the main problems of construction site selection (Fig. 5).

Figure 4: Critical errors of construction site selection.
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Figure 5: Problems of construction site selection.

An interview to evaluate the most suitable location alternatives was conducted with seven
experts, including stakeholders, business development managers, real estate consultants and aca-
demicians. The next step was collection of the information associated to all of the alternative
construction sites identified and a description of the most important attributes. The Strengths,
Weaknesses, Opportunities, and Threats analysis was performed. Finally, four location alterna-
tives, which are denoted as A1, A2, A3 and A4 are selected as feasible alternatives. A1 alternative
is at the intersection of important roads between the airport and the railway station and the
central bus station. A2 is one of the developing dwelling districts. A3 is the most populated
residential district. A4 is one of the nearby the centre point of the Vilnius.

Later, the attributes were compared each other using AHP. A Likert-type ten-point scale
(Fig. 3) was used.

In the next step the questionnaire was about experts’ satisfaction level toward construction
site selection. This questionnaire adopts a Likert-type ten-point scale (Fig. 6). It has ten
different levels - from "very bad" (P̃1) to "excellent" (P̃10) - on a fuzzy ten-level scale. For
example, expert might think the satisfaction the linguistic score of "fair" (P̃5), that score would
or correspond to a TFN of (0.4, 0.5, 0.6) respectively. The pairwise comparison matrix set by
TFNs that matches linguistic statements of data is shown in Table 2. Each of experts determined
attributes weights. Integrated results of established weights are shown in Table 3. The priority
weight vector describes the importance degree of the attributes in decision matrix. After getting
the importance degree of attributes, WASPAS-F method was employed to evaluate alternative
locations. In this phase of the study, WASPAS-F starts establishing fuzzy evaluations of the
alternative locations (A1, A2, A3 and A4) with respect to the attributes by using TFNs. This is
an initial decision making matrix for ranking alternatives and indicates the performance ratings
of the alternatives according to the attributes. The alternatives according to linguistic scales and
their corresponding fuzzy numbers {(1, 1, 1) – very poor, (2, 3, 4) – poor, (4, 5, 6) – fair, (6, 7, 8) –
good, (8, 9, 10) – very good} are compared by experts. Table 4 shows comparison of alternatives
according to attributes. The normalised decision matrix is obtained by using Eq. (16) (Table 5).
The weighted normalised fuzzy decision matrix for WSM is obtained by using Eq. (17) (Table
6) and one for WPM is obtained by using Eq. (18) (Table 7). Values of the optimality function
values for WSM and WPM are calculated by using Eq. (19) and Eq. (20) respectively. The
integrated utility function value of the WASPAS-F method for an alternative was determined by
using Eq. (24), as presented in Table 8.

As can be seen from Table 8, A3 is the best alternative in the WSM, WPM and WASPAS
method. A4 alternative is the worst among considered alternatives. Decision maker should
choose and implement the A3 alternative.
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Table 2: Pairwise comparisons of site selection attributes for shopping centre via TFN (The first
Expert).

x1 x2 x3 x4 x5 x6 x7 x8 w
Construction

costs x1 1, 1, 1 0.20, 0.33, 1 1, 1, 3 1, 3, 5 5, 7, 9 3, 5, 7 3, 5, 7 3, 5, 7 0.21
Economical x2 1, 3, 5 1, 1, 1 1, 1, 3 1, 3, 5 3, 5, 7 1, 3, 5 3, 5, 7 3, 5, 7 0.21

Road
accesses x3 0.33, 1, 1 0.33, 1, 1 1, 1, 1 0.20, 0.33, 1 1, 3, 5 3, 5, 7 1, 3, 5 1, 3, 5 0.17

Competition x4 0.20, 0.33, 1 0.20, 0.33, 1 1, 3, 5 1, 1, 1 1, 3, 5 1, 3, 5 1, 3, 5 1, 3, 5 0.17
Population

characteristics x5 0.11, 0.14, 0.20 0.14, 0.20, 0.33 0.20, 0.33, 1 0.20, 0.33, 1 1, 1, 1 3, 5, 7 1, 3, 5 1, 1, 3 0.12
Environmental

impacts x6 0.14, 0.20, 0.33 0.20, 0.33, 1 0.14, 0.20, 0.33 0.20, 0.33, 1 0.14, 0.20, 0.33 1, 1, 1 1, 3, 5 1, 1, 3 0.07
Risks x7 0.14, 0.20, 0.33 0.14, 0.20, 0.33 0.20, 0.33, 1 0.20, 0.33, 1 0.20, 0.33, 1 0.20, 0.33, 1 1, 1, 1 1, 1, 3 0.04

Attractiveness x8 0.14, 0.20, 0.33 0.14, 0.20, 0.33 0.20, 0.33, 1 0.20, 0.33, 1 0.33, 1, 1 0.33, 1, 1 0.33, 1, 1 1, 1, 1 0.01

Table 3: Fuzzy weights of attributes

Experts W̃

E1 E2 E3 E4 E5 E6 E7 wjα wjβ wjγ

x1 0.21 0.33 0.29 0.31 0.23 0.35 0.27 0.21 0.28 0.35
x2 0.21 0.23 0.18 0.21 0.23 0.17 0.16 0.16 0.20 0.23
x3 0.17 0.16 0.14 0.17 0.14 0.17 0.16 0.14 0.16 0.17
x4 0.17 0.11 0.09 0.10 0.14 0.12 0.12 0.09 0.12 0.17
x5 0.12 0.07 0.09 0.07 0.08 0.08 0.09 0.07 0.08 0.12
x6 0.07 0.05 0.07 0.05 0.08 0.05 0.09 0.05 0.06 0.09
x7 0.04 0.03 0.07 0.05 0.05 0.04 0.05 0.03 0.05 0.07
x8 0.01 0.02 0.06 0.02 0.05 0.02 0.05 0.01 0.03 0.06

Table 4: The initial fuzzy decision making matrix for construction site selection

W A1 A2 A3 A4 max
α β γ α β γ α β γ α β γ α β γ

x̃1 0.21 0.28 0.35 0.5 0.6 0.7 0.6 0.7 0.8 0.6 0.7 0.8 0.6 0.7 0.8 0.8
x̃2 0.16 0.20 0.23 0.6 0.7 0.8 0.6 0.7 0.8 0.8 0.9 1.0 0.5 0.6 0.7 1
x̃3 0.14 0.16 0.17 0.8 0.9 1.0 0.5 0.6 0.7 0.6 0.7 0.8 0.6 0.7 0.8 1
x̃4 0.09 0.12 0.17 0.5 0.6 0.7 0.6 0.7 0.8 0.5 0.6 0.7 0.4 0.5 0.6 0.8
x̃5 0.07 0.08 0.12 0.8 0.9 1.0 0.7 0.8 0.9 0.6 0.7 0.8 0.5 0.6 0.7 1
x̃6 0.05 0.06 0.09 0.5 0.6 0.7 0.8 0.9 1.0 0.6 0.7 0.8 0.8 0.9 1.0 1
x̃7 0.03 0.05 0.07 0.4 0.5 0.6 0.5 0.6 0.7 0.8 0.9 1.0 0.7 0.8 0.9 1
x̃8 0.01 0.03 0.06 0.5 0.6 0.7 0.4 0.5 0.6 0.4 0.5 0.6 0.5 0.6 0.7 0.7

Table 5: The normalised fuzzy decision making matrix

W̃ A1 A2 A3 A4
α β γ α β γ α β γ α β γ α β γ

˜̄x1 0.21 0.28 0.35 0.63 0.75 0.88 0.75 0.88 1.00 0.75 0.88 1.00 0.75 0.88 1.00
˜̄x2 0.16 0.20 0.23 0.60 0.70 0.80 0.60 0.70 0.80 0.80 0.90 1.00 0.50 0.60 0.70
˜̄x3 0.14 0.16 0.17 0.80 0.90 1.00 0.50 0.60 0.70 0.60 0.70 0.80 0.60 0.70 0.80
˜̄x4 0.09 0.12 0.17 0.63 0.75 0.88 0.75 0.88 1.00 0.63 0.75 0.88 0.50 0.63 0.75
˜̄x5 0.07 0.08 0.12 0.80 0.90 1.00 0.70 0.80 0.90 0.60 0.70 0.80 0.50 0.60 0.70
˜̄x6 0.05 0.06 0.09 0.50 0.60 0.70 0.80 0.90 1.00 0.60 0.70 0.80 0.80 0.90 1.00
˜̄x7 0.03 0.05 0.07 0.40 0.50 0.60 0.50 0.60 0.70 0.80 0.90 1.00 0.70 0.80 0.90
˜̄x8 0.01 0.03 0.06 0.71 0.86 1.00 0.57 0.71 0.86 0.57 0.71 0.86 0.71 0.86 1.00
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Table 6: The weighted normalised matrix for WSM

A1 A2 A3 A4

α β γ α β γ α β γ α β γ
˜̂x1 0.13 0.21 0.31 0.16 0.25 0.35 0.16 0.25 0.35 0.16 0.25 0.35
˜̂x2 0.10 0.14 0.18 0.10 0.14 0.18 0.13 0.18 0.23 0.08 0.12 0.16
˜̂x3 0.11 0.14 0.17 0.07 0.10 0.12 0.08 0.11 0.14 0.08 0.11 0.14
˜̂x4 0.06 0.09 0.15 0.07 0.11 0.17 0.06 0.09 0.15 0.05 0.08 0.13
˜̂x5 0.06 0.07 0.12 0.05 0.06 0.11 0.04 0.06 0.10 0.04 0.05 0.08
˜̂x6 0.03 0.04 0.06 0.04 0.05 0.09 0.03 0.04 0.07 0.04 0.05 0.09
˜̂x7 0.01 0.03 0.04 0.02 0.03 0.05 0.02 0.05 0.07 0.02 0.04 0.06
˜̂x8 0.01 0.03 0.06 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.03 0.06
Q 0.78 0.79 0.82 0.75∑

Qi 3.15

Table 7: The weighted normalised matrix for WPM

A1 A2 A3 A4

α β γ α β γ α β γ α β γ
˜̄̄x1 0.85 0.92 0.97 0.90 0.96 1.00 0.90 0.96 1.00 0.90 0.96 1.00
˜̄̄x2 0.89 0.93 0.96 0.89 0.93 0.96 0.95 0.98 1.00 0.85 0.90 0.94
˜̄̄x3 0.96 0.98 1.00 0.89 0.92 0.95 0.92 0.94 0.97 0.92 0.94 0.97
˜̄̄x4 0.92 0.97 0.99 0.95 0.98 1.00 0.92 0.97 0.99 0.89 0.95 0.97
˜̄̄x5 0.97 0.99 1.00 0.96 0.98 0.99 0.94 0.97 0.98 0.92 0.96 0.98
˜̄̄x6 0.94 0.97 0.98 0.98 0.99 1.00 0.96 0.98 0.99 0.98 0.99 1.00
˜̄̄x7 0.94 0.97 0.98 0.95 0.97 0.99 0.98 0.99 1.00 0.98 0.99 1.00
˜̄̄x8 0.98 1.00 1.00 0.97 0.99 1.00 0.97 0.99 1.00 0.98 1.00 1.00
P 0.74 0.75 0.79 0.71∑

Pi 2.99

Table 8: Integrated utility function values of the WASPAS-F method

A1 A2 A3 A4

Q 0.78 0.79 0.82 0.75
P 0.74 0.75 0.79 0.71
λ 0.49
K 0.76 0.77 0.80 0.73
Rank 3 2 1 4
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Figure 6: Membership functions of linguistic values for criteria rating (Likert-type ten-point
scale).

4 Conclusions

Today, increase in population well-being and income causes the need of new construction
sites. Selecting the best location for a new construction site in fuzzy environments becomes a
difficult task for stakeholders. This paper proposed a combined fuzzy MADM approach based
on the fuzzy AHP and WASPAS-F methods for selecting a suitable construction site location. In
the proposed method, the fuzzy AHP was used to determine the weights of the attributes, while
WASPAS-F was employed to rank the alternative locations. The approach combines the strong
sides of the AHP and WASPAS methods. As a result of the study, we find that the proposed
method is practical for ranking alternatives with respect to multiple conflicting attributes for the
large scale problems.
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1 Introduction

Fuzzy numbers, which are a generalization of real numbers, have been perfectly applied to
model and show the fuzzy data. Recently, application of fuzzy numbers in data mining algorithms
has been an interesting topic to the researchers in this domain, for instance, clustering [1, 2],
classification [3] and regression [4, 5]. Generally, the efforts have been done in study of fuzzy
mathematical analysis and its application falls into two main categories:

First, studies on constructing fuzzy number metrics based on the fuzzy numbers and their
topological properties. Many researchers proposed different metrics and many discussions on
them have been proposed. For example, Hausdorff metric [6], Lp metric [7] and sendograph
metric [8], were proposed as some of the most well-known widely used metrics.

The second category consists of those studies which addresses the relationship between the
fuzzy number space and other topological spaces, study the properties of the fuzzy number space
and develop some new methods in the proposed spaces. Among these studies, Goetschel and
Voxman(2003) introduced a homeomorphic mapping from θ-crisp fuzzy number space to Hilbert
space ℓ2, which ranges in a convex cone (see [9]). Later, Gerg [10] generalized this mapping by
extending the θ-crisp fuzzy number space to a more general one.

In order to apply the functional analysis to the fuzzy-valued functions studies, in which
variables are real numbers and function values are fuzzy numbers, Puri and Ralescu [11], proposed
an embedding theorem that the fuzzy number space ε1 can be embedded into a Banach space
X, with the help of the Radstrom embedding theorem of compact convex set. This theorem
establishes the theoretical link between the fuzzy number space and the Banach space. However,
because of do not considering any specific structure of Banach space, it is not easy to implement
(it is not applicable anymore). Thus, by adopting the mapping of Goetschel and Voxman, Wu
and Ma [12, 13] embedded fuzzy number space into the concrete Banach space C[0, 1] × C[0, 1]
(C[0, 1] = {f : f is a bounded left-continuous function on (0, 1], and f has right limit on (0, 1],
especially f is right-continuous at 0}), and present a specific isometrically isomorphic operator.
Although the proposed embedding operator is proved to be as same as the embedding operator
given by Puri and Ralescu [11] in the sense of isometrical isomorphism, the embedding operator
has a specific form.

This paper is organized as follows: Section 2 and Section 3 introduced definitions and no-
tations employed throughout the paper. In section 4, we introduced a specific fuzzy number,
namely; fuzzy structured element. Then two important theorems which are the local mapping
theorem and the structured element representation theorem of fuzzy number, are proved. As a
result, we obtain a conclusion that there exist an one-one mapping from B[−1, 1] with the same
order standard monotonic bounded function family on [0, 1] to the fuzzy real number space ε1.
In section 5, we introduced Lp metric and Hausdorff metric into B[−1, 1] and some of its topo-
logical properties, such as completeness and separability are discussed. In section 6, by means
of a fuzzy functional induced by fuzzy structured element, two fuzzy number metrics induced
in the given metrics of B[−1, 1]. This section discussed the homeomorphism Problems between
B[−1, 1] and the space ε1. Finally, we conclude and provide future works in Section 7.

2 Notion of the fuzzy numbers

Fuzzy numbers are the natural generalization of real and crisp numbers. A fuzzy number is
a set of the real line with the upper semi-continuous and quasi-concave membership function.
The definition implies that α-cut (Aα) of a fuzzy subset A is a closed interval in [Aα

l , A
α
r ] for any

α ∈ (0, 1]. The support of a fuzzy number A is a crisp set so that suppA = cl({x : A(x) > 0}) =
[A0

l , A
0
r ](the closure of the support of A). Thus, by supposing suppA to be a bounded closed
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interval, A defined as a bounded fuzzy number. Denote all bounded fuzzy numbers on real line
R as Ñc(R)(or ε1).

Theorem 1. [12] If u ∈ Ñc(R), then let

u(α) = inf{x : x ∈ uα}, u(α) = sup{x : x ∈ uα},

here u(α) and u(α) are two functions that satisfy the following conditions (1)–(4) on [0, 1]:

(1) u(α) is a bounded left continuous nondecreasing function on (0, 1];

(2) u(α) is a bounded left continuous nonincreasing function on (0, 1];

(3) u(α) and u(α) are right continuous at α = 0;

(4) u(α) ≤ u(α).

Conversely, if functions u(α) and u(α) satisfy the conditions (1)–(4) on [0, 1], then there exists
an unique u ∈ Ñc(R) such that uα = [u(α), u(α)] for each α ∈ [0, 1].

The theorem says that for any fuzzy number A, it can be uniquely determined by two mono-
tonic functions u(α), u(α) on interval [0, 1].

3 Notions of the Extended set-valued function and general in-
verse function

Let f be a monotonic and bounded function on [a, b] and x0 ∈ (a, b) be a discontinuous point
in f . By considering f as a monotone increasing function, f can be a surjective function from
[a, b] to (−∞,+∞) by the following formula:

f(x0) = [f(x0−), f(x0+)], f(a) = (−∞, f(a+)], f(b) = [f(b−),+∞),

Here, we denote a new function f̂ , which f̂ is a monotonic set-valued function extended by f
and it also called extensional set-valued function of f . Furthermore, we denote all the family of
function f which are bounded and have the same monotonicity on [a, b], by D[a, b].

3.1 Discontinue monotonic function with set-valued extensional at disconti-
nuity

For discontinue monotonic increasing function f , x0 is a discontinuous point in the range of
[−1, 1]. Here, f(x0 − 0) = m1 and f(x0 + 0) = m2, by considering our default suppose that
f is an increasing function, then m1 < m2 and f(x0) is an interval number between [m1,m2].
If functional values of all discontinuities redefined as closed interval with left-hand and right-
hand limited values, then this new function is called monotonic bounded set-valued function
extensional from f that we denote it by f̂ . Obviously, inverse function f̂−1 of f̂ exist.

3.2 Continuous non-strictly monotonic function

Suppose f is a non-strictly increasing function, then there exists at least one pair points
{x1, x2} on [−1.1] such that value of f is equal to constant c = f(x1) = f(x2) on interval [x1, x2].
And suppose x1, x2 are two endpoints so that increasing function f is equal to constant, that is,
when x < x1, f(x) < c and when x > x2, f(x) > c. Here, we define inverse function f−1(x)
which is continue close to 0 at discontinuity, i.e. when x2 ≤ 0, f̂−1(c) = limx→c+0 f−1(x) = y+;
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when x1 ≥ 0, f̂−1(c) = limx→c−0 f−1(x) = y−; when 0 ∈ [x1, x2], define f−1(c) as set of two
points {y−, y+}, denote by f̂−1(c) = {y−, y+}.

It is quite straightforward to verify that, if f is an increasing and bounded function on
[−1, 1] and f̂ is the extensional set-valued function of f , then the inverse function of f̂ can be
equivalently defined as:

f̂−1(x) =


sup{t : f̂(t) = x,−1 6 t < 0}, −∞ < x 6 f(0−)

0, f(0−) 6 x 6 f(0+)

inf{t : f̂(t) = x, 0 < t 6 1}, f(0+) 6 x < +∞
. (1)

Example 2. To make the above concept more understandable, let consider f as a monotonic
bounded function on [0, 2],

f(x) =

{
x, 0 6 x 6 1

1 + x, 1 < x 6 2
.

Then its extensional set-valued function f̂(x) and its inverse function f̂−1(x) are defined as the
following:

f̂(x) =


x, 0 6 x < 1

[1, 2], x = 1

1 + x, 1 < x 6 2

, f̂−1(x) =


x, 0 6 x < 1

1, 1 6 x < 2

x− 1, 2 6 x 6 3

.

The f(x) and f̂(x) can be illustrated by Figure 1

y

x21
0

1

2

y

x21
0

1

2

( )f x ˆ ( )f x

 

Figure 1: Set-valued function f̂ extended by f

4 Fuzzy structured element and transformation

In order to establish the relationship between the fuzzy real number space ε1 and the mono-
tone function space on interval [−1, 1], we introduce a method, namely the Fuzzy Structured
Element, which was proposed by Sicong Guo in [14].

Definition 3. Let E be a fuzzy set on real line R and E(x) is membership function of E. Then,
E is called a fuzzy structured element, if E(x) satisfies the following properties:

1) E(0) = 1;

2) E(x) is monotonic increasing and right-continuous on [−1, 0), monotonic decreasing and left-
continuous on (0, 1];
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3) For any x ∈ (−∞,−1) ∪ (1,+∞), E(x) = 0.

Further, E is called a normal fuzzy structured element if the fuzzy structured element E
satisfies: (1) E(x) > 0 for all x ∈ (−1, 1); (2) E(x) is continuous, strictly monotonic increasing
on [−1, 0) and also continuous, strictly monotonic decreasing on (0, 1].

According to Definition 3, it is easy to know that the fuzzy structured element is a special
fuzzy number on real line R, which can be used to express the concept of fuzzy zero 0̃.

Let E be a fuzzy number. E is called a triangular structured element if it has membership
function µE(x), where

µE(x) =


1− x, x ∈ [0, 1]

1 + x, x ∈ [−1, 0]

0, otherwise

(2)

As it is shown in Figure 2. Obviously, E is a special fuzzy structured element.

 

1

11! o x

( )E x

Figure 2: Triangular structured element E

Based on the fuzzy structured element, we can give the following two theorems:

Theorem 4 (Local Mapping Theorem). Suppose E is a fuzzy structured element on R with
membership function E(x). f(x) is monotonically bounded on [−1, 1] and f̂(x) is extensional set-
valued function of f(x). Then f̂(E) is a bounded closed fuzzy number and membership function
of f̂(E) is E(f̂−1(x)), where f̂−1(x) is the inverse function of f̂(x)
(If f(x) is strictly increasing and continuous on [−1, 1], then f̂−1(x) is a ordinary inverse function
of f(x)).

Proof: Let A = f̂(E), A(y) defined as a membership function of f̂(E). Suppose that f(x) is
increasing and bounded on [−1, 1]. By extension principle, we have

A(y) =
∨

y∈f̂(x)

E(x), f̂(E) =
∪
x∈R

E(x) ∗ f̂(x),

where

E(x) ∗ f̂(x)(y) =

{
E(x), y ∈ f̂(x)

0, otherwise
.

From the former equation, the membership function of f̂(E) is f̂(E)(y). When y ∈ f̂(x),
counterpart membership degree defined as E(x).

Denote α–cut of E by Eα = [e−α , e
+
α ]. It follows from the concept of fuzzy structured element

that E0 = [e−0 , e
+
0 ] ⊆ [−1, 1]. Since f(x) is increasing bounded on interval [−1, 1] and f̂(x) is

surjection on R, it follows that for α ∈ (0, 1],

[f̂(E)]α = f̂(Eα) = f̂ [e−α , e
+
α ] = [f(e−α ), f(e

+
α )],
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For α = 0,

[f̂(E)]0 = suppf̂(E) = ∪α∈(0,1][f̂(E)]α = ∪α∈(0,1][f̂(Eα)] = [f(e−0 +), f(e+0 −)] (3)

Thus Eα, α ∈ [0, 1] are bounded closed sets.
For all α1, α2 ∈ (0, 1], if α1 ≤ α2, then Eα1 ⊆ Eα2 , that is e−α2

≤ e−α1
, e+α1

≤ e+α2
. Since f(x) is

monotone increasing, we have

f(e−α1
−) ≤ f(e−α2

−), f(e+α2
+) ≤ f(e+α1

+)

Therefore, [f̂(E)]α1 ⊆ [f̂(E)]α2 . Furthermore, it follows from Eq.(3) that

[f̂(E)]0 = ∪α∈(0,1][f̂(E)]α ⊇ [f̂(E)]α1 ,

It means that f̂(E) is a convex set on real line R.
Since E is a fuzzy number and 1-cut set E1 of E is nonempty and [f̂(E)]1 = f̂(E1) also is

nonempty, hence we can say that f̂(E) is a normal fuzzy number. From definition of bounded
closed fuzzy number, we know f̂(E) ∈ Ñc(R).

Since f̂(E)(y) = ∨y∈f̂(x)E(x) = E(xy) as y ∈ f̂(x), where xy = f̂−1(y). It follows that

f̂(E)(y) = E(f̂−1(y)),

or
f̂(E)(x) = E(f̂−1(x)).

If f(x) is monotonic decreasing on [−1, 1], the proof can be shown in a similar manner. 2

Theorem 5 (Theorem of Structured Element Expression of Fuzzy Number ). For a given regular
fuzzy structured element E and any bounded fuzzy number A, there exists a monotonic bounded
function f on [−1, 1] such that A = f(E) (strictly, exists a extended set-valued function f̂ such
that A = f̂(E)). We called it fuzzy number A generated by the fuzzy structured element.

Proof: From fuzzy number expression theorem, fuzzy number u can be expressed by a family
set {uα : uα = [u(α), u(α)], α ∈ [0, 1]}. Therefore, we just need to prove that there exists a
monotone bounded function f(x) on [−1, 1] such that f(E) = u, that is, for all α ∈ [0, 1],
[f(E)]α = [u(α), u(α)].

Let

f(x) =

{
u(E(x)), x ∈ [−1, 0]

u(E(x)), x ∈ (0, 1]
.

It follows from Theorem 1 that f(x) is a monotone increasing bounded function on [−1, 1].
From the local mapping principle, f(E) is a bounded closed fuzzy number. It follows from the
extension principle that [f(E)]α = f(Eα). Denote E(x) on [−1, 0] as lE(x) and E(x) on [0, 1] as
rE(x). Since E is strictly increasing on [−1, 0] and is also a bijection from [−1, 0] to [0, 1] , E is
strictly decreasing on [0, 1] and is also a bijection from [0, 1] to [0, 1], so lE(x), rE(x) inverse and
are denoted by l−1

E (α), r−1
E (α), then

Eα = [E(α), E(α)] = [l−1
E (α), r−1

E (α)].

Since u(α), u(α) are left-continuous on (−1, 0] and are right-continuous at α = 0, also E(x) is
continuous, we know that u(E(x)) = u(lE(x)) is left-continuous on (−1, 0] and is right-continuous
at x = −1, u(E(x)) = u(rE(x)) is right-continuous on [0, 1) and is left-continuous at x = 1. Since
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f(x) is increasing, it follows that
for all α ∈ (0, 1],

f(Eα) = f [l−1
E (α), r−1

E (α)] = [f(l−1
E (α)−), f(r−1

E (α)+)]

= [u(E(l−1
E (α)+)), u(E(r−1

E (α)−))]

= [u(E(l−1
E (α))), u(E(r−1

E (α)))]

= [u(α), u(α)]

for α = 0,
f(E0) = f [l−1

E (0), r−1
E (0)] = [f(−1+), f(1−)]

= [u(E(−1+)), u(E(1−))]

= [u(E(−1)), u(E(1))]

= [u(0), u(0)]

Therefore, we conclude that [f(E)]α = [u(α), u(α)] for all α ∈ [0, 1]. That’s to say that f(E) = u.
We complete the proof of this theorem. 2

When no confusion can arise in the following discussions, we will use f(x) to denote the
extended function f̂(x) and use f(E) to instead of f̂(E), respectively.

Theorem 6. Let f be a monotonic bounded function and E be a fuzzy structured element on R
and fuzzy number u = f(E). For all α ∈ [0, 1], Eα = [e−α , e

+
α ]. Then

(1) If f(x) is increasing on [−1, 1], then α-cut of fuzzy number u is closed interval

uα =

{
[f(e−α−), f(e+α+)], α ∈ (0, 1],

[f(e−α+), f(e+α−)], α = 0,
. (4)

(2) If f(x) is monotonic decreasing function on [−1, 1], then α-cut of u is closed interval

uα =

{
[f(e+α−), f(e−α+)], α ∈ (0, 1],

[f(e+α+), f(e−α−)], α = 0,
(5)

Proof: Based on Theorem 4 and function f satisfies the monotone condition of Local Mapping
Theorem, it follows that for any α ∈ (0, 1], we have [f(E)]α = f(Eα). Since f is monotone on
closed interval Eα = [e−α , e

+
α ] ⊆ [−1, 1], it follows that:

If f is increasing, for α ∈ (0, 1], we have

uα = f(Eα) = f [e−α , e
+
α ]

= [inf{y : y ∈ f [e−α , e
+
α ]}, sup{y : y ∈ f [e−α , e

+
α ]}]

= [f(e−α−), f(e+α+)],

and for α = 0, it holds that

u0 = suppf(E) = f(E)0̇ = f(E0̇)

= lim
α→0

[f(e−α−), f(e+α+)] = [f(e−0 +), f(e+0 −)].
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If f is decreasing, we have

uα = f(Eα) = f [e−α , e
+
α ]

= [inf{y : y ∈ f [e−α , e
+
α ]}, sup{y : y ∈ f [e−α , e

+
α ]}]

= [f(e+α+), f(e−α−)],

2

From the Local Mapping Theorem 4, we know that given a fuzzy structured element E,
it will be transformed into an fuzzy number A = f(E) with any a monotonic function f on
[−1, 1]. When f is not a monotonic function, the fuzzy set f(A) can not be guaranteed to be a
fuzzy number. Theorem 5 show us that for any bounded fuzzy number A, we always can find
a monotonic bounded function f on [−1, 1] such that f(E) = A. Therefore, the two theorems
reveal to us that there exists a deep relationship between the family of bounded monotonic
function on [−1, 1] and the fuzzy number space.

5 The same order standard monotonic bounded function classes
B[−1, 1]

Let f be monotonic bounded function on [−1, 1]. If for any discontinuity x in [−1, 1], we
have

f(x) =
1

2
[f(x+) + f(x−)], (6)

where f(x+)(f(x−)) is the right-limit(left-limit) of f(x) at the point x, then f(x) is called a
standard monotonic bounded function on [−1, 1]. All same order standard monotonic bounded
function on [−1, 1] is denoted by B[−1, 1].

It is obvious that a continuous monotonic bounded function on D[−1, 1] is also a standard
monotonic bounded function.

Definition 7. Suppose that f ∈ D[−1, 1], we define

f̌(x) =


f(−1+), x = −1

[f(x−) + f(x+)]/2, x ∈ (−1, 1)

f(1−), x = 1

(7)

where f̌(x) is as a standardized form of f(x). Obviously, f̌ ∈ B[−1, 1]. If f is a standard
monotonic bounded function, then f̌ = f .

In the following we introduced two distance formulas:

dp(f, g) =

[∫ 1

−1
|f(x)− g(x)|pdx

]1/p
, for all f, g ∈ B[−1, 1], (8)

dH(f, g) = sup
x∈[−1,1]

|f(x)− g(x)|, for all f, g ∈ B[−1, 1]. (9)

where 1 ≤ p < +∞.

Theorem 8. Let E be a normal fuzzy structured element, K is a bounded closed interval on R.
Denote

Bf (K) = {f : f ∈ B[−1, 1] and [f(−1), f(1)] ⊆ K}, (10)

Metric spaces (B[−1, 1], dH) and (Bf (K), dp) both are complete.
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Proof: First, we prove completeness of space (B[−1, 1], dp). Suppose each elements in (B[−1, 1], dp)
are increasing, for decreasing situation has similarity conclusions. Suppose given sequence
{xn(t)}, where xn(t) ∈ (B[−1, 1], dp), n = 1, 2, · · · .

Let dp(xn, xm) → 0, (as n,m → ∞), that is, sequence {xn(t)} satisfies Cauchy uniformly
convergence conditions. Suppose x0(t) is limit of sequence xn(t),i.e.

lim
n→∞

xn(t) = x0(t) for all t ∈ [−1, 1].

Since all xn(t1) is monotonic increasing function, then xn(t1) ≤ xn(t2) for all t1, t2 ∈ [−1, 1]. So

lim
n→∞

xn(t1) ≤ lim
n→∞

xn(t2),

and x0(t1) ≤ x0(t2). Thus x0(t) is monotonic increasing function.
Now we prove g(t) is standard function on [−1, 1]. Suppose t0 is a discontinuous point of

g(t). We might as well suppose that g(t) is’t standard, that is

g(t0) ̸=
1

2
[g(t0+) + g(t0−)].

Letδ =
∣∣g(t0)− 1

2 [g(t0+) + g(t0−)]
∣∣ . Furthermore, since fn(t), n = 1, 2, · · · , are standard, we

have

E(t0+) |fn(t0+)− g(t0+)| < ε,

E(t0−) |fn(t0−)− g(t0−)| < ε,

E(t0) |fn(t0)− g(t0)| < ε.

Take ε = ε0 < δ/2. When n ≥ n0(ε0), we have

|g(t0)−
1

2
[g(t0+) + g(t0−)]|

≤ |fn(t0)− g(t0)|+
1

2
|fn(t0+)− g(t0+)|+ 1

2
|fn(t0−)− g(t0−)|

≤ ε0 + ε0 = 2ε0 < δ.

a contradiction. Thus, g(t) is standard on [−1, 1].
2) Now we prove the metric space (Bf (K), dp) is complete. Suppose that fn is a Cauchy

sequence in Bf (K), dp, then for any ε > 0, there exists a positive integer N such that for any
m,n > N , we have

dH(fm, fn) =

[∫ 1

−1
|fm(t)− fn(t)|pdx

]1/p
< ε.

This indicates that {fn} is a Cauchy sequence of Lp[−1, 1]. We know that Lp[−1, 1] is complete
space, so {fn} is converse in Lp[−1, 1]. Suppose h is a limit of sequence {fn}. Similar to the
proof in 1) that h(x) is increasing and bounded in interval [−1, 1]. Therefore, h(−1+) and h(1−)
exist. Let

f(x) =


h(−1+), x = −1

[h(x+) + h(x−)] /2, x ∈ (−1, 1)

h(1−), x = 1

.

It is obvious that f(x) ∈ B[−1, 1] and also is a limit of Cauchy sequence fn. f(x) and h(x) have
different values which happened only on discontinuity, so we have dp(fn, f) = dp(fn, g). Thus,
f is a limit of Cauchy sequence in (Bf (K), dp), that is, {fn} converges in (Bf (K), dp). Hereby,
the completeness of (Bf (K), dp) have been proved. 2
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Theorem 9. Let E be a normal fuzzy structured element and K ∈ I(R) be a nonempty set,
denoted by:

Bf (K) = {f : f ∈ B[−1, 1] and [f(−1), f(1)] ⊆ K},

then the metric space (Bf (K), dp) is complete.

Example 10. The metric space (B[−1, 1], dp) is not complete. For example, fn ∈ B[−1, 1] is
defined by

fn+1(x) =

{
fn(x), x ∈ [−1, 1− 1/n2]

n, x ∈ (1− 1/n2, 1]
, (n ≥ 1),

where f1(x) = 0, x ∈ [−1, 1]. It is obvious that fn(x)(n ≥ 1) are bounded functions. Suppose
m ≤ n, we have

dp(fm, fn) =

[∫ 1

−1
|fm(t)− fn(t)|pdt

]1/p
<

[
1

(n+ 1)2
+

1

(n+ 2)2
+ · · ·+ 1

m2

]1/p
<

[
1

n
− 1

m

]1/p
<

1

n
→ 0(m,n → ∞)

Thus, {fn} is a Cauchy Sequence, their standard function sequence {f̌n(x)} is a Cauchy Sequence
in B[−1, 1]. It is easy to understand that {f̌n(x)} do not convergence to any upper bounded
function.

Theorem 11. Metric space (B[−1, 1], dH) is not a separable space and metric space (B[−1, 1], dp)
is a separable space.

Proof: 1) It is sufficient to construct an uncountable set Bf of B[−1, 1] with the property that
if f, g ∈ Bf , then dH(f, g) = 1. For each t ∈ (−1, 1), define ft ∈ B[−1, 1] by

ft(x) =


0 x ∈ [−1, t)

0.5 x = t

1 x ∈ (t, 1]

.

Denote Bf = {ft : t ∈ (−1, 1)}. Consequently, if t1 ̸= t2, then dH(ft1 , ft2) = 1.
2) Since Lp[−1, 1] is a separable space with respect to the metric dp and B[−1, 1] ⊂ Lp[−1, 1],

then B[−1, 1] is separable with respect to metric dp (For any separable metric space X, any
nonempty subset of this space is also separable). 2

In general, f ∈ B[−1, 1],−f ∈ B[−1, 1] unless f is a constant-valued function. Because, if f
isn’t constant-valued function, despite −f is also monotonic function, but it is not same order
with f . Hence, B[−1, 1] cannot form group with respect to operation of addition,just can form
a semigroup.

It should be noted that each element in B[−1, 1] is not a closed form with respect to ordinary
subtraction operator. We can take an example, function obtain by two monotonic function
subtracted may be non-monotonic. Therefore, B[−1, 1] can’t form linear space with respect to
addition and number multiply operation.

Theorem 12. B[−1, 1] is a convex cone with 0 as its vertex.

The theorem is obvious, so the proof is omitted.
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6 Topological relationship between B[−1, 1] and Ñc(R)

6.1 Two types of fuzzy number metric spaces induced by the fuzzy structured
element

Let E be a symmetrical regular fuzzy structured element on real line R and Ñc(R) be the set
of all bounded closed fuzzy numbers. For given function f ∈ B[−1, 1], there exists corresponding
unique fuzzy number such that Af = f(E). In other words, fuzzy structured element determines
a mapping from B[−1, 1] to Ñc(R).

Denote

HE : B[−1, 1] → Ñc(R),
f → HE(f) = f(E) ∈ Ñc(R).

Then HE is called fuzzy functional induced by fuzzy structured element E.
Using metrics dp and dH on B[−1, 1], mapping HE induces distances

dNp(A,B) = dp(H
−1
E (A),H−1

E (B)), (11)

dNH(A,B) = dH(H−1
E (A),H−1

E (B)), (12)

on Ñc(R), where H−1
E (A),H−1

E (B) are preimage of mapping HE at A and B, respectively. Sup-
pose A = f(E), B = f(E), where f, g ∈ B[−1, 1], then Eq.(11) and Eq.(12) can also rewrite
as

dp(f, g) = dp(HE(f),HE(g)), (13)
dH(f, g) = dH(HE(f),HE(g)), (14)

(Ñc(R), dNp) and (Ñc(R), dNH) are said to be distance space induced by (B[−1, 1], dp) and
(B[−1, 1], dH), respectively. It is easy to understand that HE is an isometric bijection of B[−1, 1]
onto Ñc(R).

Using isometric bijection HE , we can translate metric of elements in fuzzy number space to
metric between the same order standard monotonic bounded functions in range of [−1, 1]. Then,
what is the relationship between those metrics and the other metrics on fuzzy numbers?

Before discussing the relationship, a Lemma need to be presented here:
For u ∈ Ñc(R), E is a normal fuzzy structured element. If g ∈ B[−1, 1] such that u = g(E),

as defined in the following:

gu(x) =

{
u(E(x)) −1 ≤ x ≤ 0

u(E(x)) 0 < x ≤ 1
.

Lemma 13. Suppose that E is a normal fuzzy structured element, fuzzy number u ∈ Ñc(R), uα =
[u(α), u(α)](α ∈ [0, 1]). If u = f(E), f ∈ B[−1, 1], then

f(x) = ǧu(x), x ∈ [−1, 1],

where ǧu is the standard function of gu.

Proof:
The proof has been provided in the following two steps:
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1) First, we prove ǧu = u. According to the decomposition theorem, we only need to prove
that [ǧu(E)]α = uα for any α ∈ (0, 1]. Denote Eα = [e−α , e

+
α ]. From the extension principle and

g(x) is a increasing function, it follows that

[ǧu(E)]α = ǧu(Eα) = ǧu([e
−
α , e

+
α ]) = [ǧu(e

−
α−), ǧu(e

+
α+)].

Since u(α), u(α) are continuous on (0, 1], we have u(E(x)) is left-continuous on (−1, 0] and
u(E(x)) is right-continuous on [0, 1). Therefore,

[ǧu(e
−
α−), ǧu(e

+
α+)] = [gu(e

−
α−), gu(e

+
α+)]

=
[
u
(
E(e−α )

)
, u
(
E(e+α )

)]
=
[
u
(
α
)
, u
(
α
)]

That is, [ǧu(E)]α = uα. Thus, ǧu = u.
2) Here we prove f is unique in B[−1, 1]. Suppose f1, f2 ∈ B[−1, 1] such that f̂1(E) =

f̂2(E) = u, then f̂−1
1 = f̂−1

2 . Furthermore, we have f̂1 = f̂2, then f1 = f2. Thus, f is unique in
B[−1, 1]. Therefore, f(x) = ǧu(x), x ∈ [−1, 1]. The proof is complete. 2

The following theorem shows the relation between the induced fuzzy number metrics dNH , dNp

and the previous metrics of fuzzy numbers.

Theorem 14. Let E be regular structured element, u, v ∈ Ñc(R), there are f, g ∈ B[−1, 1] such
that u = f(E), v = g(E). Denote uα = [u(α), u(α)], vα = [v(α), v(α)], then

dNp(u, v) =

[∫ 1

−1
|f(x)− g(x)|pdx

]1/p
=

[∫ 1

0
|u(α)− v(α)|p dE(α) + |u(α)− v(α)|p dE(α)

]1/p
(15)

dNH(u, v) = sup
x∈[−1,1]

|f(x)− g(x)| = sup
x∈[−1,1]

(|u(α)− v(α)| ∨ |u(α)− v(α)|) (16)

Proof: 1) We have from Lemma 13 that

dNp(u, v) = dp(f, g) = dp(f̌u, ǧv),

And ǧu(x) = gu(x) and ǧv(x) = gv(x) are bounded almost everywhere on [−1, 1] respectively, it
follows that dp(f̌u, ǧv) = dp(fu, gv). Therefore,

dNp(u, v) = dp(fu, gv) =
[∫ 1

−1 |fu(x)− gv(x)|pdx
]1/p

=
[∫ 0

−1 |u(E(x))− v(E(x))|p dx+
∫ 1
0 |u(E(x))− v(E(x))|pdx

]1/p
Denote E(x) = lE(x) for x ∈ [−1, 0] and rE(x) = E(x) for x ∈ [0, 1]. Since E is a regular fuzzy
structured element, we know that lE is bijective from [−1, 0] to [0, 1], rE is bijective from [0, 1]
to [0, 1]. Thus, we can say that l−1

E , r−1
E exist and they are monotone bijections. It obvious that

E = l−1
E and E = r−1

E both are differentiable almost everywhere. Therefore, we have

dNp(u, v) =

[∫ 1

0
|u(α)− v(α)|p dl−1

E (α) +

∫ 0

1
|ū(α)− v̄(α)|pdr−1

E (α)

]1/p
=

[∫ 1

0
|u(α)− v(α)|p dE(α)−

∫ 1

0
|ū(α)− v̄(α)|pdĒ(α)

]1/p
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2) From Lemma 13, we obtain

dNH(u, v) = dH(f, g) = dH f̌u, ǧv),

Furthermore, fu(x), gu(x) both are left-continuous on (−1, 0] and right-continuous on [0, 1), and
are right-continuous at x = −1 and left-continuous at x = 1, we have

|fu(x)− gv(x)| ≤ |fu(x−)− gv(x−)| ∨ |fu(x+)− gv(x+)|, x ∈ (−1, 1)

|fu(x)− gv(x)| = |fu(x)− gv(x)|, x ∈ {−1, 1}

Since f̌u(x), ǧu(x) are standard functions of fu(x), gv(x) for x ∈ (−1, 1), we have

|f̌u(x−)− ǧv(x−)| = |fu(x−)− gv(x−)|;
|f̌u(x+)− ǧv(x+)| = |fu(x+)− gv(x+)|.

It follows that dH(f̌u, ǧv) = dH(fu, gv). Moreover, we have

dH(fu, gv) = sup
x∈[−1,1]

{|fu(x)− gv(x)|}

= sup
x∈[−1,0]

{|u(E(x))− v(E(x))|} ∨ sup
x∈[0,1]

{|ū(E(x))− v̄(E(x))|}

Let α = E(x) on [−1, 0] and [0, 1], respectively. Since E is a regular fuzzy structured element, it
follows that

sup
x∈[−1,0]

{|u(E(x))− v(E(x))|} = sup
α∈[0,1]

{|u(α)− v(α)|} ,

sup
x∈[0,1]

{|ū(E(x))− v̄(E(x))|} = sup
α∈[0,1]

{|ū(α)− v̄(α)|} ,

completing the proof of the theorem. 2

Since integral variables E(α), Ē(α) in the Eq.(6.1) are two general functions, the definite
integral is a Riemann-Stieltjes integral. When the E is a triangular structured element (2),
we have dE(α) = d(α − 1) = dα, dĒ(α) = d(−α+ 1) = −dα. Then the Eq.(2) becomes the
following form:

dNp(u, v) =

[∫ 1

0
|u(α)− v(α)|p dα− |u(α)− v(α)|p dα

]1/p
.

From Eq.(16) in the Theorem 14, we also note that the induced fuzzy number metric
dNH(u, v) is the same as the Hausdorff metric(Diamond,1989) [6].

6.2 Homeomorphism between the fuzzy number space Ñc(R) and B[−1, 1]

Proposition 15. Suppose that (X, dX), (Y, dY ) are two metric spaces. F is an isometric bijection
from (X, dX) to (Y, dY ). Then F is continuous and inverse mapping F−1 of F exists and is also
continuous.
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Proof: Since F is a bijection of (X, dX) into (Y, dY ), there exists inverse mapping F−1 which
is also one-to-one mapping. By definition of continuous mapping, for all x0 ∈ X and any
positive number ε, there always exists a positive number δ such that dY (F (x), F (x0)) < ε as
dX(x, x0) < δ. Since dX(x, x0) = dY (F (x), F (x0)), given ε, it is sufficient by taking δ ≤ ε (For
instance, take δ = ε/2).Hence, F is continuous. Similarly, we can also prove inverse mapping
F−1 which is also continuous. 2

Given a bounded closed interval K, let the uniformly bounded fuzzy number set as

Ñc(K) = {u : u ∈ Ñc(R) and supp u ⊆ K},

Since there exists a bijection HE of B[−1, 1] into Ñc(R) and HE and inverse function H−1
E are

continuous, thus we have conclusions as follows:

Theorem 16. Metric spaces (B[−1, 1], dH) and (Ñc(R), dNH) are homeomorphic. Metric spaces
(Bf (K), dp) and (Ñc(K)), dNp) are homeomorphic.

Since space (Ñc(R), dNH) and (B[−1, 1], dH) are homeomorphic, that is, both metric spaces
are topologically equivalent. So elements in both of them have consistent properties on met-
rics. There are one-to-one relationship between fuzzy number sequence {un} of (Ñc(R), dNH)
and function sequence {fn}, fuzzy number sequence on (Ñc(R), dNH) and function sequence on
(B[−1, 1], dH) have completely same properties. Similarly, fuzzy number sequence on (Ñc(K), dNp)
and function sequence on (Bf (K), dH) have completely same properties. Therefore, the proper-
ties of convergence sequence of general metric spaces are also founded to the convergence fuzzy
number sequence. Thus, they are trivial to the following corollaries.

Corollary 17. Fuzzy number metric space (Ñc(R), dNH) is complete and
(Ñc(R), dNp) is not complete.

Corollary 18. For any nonempty closed interval K on R, (Ñc(K), dNp) is a complete metric
space.

Corollary 19. For any fuzzy number sequence {un} of fuzzy number space (Ñc(R), dN ) only
has a limit almost everywhere. That is, the limit of convergence sequence is unique.(Where dN
represents dNH or dNp).

Corollary 20. Suppose that {un} is a fuzzy number sequence of (Ñc(R), dNH), {fn} is a function
sequence on (B[−1, 1], dH). For all n ≥ 1, un = fn(E). Then fuzzy number sequence {un}
converge if and only if function sequence {fn} converge. Let

lim
n→∞

un = u0, lim
n→∞

fn = f0,

then u0 = f0(E).

If using dNp , dp, Bf (K) (defined as 10) instead of dNH , dH and B[−1, 1] in Corollary 20,
respectively. The Corollary is still founded.

7 Conclusion

By using monotonic mapping of the fuzzy structured element, we have proved that the
bounded fuzzy number space is homeomorphic to the space B[−1, 1] of monotonic bounded
function with same monotonicity on [−1, 1]. Therefore, the problem of the fuzzy number space
can be transformed to one’s of space B[−1, 1], such as the convergence of sequence of fuzzy
numbers, the convergence of the fuzzy series , continuous of fuzzy-valued function and so on. To
some extent, our study provides a new way for the study of fuzzy analysis.
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Abstract: Fuzzy membrane computing is a newly developed and promising research
direction in the area of membrane computing that aims at exploring the complex in-
teraction between membrane computing and fuzzy theory. This paper provides a
comprehensive survey of theoretical developments and various applications of fuzzy
membrane computing, and sketches future research lines. The theoretical develop-
ments are reviewed from the aspects of uncertainty processing in P systems, fuzzifica-
tion of P systems and fuzzy knowledge representation and reasoning. The applications
of fuzzy membrane computing are mainly focused on fuzzy knowledge representation
and fault diagnosis. An overview of different types of fuzzy P systems, differences
between spiking neural P systems and fuzzy reasoning spiking neural P systems and
newly obtained results on these P systems are presented.
Keywords: fuzzy membrane computing, fuzzy set, multi-fuzzy set, membrane com-
puting, fuzzy reasoning spiking neural P systems, trapezoidal fuzzy number, linguistic
term.

1 Introduction

Membrane computing (MC), introduced by Gh. Păun in [1], is an attractive research field
of computer science aiming at abstracting computing models, called membrane systems or P
systems, from the structures and functioning of living cells, as well as from the way the cells
are organized in tissues or higher order structures. Since then, the MC research has been con-
tinuously and rapidly progressing [2], [3]. There are, basically, three main types of P systems:
cell-like P systems, tissue-like P systems and neural-like P systems [3]. For all cases, a P sys-
tem consists of three basic elements: membrane structure, multisets of objects and evolution
rules. In recent years, the research on neural-like P systems mainly focused on spiking neural
P systems (SN P systems), which were introduced in [4] being a type of P systems inspired by
the neurophysiological behavior of neurons sending electrical impulses (spikes) along axons from
presynaptic neurons to postsynaptic neurons in a distributed and parallel manner. Recently, SN
P systems have become a hot topic in membrane computing [2, 5]- [25].

A fuzzy set is a class of objects with a continuum of grades of membership and is characterized
by a membership (characteristic) function which assigns to each objects a grade of membership
ranging in [0, 1]. The theory of fuzzy sets was proposed by Zadeh in [26] as an extension of the
classical notion of set. Since then fuzzy set theory has been studied extensively over the past
several decades years. Most of the early interests in fuzzy set theory pertained to representing
uncertainty in human cognitive processes [27]. Fuzzy set theory is now combined with other

Copyright © 2006-2015 by CCC Publications
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methods and applied to problems in engineering, business, medical and related health sciences,
the natural sciences and so on [27]- [34].

P systems are models of computation inspired by the structure and functioning of cells in
living organisms. Since uncertainty is an inherent property of all living systems, an increasing
interest in the development of uncertain mathematical approaches to membrane computing is
emerging due to three main reasons: keeping characteristics of P systems closer to the non-
crisp behavior of real cells; the development of new formal computational models dealing with
fuzzy information; the possibility of applying P systems to model real biological processes, where
handling uncertainty, errors and approximations is necessary. Păun mentioned this in his first
list of open problems in membrane computing for the development of approximate mathematical
approaches in [35] and this topic continued to be discussed in [36]- [38].

A first contribution to this research line was given in [39], by extending the classical model to
several probabilistic ones. Several possible rough set based mathematical models of uncertainty
that could be used in membrane computing were further discussed in [40], [41]. Meanwhile,
several fuzzy approaches based on fuzzy set theory have been introduced [12]- [25] [42]- [48]. The
basic idea of fuzzifying P systems is the substitution of one or all ingredients in a P system with
their fuzzy counterparts to obtain fuzzy P systems. Fuzzy P systems possess the same structure as
crisp P systems but admit the association of numerical fuzzy values to elements in the membranes.
Up to now, several aspects from fuzzy theory has been introduced into cell-like P systems [42]- [48]
and SN P systems [12]- [25]. Fuzzy cell-like P systems mainly focused on theoretical research while
fuzzy reasoning spiking neural P systems (FRSN P systems) concentrated on both theoretical
and application researches. To date, five types of FRSN P systems were proposed for knowledge
representation and reasoning as well as used for fault diagnosis. These FRSN P systems are
fuzzy reasoning spiking neural P systems with real numbers (rFRSN P systems), fuzzy reasoning
spiking neural P systems with linguistic terms (lFRSN P systems), adaptive fuzzy reasoning
spiking neural P systems with real numbers (AFRSN P systems), weighted fuzzy reasoning
spiking neural P systems (WFRSN P systems) and fuzzy reasoning spiking neural P systems
with trapezoidal fuzzy numbers (tFRSN P systems).

Fuzzy membrane computing (FMC) has well established theoretical foundation and real world
applications. To outline the work in the past twelve years on fuzzy membrane computing,
this paper reviews and summarizes theoretical developments and various applications of fuzzy
membrane computing. This comprehensive survey provides an overview of newly developed and
promising research lines in the area of membrane computing as well as lists some promising
research topics. As such, this work will be of interest to advance in the research line of fuzzy
membrane computing, as well as to members of the membrane computing and fuzzy theory
communities, specially newcomers.

The remainder of this paper is organized as follows. Section 2 provides an overview of
theoretical achievements of FMC. The overview of the application development is outlined in
Section 3. Finally, some conclusions and possible further developments are discussed.

2 Theoretical development

This section will present theoretical developments of FMC on the aspects of handling uncer-
tainty in P systems, fuzzification of P systems and fuzzy knowledge representation and reasoning.

2.1 Uncertainty processing in P systems

MC is a formal computational model that rewrites multisets of objects within a spatial
structure inspired by membrane structures and functioning of living cells, as well as from the way
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the cells are organized in tissues or higher order structures and expresses biochemical processes
taking place inside cells by evolution rules. Features of "exact" membrane computing developed
so far are summarized as follows: objects used in computations are exact copies of reactants
involved in biochemical reactions modeled by the rules; an application of a given rule always
yields exact copies of objects that the rule is assumed to produce. However, in real life, cells
do not behave only in this "exact" way. Biochemical reactions may deal with inexact, uncertain
and mutated copies of reactants involved in the cells, and errors may happen accompanying
with a biochemical reaction. This means that since inaccuracy and uncertainty exist in real cells
i.e. real cells show a non-crisp behavior, inaccuracy and uncertainty should be considered when
MC models are established. In this way, actual objects produced when applying rules during
computations, and the actual objects conforming the result of computations themselves, would
not need to be exact copies of the reactants that are assumed to be used when applying the rules
along the computations, but only approximate copies of these reactants.

In [42]- [44], a fuzzy symport/antiport membrane system that uses inexact copies of reac-
tants in the transitions was proposed to handle this kind of inaccuracy and uncertainty. Then,
universality of this fuzzy model of computation was proved. The key ingredients in this model
are the use of fuzzy multisets in configurations, the endowment of evolution rules with threshold
mappings that determine the degree of accuracy of objects to reactants in order to be affected
by the rules, and an appropriate way of evaluating the content of the output membrane at the
end of a halting computation. This is a first step towards the use of fuzzy methods to answer
a question proposed by Păun in the last problem of his first list of open problems in membrane
computing [35]. In [44], a fuzzy model of P systems in which the objects involved in compu-
tations were colored by means of a finite family of fuzzy sets, and several applications of this
model in computational biology were discussed. In [42]- [44], fuzzy methods were used to cope
with the possibility that the objects in the membranes were imperfect, approximate copies of the
reactants involved in the reactions.

Moreover, in [45], a t-norm based approach for handling imprecision was proposed in P
systems. In this work, a P system with vague boundaries in the t-norm approach was proposed
and only string-objects were considered inside the membrane structure.

2.2 Fuzzification of P systems

Uncertainty is an inherent property of all living systems. Curiously enough, computational
models inspired by biological systems do not take, in general, under consideration this essential
aspect of living systems. P systems are computing models inspired by the structure and func-
tioning of cells in living organisms. Thus, it is more than necessary to introduce uncertainty into
P system models to fuzzify them due to the development of new formal computational paradigms
dealing with fuzzy information and the possibility of applying P systems to model real biological
processes, where handling uncertainty, errors and approximations is necessary.

In [46], fuzzy set theory and fuzzy logic were considered in the framework of P systems in
order to deal with imprecise biological information. The motivation of this research was to use
P systems for modeling the functioning of specific cellular structures and phenomena and, as
a final goal, making P systems useful and relevant tools for biologists, and hence motivating
further cooperation among scientists working in the areas of P systems and microbiology.

In [47], two variants of P systems with fuzzy components, P systems with fuzzy data and P
systems with fuzzy multiset rewriting rules, were introduced. The basic idea behind this attempt
to fuzzify P systems was the substitution of one or all ingredients of a P system with their fuzzy
counterparts. In this work, the theory of multi-fuzzy sets was developed and the notion of a
fuzzy multiset rewriting rule was presented to define P systems with the aforementioned fuzzy
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components, fuzzy data and fuzzy multiset rewriting rules. By silently assuming that fuzzy data
were not the result of some fuzzification process, P systems with fuzzy data were shown to be
a step towards real hypercomputation, while P systems with fuzzy multiset rewriting rules were
shown to be equivalent to fuzzy Turing machines. Besides, the idea of P systems with both fuzzy
data and fuzzy multiset rewriting rules was briefly discussed.

In [41], general fuzzy membrane systems with general multi-fuzzy sets and their evolution
rules were introduced by using general multi-fuzzy sets to fuzzification of multisets and P sys-
tems. This kind of fuzzy membrane systems was motivated by some practical applications in
biochemistry and medical science, where weakness causing uncertainty of an occurrence of an
object in a system was determined not only by the number of occurrence copies of that object,
but also by a quality of these copies.

In [48], an orthogonal approach for the fuzzification of both multisets and hybrid sets was
presented. In this work, L-multi-fuzzy and L-fuzzy hybrid sets were introduced to P systems
and a general fuzzy P system with L-multi-fuzzy sets was proposed. Although replacing the
multi-fuzzy sets from [41] with L-multi-fuzzy sets did not improve the computational power of
the resulted P systems, P systems with L-multi-fuzzy sets might be quite useful in modeling
living organisms.

2.3 Fuzzy knowledge representation

Fuzzy reasoning spiking neural P systems (FRSN P systems) are proposed to handle fuzzy
knowledge [12]- [25]. Until now, five classes of FRSN P systems, rFRSN P systems, lFRSN P
systems, AFRSN P systems, WFRSN P systems and tFRSN P systems, have been proposed to
represent fuzzy knowledge. In what follows, we first summarize fuzzy production rules used for
fuzzy knowledge representation. Subsequently, we survey these FRSN P systems with respect to
their development and definitions, providing for each of them the corresponding models for the
considered fuzzy production rules.

Fuzzy production rules

Fuzzy production rules are widely used in fuzzy knowledge representation [29]- [30]. Fuzzy
production rules consist of five types: simple fuzzy production rules, composite fuzzy conjunctive
rules in the antecedent, composite fuzzy conjunctive rules in the consequent, composite fuzzy
disjunctive rules in the antecedent and composite fuzzy disjunctive rules in the consequent. Rules
are discussed below:

A simple fuzzy production rule is of the form

Type 1 Ri: IF pj THEN pk (CF=τi) (1)

where Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its certainty factor; pj
and pk represents two propositions, each of which has a fuzzy truth value in [0, 1]. If fuzzy truth
values of propositions pj and pk are αj and αk, respectively, then αk = αj ∗ τi.

A composite fuzzy conjunctive rule in the antecedent is of the form

Type 2 Ri: IF p1 and · · · and pk−1 THEN pk (CF=τi) (2)

where k ≥ 3, Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its certainty
factor; p1, · · · , pk−1 are propositions in the antecedent part of the rule; pk is a proposition in
the consequent part of the rule. If fuzzy truth values of propositions p1, · · · , pk are α1, · · · , αk,
respectively, then αk = min(α1, . . . , αk−1) ∗ τi.
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A composite fuzzy conjunctive rule in the consequent is of the form

Type 3 Ri: IF p1 THEN p2 and · · · and pk (CF=τi) (3)

where k ≥ 3, Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its certainty
factor; p1 is a proposition in the antecedent part of the rule; p2, · · · , pk are propositions in the
consequent part of the rule. If fuzzy truth values of proposition p1, · · · , pk is α1, · · · , αk, then
α2 = α1 ∗ τi, . . . , αk = α1 ∗ τi.

A composite fuzzy disjunctive rules in the antecedent is of the form

Type 4 Ri: IF p1 or · · · or pk−1 THEN pk (CF=τi) (4)

where k ≥ 3, Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its certainty
factor; p1, · · · , pk−1 are propositions in the antecedent part of the rule; pk is a proposition in
the consequent part of the rule. If fuzzy truth values of propositions p1, · · · , pk are α1, · · · , αk,
respectively, then αk = max(α1, . . . , αk−1) ∗ τi.

A composite fuzzy disjunctive rule in the consequent is of the form

Type 5 Ri: IF p1 THEN p2 or · · · or pk (CF=τi) (5)

where Ri indicates the ith fuzzy production rule; τi ∈ [0, 1] represents its certainty factor; p1 is a
proposition in the antecedent part of the rule; p2, · · · , pk are propositions in the consequent part
of the rule. This type of rules is unsuitable for knowledge representation due to the fact that it
does not make any specific implication [29]. Thus, this type of rules is not discussed here and
will not be considered in the following sections.

rFRSN P systems

Fuzzy reasoning spiking neural P systems with real numbers (rFRSN P systems) were first
introduced in [12] and further investigated in [13]- [15]. The definition of an rFRSN P system is
described in Definition 1.

Definition 1. An rFRSN P system of degree m ≥ 1 is a tuple Π = (A, σ1, . . . , σm, syn, I,O),
where:

1. A={a} is the singleton alphabet (the object a is called spike);

2. σ1, . . . , σm are neurons, of the form σi=(αi, τi, ri) with i ∈ {1, . . . ,m}, where

(a) αi ∈ [0, 1] is a real number representing the (potential) value of spike contained in
neuron σi (also called pulse value);

(b) τi ∈ [0, 1] is a real number representing the truth value associated with neuron σi;

(c) ri is a firing/spiking rule contained in neuron σi, of the form E/aα → aβ , where
α,β ∈ [0, 1], E = an is the firing condition and n represents the number of input
synapses from other neurons to this neuron. The firing condition E = an indicates
that if the neuron receives n spikes, the spiking rule can be applied; otherwise the rule
cannot be enabled until n spikes are received. When the number of spikes received by
a neuron is less than n, value of the spikes received will be updated according to logical
AND or OR operations. For neuron σi, if its firing rule E/aα → aβ can be applied,
then the neuron fires. This means its pulse value α > 0 is consumed (removed) and
it produces a spike with value β;
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3 syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with i ̸= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m (synapses
between neurons);

4 I and O are nonempty sets that represent input neuron set and output neuron set, respec-
tively.

In order to use fuzzy production rules for fuzzy knowledge representation, we need map them
into rFRSN P systems. In the following, we summarize rFRSN P systems for fuzzy production
rules, where value τi of each rule neuron is assigned to the certainty factor of the fuzzy production
rule associated with it.

A simple fuzzy production rule can be modeled by an rFRSN P system Π1, as shown in Figure
1(a), being Π1 = (A, σi, σj , σk, syn, I, O), where

(1) A = {a}

(2) σi is a rule neuron associated with rule Ri with confidence factor τi. Its spiking rule is of
the form E/aα → aβ , where β = α ∗ τi.

(3) σj and σk are two proposition neurons associated with propositions pj and pk with truth
values αj and αk, respectively. Their spiking rules are of the form E/aα → aα.

(4) syn = {(j, i), (i, k)}, I = {σj}, O = {σk}.

A composite fuzzy conjunctive rule in the antecedent can be modeled by an rFRSN P system
Π2, as shown in Figure 1(b), being Π2 = (A, σ1, σ2, . . . , σk, σk+1, syn, I,O), where

(1) A = {a}

(2) σj(j = 1, 2, . . . , k) are proposition neurons associated with propositions pj(j = 1, 2, . . . , k)
with truth values αj(j = 1, 2, . . . , k), respectively. Their spiking rules are of the form
E/aα → aα.

(3) σk+1 is an “AND”-type rule neuron associated with rule Ri with confidence factor τi. Its
spiking rule is of the form E/aα → aβ , where β = α ∗ τi.

(4) syn = {(1, k + 1), (2, k + 1), . . . , (k − 1, k + 1), (k + 1, k)}.

(5) I = {σ1, σ2, . . . , σk−1}, O = {σk}.

A composite fuzzy conjunctive rule in the consequent can be modeled by an rFRSN P system
Π3, as shown in Figure 1(c), being Π3 = (A, σ1, σ2, . . . , σk, σk+1, syn, I, O), where

(1) A = {a}

(2) σj(j = 1, 2, . . . , k) are proposition neurons associated with propositions pj(j = 1, 2, . . . , k)
with truth values αj(j = 1, 2, . . . , k), respectively. Their spiking rules are of the form
E/aα → aα.

(3) σk+1 is a rule neuron associated with rule Ri with confidence factor τi. Its spiking rule is
of the form E/aα → aβ , where β = α ∗ τi.

(4) syn = {(1, k + 1), (k + 1, 2), (k + 1, 3), . . . , (k + 1, k)}.

(5) I = {σ1}, O = {σ2, σ3, . . . , σk}.
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A composite fuzzy disjunctive rule in the antecedent can be modeled by an rFRSN P system
Π4, as shown in Figure 1(d), being Π4 = (A, σ1, σ2, . . . , σk, σk+1, syn, I,O), where

(1) A = {a}

(2) σj(j = 1, 2, . . . , k) are proposition neurons associated with propositions pj(j = 1, 2, . . . , k)
with truth values αj(j = 1, 2, . . . , k) respectively. Their spiking rules are of the form
E/aα → aα.

(3) σk+1 is an “OR”-type rule neuron associated with rule Ri with confidence factor τi. Its
spiking rule is of the form E/aα → aβ , where β = α ∗ τi.

(4) syn = {(1, k + 1), (2, k + 1), . . . , (k − 1, k + 1), (k + 1, k)}.

(5) I = {σ1, σ2, . . . , σk−1}, O = {σk}.
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(b) Π2 for composite fuzzy con-
junctive rules in the antecedent

(c) Π3 for composite fuzzy conjunctive
rules in the consequent

(d) Π4 for composite fuzzy dis-
junctive rules in the antecedent

Figure 1: rFRSN P systems for fuzzy production rules

lFRSN P systems

The first version of fuzzy reasoning spiking neural P systems with linguistic terms (lFRSN
P systems) was introduced in [16] and further expanded in [17]. The definition of a lFRSN P
system is described in Definition 2.

Definition 2. An lFRSN P system of degree m ≥ 1 is a tuple Π = (O,P,R,Q, syn, in, out),
where:

1. O={a} is the singleton alphabet (the object a is called spike);

2. P = {p1, . . . , pk} is a finite set of fuzzy propositions, where pi represents the ith fuzzy
proposition, 1 ≤ i ≤ k;

3. R = {R1, . . . , Rn} is a finite set of fuzzy productions rules, where Ri represents the ith
fuzzy production rule, 1 ≤ i ≤ n;
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4. Q = {σ1, . . . , σm} is a finite set of neurons, where Q = Q1 ∪ Q2, Q1 ∩ Q2 = ∅. Q1 =
{σ1, . . . , σk} is a set of fuzzy proposition neurons and each proposition neuron i in Q1

corresponds to a fuzzy proposition pi in P , where 1 ≤ i ≤ k. Q2 = {σk+1, . . . , σk+n} is a
set of rule neurons and each rule neuron k+ i in Q2 corresponds to a fuzzy production rule
Ri in R, where 1 ≤ i ≤ n, m = k + n. Each neuron in Q has the form of σi = (Ai, Ci, ri),
1 ≤ i ≤ m, where:

(a) Ai is a linguistic term representing potential value contained in σi;

(b) For proposition neurons in Q1, Ci is ignored; for rule neurons in Q2, Ci is a linguistic
term representing the certainty factor of the corresponding fuzzy production rule of
ith neuron;

(c) ri is a firing/spiking rule contained in neuron σi, of the form aµ → aν , where µ and
ν are linguistic terms representing potential values of neurons. For rule neurons, µ
is logical “and" (denoted by ⊗) or “or" (denoted by ⊕) of all inputs received by this
neuron, and ν = µ⊗ Ci;

5. syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with i ̸= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m (synapses
between neurons);

6. in and out are input neuron set and output neuron set, respectively.

In what follows, we summarize lFRSN P system models for rules Type 1 to Type 4, as shown
in Figure 2.

Figure 2: lFRSN P system models for fuzzy production rules. (a) Type 1 ; (b) Type 2 ; (c) Type
3 ; (d) Type 4.

Type 1 Ri: IF pj THEN pk (CF=C). The fuzzy truth value of proposition pk is B = A⊗C,
where Aα = [aα1 , a

α
2 ], Cα = [cα1 , c

α
2 ], α ∈ [0, 1], i.e., B =

∫ 1
0 α[aα1 ∧ cα1 , a

α
2 ∧ cα2 ].

Type 2 Ri: IF p1 and · · · and pk−1 THEN pk (CF=C). The fuzzy truth value of proposition
pk is Ak = A1 ⊗ . . .⊗Ak−1 ⊗ C, where [aαi1, a

α
i2] is α-cut of Ai, 1 ≤ i ≤ k − 1, α ∈ [0, 1], i.e., Ak

=
∫ 1
0 α[aα11 ∧ aα(k−1)1 ∧ . . . ∧ cα1 , a

α
12 ∧ . . . ∧ aα(k−1)2 ∧ cα2 ].

Type 3 Ri: IF p1 THEN p3 and · · · and pk (CF=C). The fuzzy truth value of propositions
p2, . . . , pk are identical, i.e., Ai = A1 ⊗ C, 2 ≤ i ≤ k, where [aα1 , a

α
2 ] is α-cut of A1, α ∈ [0, 1],

i.e., Ai =
∫ 1
0 α[aα1 ∧ cα1 , a

α
2 ∧ cα2 ], 2 ≤ i ≤ k.
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Type 4 Ri: IF p1 or p2 or · · · or pk−1 THEN pk (CF=C). The fuzzy truth value of proposi-
tion pk is Ak = (A1 ⊗ . . . ⊕ Ak−1) ⊗ C, where [aαi1, a

α
i2] is α-cut of Ai, 1 ≤ i ≤ k − 1, α ∈ [0, 1],

i.e., Ak =
∫ 1
0 α[(aα11 ∨ . . . ∨ aα(k−1)1) ∧ cα1 , (a

α
12 ∨ . . . ∨ aα(k−1)2) ∧ cα2 ].

AFRSN P systems

Adaptive fuzzy reasoning spiking neural P systems (AFRSN P systems) were first introduced
in [20] and further investigated in [21]. The definition of an AFRSN P system is described in
Definition 3 [21].

Definition 3. An AFRSN P system (of degree m ≥ 1) is a tuple Π = (A,Np, Nr, syn, I,O),
where

• A={a} is the singleton alphabet (the object a is called spike);

• Np = {σp1, . . . , σpm} is proposition neuron set, where proposition neuron σpi expresses the
ith proposition of weighted fuzzy production rules, 1 ≤ i ≤ m. σpi = (αi, ωi, λi, ri), where

– αi ∈ [0, 1] is the pulse value contained in proposition neuron σpi. αi is used to express
fuzzy truth value of the proposition associated with proposition neuron σpi;

– ωi = (ωi1, . . . , ωisi) expresses the output weight vector of neuron σpi, where ωij ∈ [0, 1]
is the weight on jth output synapse of the neuron, 1 ≤ j ≤ si, and si is the number
of all output synapses of the neuron;

– ri is a firing/spiking rule, of the form E/aα → aα, α ∈ [0, 1]. E = {α ≥ λi} is the
firing condition, i.e., if α ≥ λi, then the firing rule will be enabled, where λi ∈ [0, 1)
is called the firing threshold;

• Nr = {σr1, . . . , σrn} is rule neuron set, where rule neuron σri expresses the ith weighted
fuzzy production rule, 1 ≤ i ≤ n. σri = (αi, γi, τi, ri), where

– αi ∈ [0, 1] is the potential value (spike) contained in rule neuron σri;
– γi ∈ [0, 1] is the certain factor, which represents the strength of belief of the weighted

fuzzy production rule associated with rule neuron σri. αi is also the weight on output
synapse (arc) of the neuron;

– ri is a firing/spiking rule, of the form E/aα → aβ , where α, β ∈ [0, 1]. E = {α ≥ τi} is
the firing condition, i.e., if α ≥ τi, then the firing rule will be enabled, where τi ∈ [0, 1)
is called the firing threshold;

• syn ⊆ (Np × Nr)
∪
(Nr × Np) indicates synapses between proposition neurons and rule

neurons. Note that there are no synapse connections between any two proposition neurons
or between any two rule neurons;

• I,O ⊆ Np are input neuron set and output neuron set, respectively.

The motivation of proposing AFRSN P systems is to model weighted fuzzy production rules
and the following three types are concerned. AFRSN P systems models for weighted fuzzy
production rules are summarized as follows, as shown in Figure 3.

Type 1 Ri: IF p1 THEN p2 (CF = γ), τ , ω;

Type 2 Ri: IF p1 AND p2 AND · · · AND pn THEN pn+1 (CF = γ), τ , ω1, . . . , ωn;

Type 3 Ri: IF p1 OR p2 OR · · · OR pn THEN pn+1 (CF = γ), τ , ω1, . . . , ωn.
According to dynamic firing mechanism of AFRSN P systems, the computing ways of spikes

for AFRSN P systems of these fuzzy production rules are described as follows [20].
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Figure 3: AFRSN P systems of weighted fuzzy production rules of three types (a) type 1. (b)
type 2. (c) type 3.

• Type 1: α2 =

{
α1 · γ, if α1 ≥ τ

0, if α1 < τ

• Type 2: αn+1 =


( n∑

i=1
αi · ωi

)
· γ, if

( n∑
i=1

αi · ωi

)
≥ τ

0, if
( n∑

i=1
αi · ωi

)
< τ

• Type 3: αn+1 =

{
max(αj · γj), if αj ≥ τj , j ∈ J

0, if αj < τj , j = 1, 2 . . . , n

WFRSN P systems

Weighted fuzzy reasoning spiking neural P systems (WFRSN P systems) were first introduced
in [18] and further investigated in [19]. The definition of a WFRSN P system is described in
Definition 4.

Definition 4. A WFRSN P system of degree m ≥ 1 is a tuple Π = (O, σ1, . . . , σm, syn, in, out),
where:

1. O = {a} is a singleton alphabet (a is called spike);

2. σ1, . . . , σm are neurons, of the form σi = (θi, ci,
−→ωi, λi, ri), 1 ≤ i ≤ m, where:

(a) θi is a real number in [0, 1] representing the potential value of spikes (i.e. value of
electrical impulses) contained in neuron σi;

(b) ci is a real number in [0, 1] representing the truth value associated with neuron σi;

(c) −→ωi = (ωi1, . . . , ωiNi) is a real number vector in (0, 1] representing the output weight
vector of neuron σi, where ωij (1 ≤ j ≤ Ni) represents the weight on jth output
arc (synapse) of neuron σi and Ni is a natural number representing the number of
synapses starting from neuron σi.

(d) λi is a real number in [0, 1) representing the firing threshold of neuron σi;

(e) ri represents a firing (spiking) rule contained in neuron σi with the form E/aθ → aβ ,
where θ and β are real numbers in [0, 1], E = {an, θ ≥ λi} is the firing condition. The
firing condition means that if and only if neuron σi receives at least n spikes and the
potential value of spikes is with θ ≥ λi, then the firing rule contained in the neuron
can be applied, otherwise, the firing rule cannot be applied;

3. syn ⊆ {1, . . . ,m} × {1, . . . ,m} with i ̸= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m; that is, syn
provides a (weighted) directed graph whose set of nodes is {1, . . . ,m};
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4. in, out ⊆ {1, . . . ,m} indicate the input neuron set and the output neuron set of Π, respec-
tively.

In what follows, we describe fault diagnosis production rules and their WFRSN P system
models, as shown in Figure 4 [19], [49].

�

�

�

฀

�

�

Figure 4: WFRSN P system models for fault diagnosis production rules in TPSSs. (a) Type 1 ;
(b) Type 2 ; (c) Type 3 ; (d) Type4.

Type 1 (Simple Rules) Ri: IF pj(θj) THEN pk(θk) (CF = ci), where pj and pk are propo-
sitions, ci is a real number in [0, 1] representing the certainty factor of rule Ri, θj and θk are
real numbers in [0, 1] representing the truth values of pj and pk, respectively. The weight of
proposition pj is ωj , where ωj = 1 because there is only one proposition in the antecedent of this
kind of rules. The truth values of pk is θk = θj ∗ ωj ∗ ci = θj ∗ ci.

Type 2 (Compound And Rules) Ri: IF p1(θ1) and . . . and pk−1(θk−1) THEN pk (θk) (CF
= ci), where p1, . . . , pk are propositions, ci is a real number in [0, 1] representing the certainty
factor of rule Ri, θ1, . . . , θk are real numbers in [0, 1] representing the truth values of p1, . . . , pk,
respectively. The weights of propositions p1, . . . , pk−1 are ω1, . . . , ωk−1, respectively. The truth
values of pk is θk = [(θ1 ∗ ω1 + . . .+ θk−1 ∗ ωk−1)/(ω1 + . . .+ ωk−1)] ∗ ci.

Type 3 (Compound Or Rules) Ri: IF p1(θ1) or . . . or pk−1(θk−1) THEN pk (θk) (CF =
ci), where p1, . . . , pk are propositions, ci is a real number in [0, 1] representing the certainty
factor of rule Ri, θ1, . . . , θk are real numbers in [0, 1] representing the truth values of p1, . . . , pk,
respectively. The weights of propositions p1, . . . , pk−1 are ω1, . . . , ωk−1, respectively. The truth
values of pk is θk = max{θ1 ∗ ω1, . . . , θk−1 ∗ ωk−1} ∗ ci.

Type 4 (Conditional And Rules) Ri: WHEN p0(θ0) is true, IF p1(θ1) and . . . and pk−1(θk−1)
THEN pk(θk) (CF = ci), where p0, . . . , pk are propositions, ci is a real number in [0, 1] repre-
senting the certainty factor of rule Ri, θ0, . . . , θk are real numbers in [0, 1] representing the truth
values of p0, . . . , pk, respectively. The proposition p0 is used to judge whether the reasoning condi-
tion of rule Ri is satisfied and its truth value θ0 is not used in reasoning process. Thus, the weight
of θ0 is not considered in the model. The weights of propositions p1, . . . , pk−1 are ω1, . . . , ωk−1,
respectively. The truth values of pk is θk = [(θ1 ∗ ω1 + . . .+ θk−1 ∗ ωk−1)/(ω1 + . . .+ ωk−1)] ∗ ci.
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tFRSN P systems

The first version of fuzzy reasoning spiking neural P systems with trapezoidal fuzzy numbers
(tFRSN P systems) was introduced in [22] and further expanded in [23]- [25]. The definition of
a tFRSN P system is described in Definition 5.

Definition 5. A tFRSN P system with trapezoidal fuzzy numbers of degree m ≥ 1 is a tuple
Π = (O, σ1, . . . , σm, syn, in, out), where:

1. O = {a} is a singleton alphabet (a is called spike);

2. σ1, . . . , σm are neurons of the form σi = (θi, ci, ri), 1 ≤ i ≤ m, where

(a) θi is a trapezoidal fuzzy number in [0, 1] representing the potential value of spikes
(i.e., the value of electrical impulses) contained in neuron σi;

(b) ci is a trapezoidal fuzzy number in [0, 1] representing the fuzzy truth value corre-
sponding to neuron σi;

(c) ri represents a firing (spiking) rule associated with neuron σi of the form E/aθ → aβ ,
where θ and β are trapezoidal fuzzy numbers in [0, 1], E = as is the firing condition,
it means that the spiking rule contained in neuron σi, can be applied if and only if
neuron σi contains at least s spikes, otherwise, the firing rule cannot be applied;

3. syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m} with i ̸= j for all (i, j) ∈ syn, 1 ≤ i, j ≤ m, is a directed
graph of synapses between the linked neurons;

4. in, out ∈ {1, 2, . . . ,m} indicate the input neuron set and the output neuron set of Π,
respectively.

A trapezoidal fuzzy number can be parameterized by a 4-tuple Ã=(a1, a2, a3, a4), as shown
in Fig. 5, where a1, a2, a3 and a4 are real numbers such that a1 < a2 < a3 < a4, which are the
four horizontal axis values of the trapezoid. The membership function µÃ(x) of the trapezoidal
fuzzy number Ã is defined as follows.

µÃ(x) =



0, x ≤ a1
x−a1
a2−a1

, a1 < x ≤ a2

1, a2 < x ≤ a3
a4−x
a4−a3

, a3 < x ≤ a4

0, x > a4

(6)

)(~ x
A

a1 a2 a3 a4
0 x

1.0
A
~

Figure 5: A trapezoidal fuzzy number.



916 T. Wang, G. Zhang, M.J. Pérez-Jiménez

Let Ã and B̃ be two trapezoidal fuzzy numbers, Ã = (a1, a2, a3, a4) and B̃ = (b1, b2, b3, b4).
The arithmetic operations of the trapezoidal fuzzy numbers Ã and B̃ are listed as follows. More
operations can be seen in [25], [29].

1. Addition ⊕: Ã⊕ B̃ = (a1, a2, a3, a4)⊕ (b1, b2, b3, b4)=(a1 + b1, a2 + b2, a3 + b3, a4 + b4);

2. Subtraction ⊖: Ã⊖ B̃ = (a1, a2, a3, a4)⊖ (b1, b2, b3, b4)=(a1 − b1, a2 − b2, a3 − b3, a4 − b4);

3. Multiplication ⊗: Ã⊗ B̃ = (a1, a2, a3, a4)⊗ (b1, b2, b3, b4)=(a1× b1, a2× b2, a3× b3, a4× b4);

4. Division ⊘: Ã⊘ B̃ = (a1, a2, a3, a4)⊘ (b1, b2, b3, b4)=(a1/b1, a2/b2, a3/b3, a4/b4).

Four logic operations are list as follows, where A and B are trapezoidal fuzzy numbers, and
a, b are real numbers [25].

1. Minimum operator ∧: a ∧ b = min(a, b);

2. Maximum operator ∨: a ∨ b = max(a, b);

3. and ∧○: A ∧○B = (a1, a2, a3, a4) ∧○(b1, b2, b3, b4) =((a1 ∧ b1), (a2 ∧ b2), (a3 ∧ b3), (a4 ∧ b4));

4. or ∨○: A ∨○B = (a1, a2, a3, a4) ∨○(b1, b2, b3, b4)=((a1 ∨ b1), (a2 ∨ b2), (a3 ∨ b3), (a4 ∨ b4)).

In addition, a scalar multiplication operation is list as follows, where A is a trapezoidal fuzzy
number and b is a real number [25].

Scalar Multiplication: bA = b(a1, a2, a3, a4) = (ba1, ba2, ba3, ba4).

In what follows, we summarize tFRSN P system models for rules Type 1 to Type 4, as shown
in Figure 6. In the following description, Ri (i = 1, . . . , Nr) is the ith fuzzy production rule,
Nr represents the number of fuzzy production rules, ci is a trapezoidal fuzzy number in [0, 1]
representing the certainty factor of Ri, pj (1 ≤ j ≤ Np) is the jth proposition appearing in
the antecedent or consequent part of Ri, Np represents the number of proportions, and θj is a
trapezoidal fuzzy number in [0, 1] representing the fuzzy truth value of proposition pj .

Figure 6: tFRSN P system models for fuzzy production rules. (a) Type 1 ; (b) Type 2 ; (c) Type
3 ; (d) Type 4.

Type 1 : Ri(ci) : pj(θj) → pk(θk) (1 ≤ j, k ≤ Np). The fuzzy truth value of the proposition
pk is θk = θj ⊗ ci.
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Type 2 : Ri(ci) : p1(θ1) ∧○ . . . ∧○ pk−1 (θk−1) → pk (θk). The fuzzy truth value of the
proposition pk is θk = (θ1 ∧○ . . . ∧○θk−1) ⊗ci.

Type 3 : Ri(ci) : p1(θ1) → p2(θ2) ∧○ . . . ∧○ pk (θk). The fuzzy truth values of the propositions
p2, p3, . . ., pk are identical, i.e., θ2 = θ3 = . . . = θk = θ1 ⊗ ci.

Type 4 : Ri(ci) : p1(θ1) ∨○ . . . ∨○ pk−1 (θk−1) → pk(θk). The fuzzy truth value of the
proposition pk is θk = (θ1 ∨○. . . ∨○θk−1)⊗ ci.

The fuzzy truth values of these propositions appearing in the fuzzy production rules and the
certainty factor of each fuzzy production rule can also be described by using linguistic terms,
which are represented by the trapezoidal fuzzy numbers shown in Table 1.

Linguistic Terms Trapezoidal Fuzzy Numbers
absolutely-false (AF) (0, 0, 0, 0)
very-low (VL) (0, 0, 0.02, 0.07)
low (L) (0.04, 0.1, 0.18, 0.23)
medium-low (ML) (0.17, 0.22, 0.36, 0.42)
medium (M) (0.32, 0.41, 0.58, 0.65)
medium-high (MH) (0.58, 0.63, 0.80, 0.86)
high (H) (0.72, 0.78, 0.92, 0.97)
very-high (VH) (0.975, 0.98, 1, 1)
absolutely-high (AH) (1, 1, 1, 1)

Table 1: Linguistic terms and their corresponding trapezoidal fuzzy numbers

2.4 Fuzzy knowledge reasoning

Fuzzy reasoning spiking neural P systems (FRSN P systems) are proposed to handle fuzzy
knowledge. In what follows, we will summarize fuzzy reasoning algorithms for the following
FRSN P systems classes: rFRSN P systems, AFRSN P systems, WFRSN P systems and tFRSN
P systems.

Fuzzy reasoning based on rFRSN P systems

A fuzzy reasoning algorithm (FRA) based on rFRSN P systems was proposed in [12]. The
goal of FRA is to reason out the fuzzy truth values of unknown fuzzy propositions (proposition
neurons) from known fuzzy propositions (input neurons). These unknown fuzzy propositions
are associated with output neurons. Suppose all fuzzy production rules in a fuzzy diagnosis
knowledge base have been modeled by an rFRSN P system model Π. The model Π consists of
m neurons consisting of n proposition neurons and k rule neurons (AND type neurons and OR
type neurons), where m = n+ k.

A description of an FRA for an rFRSN P system is shown below. For details about the
involved parameter vectors, matrices and multiplication operations, please see [12].

INPUT: parameter matrixes U , V , Λ, H1, H2, λp, λr, and initial inputs α0
p, a0p.

OUTPUT: The fuzzy truth values of propositions associated with the neurons in O.
Step 1) Let α0

r = (0, 0, . . . , 0)T , a0r = (0, 0, . . . , 0)T .
Step 2) Let t = 0.
Step 3)

(1) Process the firing of proposition neurons.
βt
p=fire(αt

p, a
t
p, λp), btp=fire(1, atp, λp), αt

p=update(αt
p, a

t
p, λp),

atp=update(atp, atp, λp), Bt
p=diag(btp).
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(2) Compute the truth values of rule neurons and the number of received spikes.
αt+1
r = αt

r ⊕ [(H1 · ((Bt
p · U)T ⊙ βt

p)) + (H2 · ((Bt
p · U)T ⊗ βt

p)],
at+1
r = atr + [(Bt

p · U)T · btp].

(3) Process the firing of rule neurons.
βt+1
r =fire(Λ · αt+1

r , at+1
r , λr), bt+1

r =fire(1, at+1
r , λr),

αt+1
r =update(αt+1

r , at+1
r , λr), at+1

r =update(at+1
r , at+1

r , λr), Bt+1
r =diag(bt+1

r ).

(4) Compute the truth values of proposition neurons and the number of received spikes.
αt+1
p = αt

p ⊕ [(V ·Bt+1
r )⊗ βt+1

r ], at+1
p = atp + [(V ·Bt+1

r ) · bt+1
r ].

Step 4) If at+1
p = (0, 0, . . . , 0)T and at+1

r = (0, 0, . . . , 0)T (computation halts), the reasoning
results are obtained; otherwise, t = t+ 1, go to Step 3).

Fuzzy reasoning based on AFRSN P systems

The fuzzy reasoning algorithm for AFRSN P systems is about the fuzzy reasoning pro-
cess of above weighted fuzzy production rules. Let Pcurrent = {σpi|σpi ∈ Np, αi > 0} be
a set of current enabled proposition neurons. If a neuron σpi ∈ Pcurrent, then it fires. Let
Rcurrent = {σrj |σrj ∈ Nr, αi > τj} be a set of current enabled rule neurons. Likewise, if a
neuron σrj ∈ Rcurrent, then it fires. A fuzzy reasoning algorithm for AFRSN P systems can be
summarized as follows.

INPUT: Certainty factors of a set of antecedent propositions, which correspond to I of an AFSN
P system.
OUTPUT: The fuzzy truth values of propositions associated with the neurons in O.
Step 1) Pcurrent := I, Rcurrent := {}, P := Np, R := Nr;
Step 2) Let t =0, where t represents the reasoning step;
Step 3) Compute the outputs of current enabled proposition neurons in Pcurrent;
Step 4) Find current enabled rule neurons Rcurrent form R;
Step 5) Compute the outputs of current enabled proposition neurons in Rcurrent;
Step 6) P := P − Pcurrent, R := R−Rcurrent;
Step 7) Find current enabled proposition neurons Pcurrent form P ;
Step 8) If P = {} or R = {} (computation halts), the reasoning
results are obtained; otherwise, t = t+ 1, go to Step 3).

A weight learning algorithm for AFRSN P systems is summarized as follows.

INPUT: Training data set D, m = |D|, learning rate delta.
OUTPUT: Weights (w1, w2, ..., wn), where n is the number of weights.
Step 1) Select a set of initial weights;
Step 2) Let t =1, where t represents the reasoning step;
Step 3) Update the weights (w1, w2, ..., wn), using Widrow-Hoff learning law with learning rate
delta;
Step 4) If t > m (computation halts) and m represents the number of proposition neurons, the
reasoning results are obtained; otherwise, t = t+ 1, go to Step 3).

Fuzzy reasoning based on WFRSN P systems

A weighted matrix fuzzy reasoning algorithm (WMFRA) for WFRSN P systems can be
summarized as follows [19]. For details about the involved parameter vectors, matrices and mul-
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tiplication operations, please see [19].

INPUT: The fuzzy truth values of the propositions corresponding to the input proposition neu-
rons.
OUTPUT: The fuzzy truth values of the propositions corresponding to the output proposition
neurons.
Step 1) Let g = 0 be the reasoning step;
Step 2) Set initial values of W r1, W r2,W r3, W p, λp, λr, C, and the termination condition 01

= (0, (t). . ., 0)T . The initial values of θ and δ are set to θg = (θ1g, θ2g, . . . , θsg) and δg = (δ1g, δ2g,
. . . , δtg), respectively;
Step 3) g is increased by one;
Step 4) The firing condition of each input neuron (g = 1) or each proposition neuron (g > 1) is
evaluated. If the condition E = {an, θi ≥ λpi, 1 ≤ i ≤ s} is satisfied and there is a postsynaptic
rule neuron, the neuron fires and transmits a spike to the next rule neuron;
Step 5) Compute the fuzzy truth value vector δg according to (7);

δg+1 = (WT
r1 ⊗ θg) + (WT

r2 ⊕ θg) + (WT
r3 ⊙ θg) (7)

Step 6) If δg = 01, the algorithm stops and outputs the reasoning results ;

Step 7) Evaluate the firing condition of each rule neuron. If the condition E = {an, δj ≥
λrj , 1 ≤ j ≤ t } holds, the rule neuron fires and transmits a spike to the next proposition neuron;
Step 8) Compute the fuzzy truth value vector θg according to (8). Go to Step 3).

θg+1 = WT
p ⊙ (C ⊗ δg+1) (8)

Fuzzy reasoning based on tFRSN P systems

A matrix-based fuzzy reasoning algorithm (MBFRA) for tFRSN P systems can be summa-
rized as follows [25]. For details about the involved parameter vectors, matrices and multiplica-
tion operations, please see [25].

INPUT: The fuzzy truth values of the propositions corresponding to the input proposition neu-
rons.
OUTPUT: The fuzzy truth values of the propositions corresponding to the output proposition
neurons.
Step 1) Let g = 0 be the reasoning step;
Step 2) Set initial values of D1, D2, D3, E, C and the termination condition 01 = (unknown, (t). . .
, unknown)T . The initial values of θ and δ are set to θg = (θ1g, θ2g, . . . , θsg) and δg = (δ1g, δ2g,
. . . , δtg), respectively;
Step 3) g is increased by one;
Step 4) The firing condition of each input neuron (g = 1) or each proposition neuron (g > 1)
is evaluated. If the condition E = as is satisfied and there is a postsynaptic rule neuron, the
neuron fires and transmits a spike to the next rule neuron;
Step 5) Compute the fuzzy truth value vector δg according to (9);

δg = (DT
1 ◦○θg−1)⊕ (DT

2 ⊙ θg−1)⊕ (DT
3 ∗○θg−1) (9)

Step 6) If δg = 01, the algorithm halts and outputs the reasoning results;
Step 7) Evaluate the firing condition of each rule neuron. If the condition E = as is satisfied,
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the rule neuron fires and transmits a spike to the next proposition neuron;
Step 8) Compute the fuzzy truth value vector θg according to (10). Go to Step 3).

θg = ET ∗○(C ◦○δg) (10)

2.5 Comparisons between SN P systems and FRSN P systems

rFRSN P systems, lFRSN P systems, AFRSN P systems, WFRSN P systems and tFRSN
P systems are collectively called FRSN P systems in this paper. FRSN P systems are novel
graphical models for representing and reasoning fuzzy knowledge and information. How FRSN
P systems are extended from SN P systems is described as follows and comparisons about neurons
and spiking rules between SN P systems and FRSN P systems are shown in Table 2. It is worth
pointing out that the spiking rule is collectively described with the form E/aα → aβ in FRSN P
systems for convenient representation.

1. The content of a neuron is the potential value of spikes contained in this neuron instead of
the number of spikes in SN P systems;

2. Each neuron in an FRSN P system associates with either a fuzzy proposition or a fuzzy
production rule;

3. Each neuron contains only one spiking (firing) rule, with the form E/aα → aβ , where
E = an is the firing condition and n represents the number of input synapses from other
neurons to this neuron. The firing condition E = an indicates that if the neuron receives n
spikes, the spiking rule can be applied; otherwise the rule cannot be enabled until n spikes
are received;

4. The firing mechanism of neurons in FRSN P systems is described as follows. For the neuron
σi, if its firing rule E/aα → aβ can be applied, then the neuron fires. This means its pulse
value α > 0 is consumed (removed) and it produces a spike with value β. Once a spike
with value β is excited from neuron σi, all neurons σj with (i, j) ∈ syn immediately receive
the spike;

5. Different types of neurons are defined with different ways to handle spikes;

6. Time delay is ignored in an FRSN P system, thus all neurons are always open;

7. For AFRSN P systems and WFRSN P systems, their synapses have output weights.

3 Applications

This section will outline the application developments of fuzzy membrane computing includ-
ing fuzzy knowledge representation and fault diagnosis of transformers, traction power supply
systems and power transmission networks based on FRSN P systems. The description of the
essentials of electrical power system fault diagnosis, please see [25] and principles of model-based
fault diagnosis methods, please see [19].
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P systems
Neurons

Spiking rules
Type Content Expression

SN P systems one number of spikes computing space E/ac → ap; d

rFRSN P systems
proposition neuron pulse value propositions, fuzzy

E/aα → aβ

rule neuron: and, or (real numbers) production rules

lFRSN P systems
proposition neuron pulse value propositions, fuzzy

E/aµ → aν

rule neuron (linguistic terms) production rules

AFRSN P systems
proposition neuron pulse value propositions, fuzzy

E/aα → aβ

rule neuron (real numbers) production rules

WFRSN P systems
proposition neuron pulse value propositions, fuzzy

E/aα → aβ

rule neuron: general, and, or (real numbers) production rules

tFRSN P systems
proposition neuron pulse value propositions, fuzzy

E/aθ → aβ

rule neuron: general, and, or (trapezoidal fuzzy numbers) production rules

Table 2: Comparisons about neurons and spiking rules between SN P systems and FRSN P
systems

3.1 Fuzzy knowledge representation

Several kinds of FRSN P systems were proposed for fuzzy knowledge representation and
reasoning. In this subsection, an example of fuzzy knowledge representation based on lFRSN
P systems is summarized to show the effectiveness of FRSN P systems in representing fuzzy
knowledge. Assume that there are seven fuzzy production rules in a rule set seven propositions
represented by p1, p2, p3, p4, p5, p6, p7 [16].

R1 : IF p1 THEN p2 (CF = almost certain)
R2 : IF p2 THEN p3 (CF = pretty true)
R3 : IF p2 THEN p4 (CF = rather true)
R4 : IF p1 THEN p6 (CF = pretty true)
R5 : IF p6 THEN p4 and p5 (CF = very true)
R6 : IF p1 THEN p7 (CF = almost certain)
R7 : IF p7 THEN p4 (CF = sort of true)

The fuzzy truth value very true of proposition p1 given by a user, and he wants to know
the truth value of proposition p4. The lFRSN P system model of these fuzzy production rules is
constructed, as shown in Figure 7, to find the truth value of proposition p4 which is the potential
value of σ4.

From Figure 7, there are three paths from neuron σ1 to neuron σ4 and are described as follows:

path (1) : σ1 → σ8 → σ7 → σ11 → σ4
path (2) : σ1 → σ9 → σ2 → σ12 → σ4
path (3) : σ1 → σ10 → σ6 → σ14 → σ4

According to computing mechanism of neurons in lFRSN P systems, we get results described
as follows: from path (1), potential value of σ4 is: very true ⊗ almost certain ⊗ sort of true =
sort of true; from path (2), potential value of σ4 is: very true ⊗ almost certain ⊗ rather true
= rather true; from path (3), potential value of σ4 is: very true ⊗ pretty true ⊗ very true =
pretty true. Therefore, potential value of σ4 is: sort of true ⊕ rather true ⊕ pretty true =
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Figure 7: An lFRSN P system model for seven fuzzy production rules.

pretty true. Thus, truth value of proposition is pretty true.

3.2 Transformers

In this subsection, an application example is used to demonstrate the effectiveness of rFRSN
P systems and their FRA in fault diagnosis of a transformer. The following fuzzy production
rules are obtained from the knowledge base of a transformer fault diagnosis system [12].

Rule 1 (CF=0.8)
Symptom:
1) Total hydrocarbon is little high (p1);
2) C2H2 is low (p2);
Anticipated Fault: General overheating fault occurs (p11).

Rule 2 (CF=0.8)
(1) Total hydrocarbon is rather high (p3);
(2) C2H2 is too high (p4);
(3) H2 is high (p5);
(4) C2H2 in total hydrocarbon occupies a too low proportion (p6);
Anticipated Fault: Serious overheating fault occurs (p11).

Rule 3 (CF=0.8)
(1) Total hydrocarbon is little low (p7);
(2) H2 is high (p5);
(3) CH4 in total hydrocarbon occupies a large proportion (p8);
(4) CH4 in total hydrocarbon occupies a higher proportion than C2H2 (p9);
Anticipated Fault: The partial discharge occurs (p13).

Rule 4 (CF=0.8)
(1) Total hydrocarbon is rather low (p10);
(2) C2H2 is too high (p4);
(3) H2 is high (p5);
Anticipated Fault: The spark discharge occurs (p14).

These fuzzy production rules can be modeled by the following rFRSN P system Π5, as shown
in Figure 8.

Π5 = (A, σ1, . . . , σ14, σ15, . . . , σ18, syn, I, O), where

(1) A = {a}.
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(2) σ1, . . . , σ14 are proposition neurons associated with propositions p1, . . . , p14 respectively.

(3) σ15, . . . , σ18 are AND-type rule neurons associated with production rules R1, . . . , R4 re-
spectively.

(4) syn = {(1, 15), (2, 15), (3, 16), (4, 16), (4, 18), (5, 16), (5, 17), (5, 18), (6, 18),
(7, 17), (8, 17), (9, 17), (10, 18), (15, 11), (16, 12), (17, 13), (18, 14)}.

(5) I = {σ1, σ2, σ3, σ4, σ5, σ6, σ7, σ8, σ9, σ10}, O = {σ11, σ12, σ13, σ14}.

According to the definition of parameter vectors and matrices given in [12], U , V , Λ, H1 and
H2 are follows:

U =


1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 1 1 0 0 0 0 0

0 0 0 1 1 0 0 0 0 1 0 0 0 0


T

H1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



V =


0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1


T

H2 =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



Λ =


0.8 0 0 0

0 0.8 0 0

0 0 0.8 0

0 0 0 0.8


λp = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T λr = (2, 4, 4, 3)T
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Figure 8: An example of a transformer fault diagnosis modeled by an rFRSN P system model
Π5.

In on-scene information detection of transformer, total hydrocarbon content is high (CF=0.8),
C2H2 content is high (CF=0.8), H2 content is high (CF=0.9), C2H2 content in total hydrocarbon
content is little (CF=0.8), CH4 content in total hydrocarbon content is little (CF=0.1). Thus,
initial truth value vector α0

p = (0.8, 0.2, 0.8, 0.8, 0.9, 0.8, 0.2, 0.9, 0.1, 0.2, 0, 0, 0, 0)T and initial
spike vector a0p = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0)T . Let α0

r = (0, 0, 0, 0)T and a0r = (0, 0, 0, 0)T .
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According to reasoning algorithm described subsection 2.4, we get

(1) α1
p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , α1

r = (0.16, 0.64, 0.08, 0.16)T ,
a1p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , a1r = (2, 4, 4, 3)T ;

(2) α2
p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.16, 0.64, 0.08, 0.16)T , α2

r = (0, 0, 0, 0)T ,
a2p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1)T , a2r = (0, 0, 0, 0)T ;

(3) a3p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T , a3r = (0, 0, 0, 0)T .

Since the system reaches halting computation (a3p = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T and
a3r = (0, 0, 0, 0)T ), system exports its reasoning results, i.e., the truth values of propositions p11,
p12, p13 and p14 are 0.16, 0.64, 0.08 and 0.16, respectively. These reasoning results indicate
the following possible faults: general overheating fault (CF=0.16), serious overheating fault
(CF=0.64), partial discharge (CF=0.08) and spark discharge (CF=0.16). In the fault diagnosis
system, the threshold value of fault occurrence is set to be 0.6. Thus, we can conclude that the
transformer shows a serious overheating fault, which is consistent with the actual situation.

3.3 Traction power supply systems

In [19], three cases from the local system of a TPSS chosen in [49], as shown in Figure 9,
are considered as examples to manifest the effectiveness of WFRSN P systems in fault diagnosis,
where the external transmission lines in a power system which supplies the TPSS are hypothet-
ical, S and R represent the sending end and receiving end of transmission lines, L represents
transmission lines. The first two cases are in normal power supply and the third case is in over
zone feeding. It is worth pointing out that, the complete line connection of FS1, ATP1, SP1,
FS3, ATP3 and TPS-02 is the same as that of TSS-01, FS2, SP2 and ATP2 in Figure 9.
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Figure 9: A local single line sketch map of a TPSS.

Case 1: normal power supply. FS21 up and AT1 have faults.
Status information from the SCADA system (in time order): AT1m operated, CB31 tripped,

AT3 auto switched over; FS2m operated, CB23 and CB24 tripped; feeder lines auto reclosed,
FS2up m operated quickly, CB23 tripped again. When faults occur, current directions of I34 and
I35 are positive, and current is not detected in SP2.
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A WFRSN P system for FS2up is Π6 and its corresponding WFRSN P system fault diagnosis
model is shown in Figure 10.

Π6 = (O, σ1, . . . , σ16, syn, in, out), where:

(1) O = {a} is the singleton alphabet (a is called spike);

(2) σ1, . . . , σ9 are proposition neurons corresponding to the propositions with truth values
θ1, . . . , θ9; that is, s = 9;

(3) σ10, . . . , σ13 are rule neurons, where σ10, σ11 and σ12 are and rule neurons, σ14 is an or
rule neuron; that is, t = 4;

(4) syn = {(1, 10) , (2, 10), (2, 11), (3, 11),(4, 12), (5, 12), (6, 13), (7, 13), (8, 13), (10, 6), (11, 7),
(12, 8), (13, 9)};

(5) in = {σ1, . . . , σ5}, out = {σ9}.
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Figure 10: A WFRSN P system fault diagnosis model for FS2up.

The synaptic weight matrices of Π2 are shown in Figure 11 and other parameter matri-
ces associated with the model in Figure 10 are described as follows: θ0 = (0.9913 0.9833
0.8 0.4 0.2 0 0 0 0)T , δ0 = (0 0 0 0)T , C = diag(0.975 0.95 0.9 0.975). In order to suc-
cinctly describe the matrices, let us denote Ol = (x1, . . . , xl)

T , where xi = 0, 1 ≤ i ≤ l. When
g = 0, we get the results: δ1 = (0.9873 0.8917 0.3 0)T , θ1 = (0 0 0 0 0 0.9626 0.8471 0.27 0)T .
When g = 1, we get the results: δ2 = (0 0 0 0.9626)T , θ2 = (0 0 0 0 0 0 0 0 0.9385)T . When
g = 2, we get the results: δ3 = (0 0 0 0)T . Thus, the termination condition is satisfied and
the reasoning process ends. We obtain the reasoning results, i.e., the truth value 0.9385 of the
output neuron σ9. The feeding section FS2up has a fault with a fault confidence level 0.9385.
The fault region of FS2up can be further identified according to the fault current detected and
the WFRSN P system fault diagnosis model for fault region identification in Figure 12, and then
we get the result that FS21 up has a fault with a fault confidence level 0.9385.

For AT1, a WFRSN P system can be constructed in a similar way and its corresponding
WFRSN P system fault diagnosis model is shown in Figure 13. The diagnosis process of AT1
is similar. According to the SCADA data and Table 3, the parameter matrices of WFRSN P
system fault diagnosis model for AT1 is established to perform WMBRA. After the reasoning,
the fault confidence level of AT1 is obtained, i.e., 0.8361. So the autotransformer AT1 has a
fault with a fault confidence level 0.8361.

Case 2: normal power supply. FS21 up has faults.
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Figure 11: Synaptic weight matrices of WFRSN P system fault diagnosis model for FS2up.
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Figure 12: A WFRSN P system fault diagnosis model for fault region identification of a feeding
section.
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Figure 13: A WFRSN P system fault diagnosis model for AT1.

Sections

Protective devices (operated) Protective devices (non-operated)

Main
Primary Remote

Main
Primary Remote

backup backup backup backup

Relays CBs Relays CBs Relays CBs Relays CBs Relays CBs Relays CBs

FL 0.9913 0.9833 0.8 0.85 0.7 0.75 0.2 0.2 0.2 0.2 0.2 0.2

B 0.8564 0.9833 - - 0.7 0.75 0.4 0.2 - - 0.4 0.2

T 0.7756 0.9833 0.75 0.8 0.7 0.75 0.4 0.2 0.4 0.2 0.4 0.2

Table 3: Operation and non-operation confidence levels of the protective devices

Status information from the SCADA system (in time order): FS2m operated, CB24 tripped;
T1r operated, CB11 and CB12 tripped. When faults occur, current directions of I34 and I35 are
positive, and current is not detected in SP2. In this case, CB23 refused operation.

According to the SCADA data and Table 3, the WFRSN P system fault diagnosis model for
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FS21 and its parameter matrices are established to perform WMBRA. After the reasoning, the
fault confidence level of FS2up is obtained, i.e., 0.7439. The fault region of FS2up can be further
identified according to the fault current detected and the WFRSN P system fault diagnosis model
for fault region identification in Figure 12, and then we get the result that FS21 up has a fault.
So the feeding section FS21 up has a fault with a fault confidence level 0.7439.

Case 3: FS2 is over zone fed by TPS-02. AT7 and FS22 up have faults.
Status information from the SCADA system (in time order): primary backup protections of

feeder lines in SP2 operated, CB42 tripped; meanwhile, CB51 tripped, AT9 auto switched over;
remote backup protection FS3s of feeder lines in TSS-02 operated, CB63 and CB64 tripped.
When faults occur, current directions of I34 and I35 are positive, and current is detected only in
SP2 and ATP2. In this case, main protection of feeder lines in SP2, CB43 and main protection
of AT7 refused operation, and status information of primary backup protection of AT7 lost.

According to the SCADA data and Table 3, the WFRSN P system fault diagnosis models for
AT7 and FS22 and their parameter matrices are established to perform WMBRA, respectively.
After the reasoning, the fault confidence levels AT7 and FS2up are obtained, i.e., 0.6946 and
0.6123. The fault region of FS2up can be further identified according to the fault current detected
and the WFRSN P system fault diagnosis model for fault region identification in Figure 12, and
then we get the result that FS22 up has a fault. So the autotransformer AT2 has a fault with a
fault confidence level 0.6946 and the feeding section FS22 up has a fault with a fault confidence
level 0.6123.

The results of Cases 1-3 give evidence of that the proposed fault diagnosis approach can
obtain satisfying results both in the situation in normal power supply and over zone feeding with
complete/incomplete alarm information. In addition, the proposed method can provide results
comparable with those in [49] by using only one simple reasoning while the method in [49] needs
a second reasoning.

3.4 Power transmission networks

AFRSN P systems

In this section, four cases of the local system in an EPS shown in Figure 14 are considered
as examples to show the effectiveness and superiority of AFRSN P systems for fault diagnosis of
power transmission networks. These cases include a single and multiple fault situations [21]. The
status information (with/without incompleteness and uncertainty) about protective relays and
CBs, and diagnosis results based on AFRSN P systems are shown in Table 4, where ” ∗ ” means
that this case includes incomplete or uncertain status information from the SCADA system.
According to Table 4, we know that the fault diagnosis models based on AFSN P systems can
deal with the uncertainty of action messages about protective relays and breakers. Furthermore,
fault element is diagnosed properly while the information is incomplete because of the well fault
tolerance. Therefore, this method is effective in fault diagnosis.

tFRSN P systems

Fault diagnosis method based on tFRSN P systems is called FDSNP for short [25]. This
subsection summarizes the FDSNP method, whose flowchart is shown in Figure 15, as follows.

Step 1 Read operation messages about protective relays and/or CBs in a power transmission
network from the SCADA system.

Step 2 Search for outage areas. We suggest network topology analysis because it decreases the
number of candidate diagnosing areas and reduce the subsequent computational workload [50].
The search process is described as follows:
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Figure 14: A local sketch map of the protection system of an EPS.

Cases
Status information Diagnosis results

Operated relays Tripped CBs Fault section Fuzzy truth value

1 B1m CB4, CB5, CB7, C9, CB12, CB27 B1 0.87386

2 B1m, L2Rs, L4Rs CB4, CB5, CB7, C9, CB12, CB27 B1 0.78044

3 B1m, L1Sp, L1Rm CB4, CB5, CB6, CB7, CB9, CB11 B1, L1 0.87386, 0.86085

4∗ L2Rs, L4Rs CB4, CB5, CB7, CB9, CB12, CB27 B1 0.56363

Table 4: Status information and diagnosis results based on AFRSN P systems

(i) Let the search iteration t = 1;
(ii) Construct a set Qt of section numbers: assign a number to each section in the power

transmission network. The numbers of all sections constitute the set Qt;
(iii) Construct a subset Mt of section numbers: put the number of a randomly chosen section

from Qt into the subset Mt. If there is a closed CB connecting this chosen section, find all the
closed CBs connecting it, otherwise, go to (vi). Find all the other sections linking with each of
the closed CBs and put their numbers from Qt into Mt. Continue to find the closed CBs and
sections according to those in Mt;

(iv) t is increased by one;
(v) Construct the set Qt: remove the numbers of the sections in Mt from Qt−1 and obtain

Qt. If Qt is not empty, the search process goes to (iii);
(vi) Find passive networks, i.e., outage areas, from M1,M2, . . . ,MNs , where Ns is the maxi-

mum number of all numbers referring to section subsets. The search process stops.

Step 3 If there is only one section in the passive networks found in Step 2, this section is
the faulty one and the algorithm stops, otherwise, a fault diagnosis model based on an tFRSN
P system is built for each section. The model-building process is described as follows. A section
in the passive network is chosen randomly. According to the relay protections of the section, we
design fault fuzzy production rules and then determine proposition and rule neurons and create
their linking relationship to obtain the tFRSN P system. The certainty factor of each rule is
empirically set. According to Tables 5 and 6, we set confidence levels for main protections, first
backup protections, second backup protections and their CBs. Then a one-to-one relationship
between the fuzzy truth value of each input neuron and the confidence level of each protection
is established to obtain the initial values of the model.
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Sections
Protective devices

Main First backup Second backup

Relays CBs Relays CBs Relays CBs

L VH VH H H MH MH

B VH VH - - MH MH

T VH VH H H MH MH

Table 5: Confidence levels of the operated protective devices

Sections
Protective devices

Main First backup Second backup

Relays CBs Relays CBs Relays CBs

L L L L L L L

B ML L - - ML L

T ML L ML L L L

Table 6: Confidence levels of the non-operate protective devices

Step 4 The algebraic fuzzy reasoning algorithm is used to acquire the fault confidence level
of each section.

Step 5 If the confidence level θ of a section satisfies the condition θ ≥ (0.58, 0.63, 0.80, 0.86),
the section is faulty, otherwise, if θ satisfies the condition θ ≤ (0.17, 0.22, 0.36, 0.42), the section
is not faulty, otherwise, the section may be faulty.
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Figure 15: The flowchart of FDSNP.

In [25], seven cases of the local system in an EPS shown in Figure 14 are considered as
examples to test the effectiveness and superiority of FDSNP. These cases include single and
multiple fault situations. The status information (with/without incompleteness and uncertainty)
about protective relays and CBs is shown in Table 7, where ” ∗ ” means that this case includes
incomplete or uncertain status information from the SCADA system.

FDSNP is used to diagnose faults for the seven cases, and the diagnosis results are shown
in Table 8, which contains the faulty sections and their fault confidence levels. Table 8 lists the
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Cases
Status information

Operated relays Tripped CBs

1 B1m, L2Rs, L4Rs CB4, CB5, CB7, CB9, CB12, CB27

2∗ L2Rs, L4Rs CB4, CB5, CB7, CB9, CB12, CB27

3 B1m, L1Sp, L1Rm CB4, CB5, CB6, CB7, CB9, CB11

4 B1m, L1Sm, L1Rp, B2m, L2Sp, L2Rm CB4, CB5, CB6, CB7, CB8, CB9, CB10, CB11, CB12

5 T3p, L7Sp, L7Rp CB14, CB16, CB29, CB39

6
L1Sm, L1Rp, L2Sp, L2Rp CB7, CB8, CB11, CB12

L7Sp, L7Rm, L8Sm, L8Rm CB29, CB30, CB39, CB40

7∗
T7m, T8P , B7m, B8m, L5Sm CB19, CB20, CB29, CB30, CB32

L5Rp, L6Ss, L7Sp, L7Rm, L8Ss CB33, CB34, CB35, CB36, CB37, CB39

Table 7: Status information about protective relays and CBs

Cases

Diagnosis results of FDSNP

Fault sections
Fault confidence levels

Trapezoidal fuzzy numbers Linguistic terms

1 B1 (0.975, 0.98, 1, 1) VH

2 B1 (0.5655, 0.6174, 0.80, 0.86) [M, MH]

3 B1, L1 (0.975, 0.98, 1, 1), (0.9506, 0.9604, 1, 1) VH, [H, VH]

4

B1 (0.975, 0.98, 1, 1) VH

B2 (0.975, 0.98, 1, 1) VH

L1 (0.9506, 0.9604, 1, 1) [H, VH]

L2 (0.9506, 0.9604, 1, 1) [H, VH]

5
T3 (0.72, 0.78, 0.92, 0.97) H

L7 (0.9506, 0.9604, 1, 1) [H, VH]

6

L1 (0.702, 0.7644, 0.92, 0.97) [H, VH]

L2 (0.702, 0.7644, 0.92, 0.97) [H, VH]

L7 (0.702, 0.7644, 0.92, 0.97) [H, VH]

L8 (0.9506, 0.9604, 1, 1) [H, VH]

7

L5 (0.702, 0.7644, 0.92, 0.97) [H, VH]

L7 (0.702, 0.7644, 0.92, 0.97) [H, VH]

B7 (0.975, 0.98, 1, 1) [H, VH]

B8 (0.975, 0.98, 1, 1) [H, VH]

T7 (0.975, 0.98, 1, 1) [H, VH]

T8 (0.72, 0.78, 0.92, 0.97) H

Table 8: Fault sections and their fault confidence levels obtained by using FDSNP

fault confidence levels of only faulty sections. Four diagnosis methods, fuzzy logic (FL) [51],
fuzzy Petri nets (FPN) [32], genetic algorithm-tabu search (GATS) [52] and genetic algorithm
(GA) [53], are used as benchmarks to perform comparative experiments. The diagnosis results
of the five methods are shown in Table 9, where ” − ” means that this case was not considered
in the corresponding reference.

From Table 8, we can see that the fault confidence levels represented by trapezoidal fuzzy
numbers provide a quantitative description for the faulty sections which makes these results
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Cases
Diagnosis results

FDSNP FL [51] FPN [32] GATS [52] GA [53]

1 B1 B1 B1 - B1

2 B1 - - - -

3 B1, L1 B1, L1 B1, L1 - B1, L1

4 B1, B2, L1, L2 B1, B2, L1, L2 B1, B2, L1, L2 - B1, B2, L1, L2

5 T3, T7 T3, T7 T3, T7 T3, T7

(1)T3, L7; (2)T3

(3)L7; (4)No

6
L1, L2 L1, L2 L1, L2 L1, L2 (1)L1, L2, L7, L8

L7, L8 L7, L8 L7, L8 L7, L8 (2)L1, L7, L8

7
L5, L7, B7 L5, L7, B8 L5, L7, B7 L5, L7, B7 (1)L5, L7, B7, B8, T7, T8

B8, T7, T8 T7, T8 B8, T7, T8, L8 B8, T7, T8 (2)L5, L7, T7, B8

Table 9: Comparisons between FDSNP and four fault diagnosis methods

more reliable. The linguistic terms corresponding to these trapezoidal fuzzy numbers provide a
more intuitive and flexible way for experts and dispatchers than probability values, since their
knowledge usually contain linguistic terms with a certain degree of uncertainty.

From Table 9, we can see that the diagnosis results of FDSNP, in Case 1 and Cases 3-6,
are the same as those in [32, 51], in other words, FDSNP is effective in fault diagnosis of power
transmission networks in power systems. Table 9 also shows that, in some cases, FDSNP is
superior to FL, FPN and GA on correctly identifying fault sections. For instance, in Case 7, the
fault diagnosis result of FDSNP is different from those in [32, 51, 53]. In this case, for section
L8, only its second backup protective relay SL8Ss operated and actually, SL8Ss operated as the
second backup protective relay of section B8. So in fact, L8 is not a faulty section. For section
B7, its main protective relay B7m operated and tripped its corresponding CBs, CB33, CB34

and CB35. So B7 is a faulty section. Thus, for Case 7, the diagnosis result of FDSNP and
GATS is better than those in [32,51,53]. In Cases 5-7, comparisons of diagnosis results between
FDSNP and the methods in [53] show that FDSNP can solve the nonuniqueness problem of the
diagnosis solution, which proves the correctness of FDSNP in diagnosing faulty sections. Besides,
the diagnosis results in Cases 2 and 7 show that FDSNP can obtain satisfying results in the
situations with incomplete or uncertain alarm information. Therefore, from the seven typical
cases, FDSNP is effective with a good accuracy in fault diagnosis of power transmission networks.

4 Conclusions and future research lines

Fuzzy membrane computing is an important research branch of membrane computing. Until
now there have been two main fuzzy P systems: fuzzy cell-like P systems and fuzzy reasoning
spiking neural P systems. In this survey, the theoretical developments and applications about
fuzzy membrane computing are summarized. To advance this research direction, we list some
promising topics as follows:

(1) Extensions and applications of fuzzy cell-like P systems. From the survey in Sections
2.1 and 2.2 one can see that only a limited work about considering fuzzy approaches in the
framework of cell-like P systems, but a broad variety of fuzzy cell-like P systems can be further
investigated.

- For simplicity, only symport/antiport P systems whose rules only move reactants through
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membranes were considered to deal with uncertainty in [43], but it is straightforward that this
fuzzy approach can be extended to other variants of cell-like P systems.

- Fuzzy mathematics have been used to handle the uncertainty in the number of copies of the
reactants, imperfectness of objects in membranes and approximate copies of reactants involved
in reactions. These fuzzy mathematics now involve t-norm approach (Triangular norms), fuzzy
sets, (general) multi-fuzzy sets, L-multi fuzzy sets, L-fuzzy hybrid sets and so on. Other fuzzy
mathematics can also be considered.

- Feasibility of applying fuzzy cell-like P systems in computational biology was discussed in
[44], but until now no real application case appears in research literature. So the real application
of fuzzy cell-like P systems in computational biology and other fields is a promising research line.

(2) Introducing fuzzy approach into tissue-like P systems. Uncertainty in an inherent property
in all living systems and tissue-like P systems are models inspired by the way the tissue cells
lives and functions. So uncertainty also should be considered in tissue-like P systems due to the
real behavior of tissue cells.

(3) Fault diagnosis method based on FRSN P systems (FDM-FRSNP, for short) is summa-
rized in this paper. However, up to now, the work focuses on the effectiveness and correctness
of FDM-FRSNP and the results of application examples are obtained by manual computation.

-To test the speed, convergence and accuracy of the fuzzy reasoning algorithms of FRSN P
systems, and to explore automatical generation of FRSN P systems in fault diagnosis, our future
work will simulate them on MATLAB [54], P-Lingua [55] or MeCoSim [56]. Meanwhile, how
to verify and realize the parallelism of FRSN P systems and their fuzzy reasoning algorithm on
hardware such as FPGA and CUDA is also our further task.

-Valuable research interests refer to extend models, algorithms and application areas. For
models and algorithms, one promising topic is to design new variants of SN P systems and their
reasoning algorithms according to requirements of different fault diagnosis problems, such as
on-line diagnosis, fast fault diagnosis, high-precision diagnosis. Another promising interest is to
propose FRSN P systems with learning ability. For application areas, FRSN P systems can be
used to more different systems, such as power supply systems for urban rail transit, mechanical
fault diagnosis and power systems with new energies.
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Abstract: Due to the complex and non linear character, wastewater treatment
process is difficult to be controlled. The demand for removing the pollutant, especially
for nitrogen (N) and phosphorus (P), as well as reducing the cost of wastewater
treatment plant is an important research theme recently. Thus, in this paper, the
benchmark proposed default control strategy and 10 additional control strategies are
applied on the combined biological P and N removal Benchmark Simulation Model
No.1 (BSM1-P). In addition, according to the results of applying PI controllers, as
usual, we also chose the group with the better performance, as well as the default
control strategy, to replace the PI controllers with fuzzy controllers. In this way, it
can be seen that in all cases the quality of effluent of the controlled process could be
improved in some degree; and the fuzzy controllers get a better phosphorus removal.
Keywords: wastewater treatment plant, PI controllers, fuzzy control, P removal.

1 Introduction

As the human society develops rapidly, the demand for water resources is playing a more and
more important role in the civil life and industrial production. Nowadays, stringent legislation
for wastewater treatment plants (WWTPs) is currently a top driving force for the development
of new treatment technologies and for the optimisation of the existing ones. Meeting stringent
concentration requirements for Carbon (C), Nitrogen (N) and Phosphorus (P) discharge with
minimal costs has raised the need of a more efficient operation.

However, as a large nonlinear system, WWTPs are subject to complex disturbances, where
complicated biological and hydrodynamic phenomena are taking place. Thus it is difficult to
achieve the aim to meet the standard of WWTPs effluent quality (EQ) and minimize the oper-
ational cost (OC) simultaneously. Many control strategies have been proposed in the literature
but their evaluation and comparison are difficult, either practical or based on simulation. Differ-
ent control algorithms for WWTPs have been introduced over the years. For instance, sufficient
nitrification can be maintained by applying a constant aeration flow rate, by controlling the dis-
solved oxygen (DO) level at a pre-selected set-point or by using a variable DO set-point controller
based on ammonia concentration in the last aerobic reactor of the plant [1, 2].

On the other hand, the denitrification process is usually controlled by manipulating the ex-
ternal carbon flow rate or internal recirculation flow rate based on nitrate concentration in the
last anoxic reactor or in the last aerobic reactor [3, 4]. Unfortunately, various plant configura-
tions, influent characteristics and evaluation criteria have been used in the assessment of control
algorithms. As all of these factors influence the choice of a control strategy, it is difficult to say
which control algorithm is the most appropriate with respect to minimal OC and best EQ, and
whether the implementation of complex control algorithms is really necessary. This is caused
by many reasons: the variability of influent (both the volume and the chemical component of

Copyright © 2006-2015 by CCC Publications
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influent), the weather condition, and the complexity of biochemical and physical phenomena, the
large range of time constants and the lack of standard evaluation criteria, among others. To deal
with this problem, in recent years the benchmark simulation model no.1 (BSM1) [5,6] has been
proposed as a standard platform for comparing different control strategies in the community of
wastewater treatment processes. This benchmark model can be used for simulating an effective
WWTP to reduce the chemical oxygen demand (COD) of the polluted water as well as to remove
the nitrogen (N), both of which are key standards for a WWTP.

In addition to COD and N, another major concern is P. Since P has been identified as the
key element responsible for eutrophication in the aquatic environment, reducing P release to the
environment is an important issue for protecting water resource. Among those activated sludge
systems for P removal, enhanced biological phosphorus removal (EBPR) system was notable since
it was introduced [20]. In the EBPR system, the phosphate accumulating organisms (PAOs )
are responsible for the active of P removal and are enriched to accumulate large quantities of
polyphosphate (poly-P) in their cells. In this way the biological P removal is enhanced. However,
the PAOs have a stricter requirement of cyclic anaerobic, anoxic and aerobic conditions than N
removal and COD removal, thus the process of P removal is more difficult and complex.

Although the BSM1 modelling tool has been widely used in the WWTP research community,
it has a structural limitation that it does not involve the P removal that should be taken into
account for achieving a more realistic simulation model. To fill this gap, Gernaey and Jorgensen
[7] developed a simulation benchmark which models the combined biological P and N removal
suitable for the anaerobic-anoxic-oxic (AAO) processes, which could be regarded as benchmark
simulation model no.1 including P removal (BSM1-P). Two PI controllers have been designed
and tested for this process and defined as the default control (DC). But since there are many
potential combinations of control variables, in this paper we propose 10 PI control strategies to
compare the control performance. Among them, 5 strategies are basic ones with no more than
three controllers, whereas the other 5 strategies are combinations of those 5 basic ones. Besides
the traditional PI controller, fuzzy logic controller was drawing more attention for improving the
performance of WWTPs due to its model free and easily understandable character.

Fuzzy control can be regarded as a viable alternative control strategy in comparison with the
conventional control in some certain situations, e.g. the control process with nonlinear characters
which may lead to difficult mathematical modelling and controller tuning. So in this paper, we
also give some examples of applying several fuzzy controllers on the WWTP process, and compare
the control performance with these referred PI controllers.

2 Description of BSM1-P

The description could be seen in Fig.1. Resembling the BSM1 model, the BSM1-P has a
process layout of seven biological reactors and one settler. As it is showed in the Fig.1, the plant
lay-out consists of 7 bio-reactors in series followed by a sedimentation tank. Here, Qin means
influent, Qe means effluent, Qint means nitrate recycle, Qr means sludge recycle and Qw means
waste sludge. The total volume of the biological tanks is 6749 m3, the volumes of tanks 1, 2, 3
and 4 are 500 m3, 750 m3, 750 m3 and 750 m3 respectively, which four of them are fully mixed,
but not aerated. Tanks 5, 6 and 7 are fully mixed as well as aerated, and their volumes are 1333
m3. Aeration of tanks 5, 6 and 7 is achieved by using a maximum KLa of 10 h−1, here KLa means
oxygen transfer coefficient. In the openloop situation, default KLas of tanks 5 and 6 are equally
set to 10 h−1, and that of tank 7 is set to 2.5 h−1. Dissolved oxygen (DO or SO2) saturation
in arebic tanks is 8 g(-COD)/m3. The volume of sedimentation tank is 6000 m3, with area of
1500 m2 and a depth of 4 m; the sedimentation tank is feed at the point of 2.2 m above the
bottom. Two internal recycles are also included: Qintr from tank 7 to tank 3 at a default flow
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rate of 300% of the influent flow rate, and Qr from the underflow of the sedimentation tank to
the inffluent of tank 1. The default Qr is equal to the Qin. Besides of Qr, the underfolw of the
sedimentation tank is also devided to waste sludge Qw, and the default Qw is 400 m3/d. More
detailed explanation about the configuration of combined N and P removal plant can be seen
in [7].

Figure 1: Lay-out of the benchmark plant for evaluation of control strategies on combined N and
P removal processes

2.1 Influent composition

The influent for BSM1-P was generated from the ASM1 influent composition [6, 7]. Besides
the concentration of pollutant, another important parameter that will affect the operation of
WWTP and should be considered is the volumn of influent, which is affected significantly by
weather condition. Thus, in BSM1-P, three weather conditions are taken into account: dry
weather, rain weather and storm weather.

2.2 Plant performance criteria

It is also necessary to build up a number of indexes to evaluate the performance of the
simulated benchmark WWTP studied in this paper. Similar to the original BSM1, the effluent
quality index (EQI) for BSM1-P was included P, as calculated by Eqs. (1) and (2).

EQI =
1

1000(tf − t0)

∫ tf

t0

PU(t)Qe(t) dt (1)

PU(t) = PUTSS(t) + PUCOD(t) + PUBOD(t) + PUTKN(t) + PUNO3(t) + PUPtot(t) (2)

In Eq. (1), t0 and tf represent the start time and end time of the period of evaluating EQI
separately. The pollutant load PUk (kg/d) corresponding to each component k is estimated by
Eq. (3).

PUk = βkCk (3)

The factors βk are weighting factors that are attributed to each effluent component. In
this paper, the factors were chosen as follows: βTSS = 2; βCOD = 1; βBOD = 2; βTKN = 20;
βNO3 = 20; βPtot = 20. Furthermore, the instantaneous concentrations of the different pollutants
Ck are calculated by Eqs. (4)-(10).

CTSS = XTSS (4)
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CCOD = SF + SA + SI +XI +XS +XH +XPAO +XPHA +XA (5)

CBOD = 0.25(SF+SA+(1−fSI
)XS+(1−fXIH)XH+(1−fXIP )(XPAO+XPHA)+(1−fXIA)XA)

(6)

CTKN = SNH4 + iN,SFSF + iN,SISI + iN,XIXI + iN,XSXS + iN,BM (XH +XPAO +XA) (7)

CNO3 = SNO3 (8)

CNtot = CTKN + CNO3 (9)

CPtot = SPO4+iP,SFSF+iP,SISI+iP,XIXI+iP,XSXS+iP,BM (XH+XPAO+XA)+XPP+(1/4.87)XMeP

(10)

Here, fSI
means fraction of SI from hydrolysis, fXIA, fXIH , fXIP represent fraction of inert

COD from XA, XH and XPAO, respectively. In addition, iN,k and iP,k represent N and P
fraction in organic component k (k = SF , SI , XI , XS , XH , XA or XPAO), respectively. The
influent quality index (IQ) is calculated in the same way as EQI, but the BOD coefficient in Eq.
(6) is modified from 0.25 to 0.65.

Similar to BSM1 the limits for certain components should be provided to evaluate the per-
formance of WWTP in detail. By comparing the simulation output with these limits, we could
calculate the number of times that the effluent concentration of a pollutant exceeded the limit
during the evaluation period. The limit for P is based on the Danish WWTP effluent stan-
dard [7], whereas other limits are same to the BSM1, i.e., CPtot=1.5 g P/m3, CNtot=18 g N/m3,
CBOD=10 g/m3, CCOD=100 g COD/m3, CTSS=30 g/m3 and SNH4=4 g N/m3.

In addition, to quantify the cost of WWTP operation, the operating cost index (OCI) was
introduced [21]:

OCI = αEQIEQI + αAEAE + αPEPE + αsldgPsldg (11)

In Eq. (11), EQI is the effluent quality index caculated by Eq. (1), AE is aeration energy
consumption rate which happens in aerobic tanks 5, 6 and 7, PE is pumping energy consumption
rate to maintain wastewater flowing. The unit for AE and PE is kWh/d. Psldg is the sludge
production rate (kg/d). Values for AE, PE and Psldg are calculated in a similar way to BSM1 [6].
The αi coefficents are OCI weighting factors. In this paper, αi values are suggested in [21], i.e.
αEQ=50 (Euro/year)/EQI; αAE = αPE=25 (Euro/year)/(kWh/d); αsldg=75 (Euro/year)/(kg
TSS/d).

3 Fuzzy Logic Control

Fuzzy control makes use of so-called fuzzy controllers (FCs) or fuzzy logic controllers to ensure
a nonlinear input-output static configuration can be designed/changed according to designer’s
mind. Compared to the conventional control, fuzzy control could take sufficient advantage of
the experience of a human operator, because fuzzy control has the ability to introduce this
experience in a more accurate way by applying linguistic variables. The mathematical foundation
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of fuzzy logic control was set by Zadeh in his paper about forty years ago [8]. After that, as the
computer science and the tools for dealing with mathematical problems were developing rapidly,
Madamni and Assilian applied the first fuzzy control application on a small steam engine [9,10].
Afterwards, in Japan and USA, and later, in Europe, the fuzzy logic control became more and
more popular [19]. Until now, fuzzy controllers have been successfully used in the area of process
industries [11–17]. This control method based on human’s experience is achieved in FCs by
expressing the control requirements and expounding the control signal in terms of the IF-THEN
linguistic rules which belong to the set of rules:

IF (conditions)THEN(consequent)

Where the conditions means the present situation of the controlled process dynamics (com-
pared usually with the desired dynamics), and the consequent (conclusion) refers to the action
which should be taken - under the form of the control input u - in order to follow the desired
dynamics. The set of rules makes up the rule base of the FC.

A typical fuzzy control system is as followed (Fig. 2):

Figure 2: Typical fuzzy control system

In the present study, different forms of fuzzy logic systems for designing FC have been imple-
mented: Mamdani fuzzy inference systems and Sugeno fuzzy inference systems. In a Mamdani
fuzzy inference systems [18], given fuzzy rules: (1) if X is A1 and Y is B1 then Z is C1, (2)
if X is A2 and Y is B2 then Z is C2; and the fact: X is X1, Y is Y1, here X1 and Y1 are
crisp inputs. Fig. 3 shows how to determine the fuzzy output (dark aera). Different from the
conventional mathematical set, which only has two relationships with a certain element (belong
to or not belong to), a fuzzy set could also be partly belonged to by an element. In the theory
of fuzzy, to describe the relationship between a fuzzy element and a fuzzy set, a grade of mem-
bership µ(x) is introduced, and µ(x) = 1 means that the element x totally belongs to a fuzzy
set, while µ(x) = 0 means the element x not belongs to the fuzzy set at all. For example, in the
Fig. 3, X1 partly belongs to set A1 and partly belongs set A2, and the grade membership is de-
scribed by µ(X1|A1) and µ(X1|A2) separately. Similarly, µ(X1|A1) and µ(Y2|B2) represent
the grade of membership for Y1 to fuzzy set B1 and B2. This is how to convert crisp inputs to
fuzzy inputs, i.e. fuzzification.

Next, we should consider how to determine the conclusions. To do this, we will first consider
the recommendations of each given fuzzy rule independently. The membership function for the
conclusion reached by rule (1), which we denote by µ(1), is showed in Fig. 3 and is given by

µ(1)(Z) = min{µ(X1|A1), µ(X1|A1)}
This membership function µ(1)(Z) can be explained as how big part we should take into

consider for the fuzzy set C1. And similarly, we can reach the other membership function for
the conclusion by rule (2). And as the present situation (X is X1 and Y is Y1) is affected by
both rule (1) and rule (2), thus the final decision should be a combination of both membership
funcion, as showed in Fig.3.

According to centroid way, to defuzzify the fuzzy output, we only need to calculate the
centroid point of the gray aera: let bi denote the center of the membership function of the
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sonsequent of rule (i), and let
∫
µ(i) denote the area under the membership function µ(i), the

centroid method computes Z1 to be

Z1 =

∑
i bi
∫
µ(i)∑

i

∫
µ(i)

and Z1 is the defuzzified output, as showed in Fig. 3.

Figure 3: Mamdani fuzzy inference systems

To design a fuzzy controller, at first the input and output variables of the fuzzy controller
should be chosen. Normally the input variables are feedback error and higher order derivatives
of feedback error, in this paper the feedback error (E) and first order derivative of feedback error
(EC) were chosen as inputs of the fuzzy controller. On the other hand the output variables
should be controlled inputs of the controlled plant (U), therefore in this case, the KLa of the
aerobic tanks was chosen as output of the DO fuzzy controller, and the internal recycle rate was
chosen as the output of the internal recycle fuzzy controller.

The next step is to choose the membership functions for input and output variable. The
shape of membership functions here we chose the triangle functions both for the input variables
and for the output variables. It was concluded that in the case of tank 5 the range of E could
be fixed from -1.5 g/m3 to 1.5 g/m3, the range of EC could be fixed from -15g/ (m3d−1) to 15
g/ (m3d−1). The KLa of tank 5 could range from 160 d−1 to 280 d−1. In addition, the number
of parameters of the membership function was chosen as 7, which included NB, NM, NS, O,
PS, PM, PB. Here N meant negative, O meant zero, P meant positive, B meant big, M meant
medium, S meant small. To express in a more clear way, Fig.4 presents the membership function
of the feedback error for the fuzzy controller of the tank 5.

Similarly, this could also be applied on the DO fuzzy controller of tank 6, tank 7 and that
of the internal recycle. But in the case of tank 6 and 7, E and EC range the same way, because
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Table 1: Decision table for fuzzy controllers
(a) For DO fuzzy controllers

NB NM NS O PS PM PB
NB PB PB PB PB PM O O
NM PB PB PB PB PM O O
NS PM PM PM PM O NS NS
O PM PM PS O NS NM NM
PS PS PS O NM NM NM NM
PM O O NM NB NB NB NB
PB O O NM NB NB NB NB

(b) For internal recycle

NB NS O PS PB
NB PB PB PB PS O
NS PS PS PS O NS
O PS PS O NS NS
PS PS O NS NS NS
PB NS NB NB NB NB

according the experiments the range of E and EC did not affect the control performance signif-
icantly, and the U ranged from 120 d−1 to 240 d−1 and from 60 d−1 to 180 d−1 separately. In
the case of internal recycle, the E ranged from -1 g/m3 to 1 g/m3, the EC ranged from -20 g/
(m3d−1) to 20 g/ (m3d−1) and the U ranged from 5000 m3/d to 45000 m3/d. The number of
parameters for U of the internal recycle is adjusted to 5, which means that only exist NB, NS,
O, PS and PB.

The next step was deciding the fuzzy inference mechanism. In the case of 7 parameters of
linguistic terms, there are totally 49 control rules formed by if-then clauses. Table.1(a) shows the
detail of control rules, which are same for the entire 3 DO fuzzy controller, whereas Table.1(b)
shows the fuzzy control rules for the internal controller.

Figure 4: Membership of E of tank 5

4 Control Configurations

In this paper, at the first part, a series of control strategies are applied on the BSM1-P.
As given in [7], a default control (DC) is simulated as a reference as well as a test for the
updated simulation plant. Then 10 additional PI-based control strategies (S1-S10) are applied
to compare the performance: the first 5 control strategies (S1-S5) are basic ones, including the
DO controller, cascade DO controller, internal recycle flow rate controller, extra carbon resource
controller and the waste sludge amount controller, whereas the other 5 control strategies (S6-
S10) are generated by combining these basic ones. A detailed description of each control strategy
follows below.
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4.1 Default Control (DC) Strategy

Similar as with the original BSM1, the DC strategy consists of two PI-based control loops: a
DO controller in tank 7 and an internal recycle controller. The measured variables are dissolved
oxygen of the tank 7 and the concentration of nitrate nitrogen (NO3) of the tank 3 respectively.
The controlled variables are same as measured variables, and the set points are DO=2 g/m3

and NO3=1 g/m3 respectively. The manipulated variables are KLa7 and internal recycle Qint

respectively. As showed in Fig. 5.

Figure 5: Configuration of DC

4.2 Control strategies configurations

A set of 5 basic control strategies (S1 to S5) has also been implemented by using the following
control loops respectively:

• S1: PI Controllers of the dissolved oxygen concentration (DO) in the 3 aerobic tanks by
regulating the oxygen transfer coefficients (KLa) simultaneously, and the set points are all
2 g/m3.Internal recycle loop is left as in the openloop. The configuration is shown in Fig.
6.

Figure 6: Configuration of S1

• S2: Fig.7 shows the cascade PI control of the ammonia nitrogen of the effluent by ma-
nipulating the DO set points in all the aerobic tanks. The set point of effluent ammonia
nitrogen concentration is 1 g/m3, and the controlled variables are also the KLas of the
aerobic tanks. Internal recycle loop is left as in the openloop.

• S3: Fig.8 shows the control of nitrate nitrogen concentration (SNO3) in the tank 4 by
manipulating the internal recycle flow rate (Qint). The set point is 1 g/m3. And the KLas
of aerobic tanks are left constant as in the openloop.
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Figure 7: Configuration of S2

Figure 8: Configuration of S3

• S4: Fig.9 shows the control of SNO3 in the tank 4 by manipulating the extra addition
carbon resource (Qcarb) into the tank 3. The set point is also 1 g/m3. And the internal
recycle loop was left as openloop.

Figure 9: Configuration of S4

• S5:Fig.10 shows the control of total suspended solids concentration (XTSS) in tank 7 by
manipulating the wastage sludge flow rate (Qw). The set point is 4000 g/m3. And the
internal recycle loop was left as openloop.

Furthermore, 5 extra PI-based control strategies (S6 to S10) generated by combining these
basic control strategies are also tested. In detail, the control strategy S6 is to control the DOs in
the 3 aerobic tanks as well as internal recycle flow rate by applying S1 and S3 simultaneously. As
can be seen in the simulation result, the performance of S2 is not beneficial for the phosphorus
removal, which is mainly considered in this work, consequently in all the combined control
strategies, none is included S2. The control strategy S7 is obtained by combining S1 and S4,
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Figure 10: Configuration of S5

which means control the DO in 3 aerobic tanks and the extra carbon resource in tank 3. Similarly,
the control strategy S8 is to combine S1 and S5, S9 is to combine 3 control strategies (S1, S4
and S5). Finally, the last control strategy S10 is generated by combining S1, S3 and S5.

5 Results and Discussions

The important information of simulation results of PI-based control strategies is showed in the
Table.2. For comparison, it included the simulation result of open loop, default control loop and
S1 to S10 control strategies. The effluent quality indexes (EQIs) are showed in the table to judge
the overall performance. In detail, the mainly considered components of a certain wastewater
treatment plant: ammonia nitrogen (NH4), total amount of nitrogen (Ntot), phosphate (SPO4),
the amount of chemical oxygen demand (COD) and the total suspended solids (TSS) being
another main factor to evaluate the performance of a WWTP are showed in the table. In
addition, the operation cost index (OCI), as a consequence of consuming aeration energy (AE),
pumping energy (PE), sludge production and the added carbon volume and metal volume (in
this paper, 0 in all case), is also given in the table to compare the control strategies.

Table 2: Results of PI-based control strategies (S1-S5)

Average effluent default S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
Concentration

component limit
(g/m3)
SNH4 4 3.16 3.36 2.17 2.84 3.62 2.30 3.36 4.02 2.61 3.68 2.60
Ntot 18 17.15 15.19 15.06 15.47 12.59 15.16 15.36 12.91 14.82 12.66 15.01
SPO4 2 1.86 2.55 3.99 3.150 0.85 2.97 2.27 0.85 2.19 0.82 1.97
COD 125 45.44 45.46 45.58 45.52 45.90 46.17 45.45 45.79 46.04 46.05 46.02
TSS 35 14.15 14.05 13.93 14.01 14.54 14.58 14.08 14.47 14.59 14.66 14.60

Global plant Performance
EQI(kg/d 4495 4741 5618 5468 4502 5403 4643 4087 4672 4096 4597

OCI(euro/d) 19919 19664 19779 19343 24858 18954 19774 24231 19532 24373 19648

Since BSM1-P is an updated version of BSM1, from the results it can be seen that in all cases
the ammonia nitrogen (NH4), total amount of nitrogen (Ntot) and the chemical oxygen demand
(COD) are all under limit amount.

In case of S4 and those that included it: S7 and S9, all the limit concentrations for pollutant
components concerned are satisfied. The reason is that extra carbon resource can promote
the growth and ability of denitrifying organism and phosphorus accumulating organism (PAO)
simultaneously. However because of the added carbon resource, the operational cost indexes
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(OCI) in these 3 cases are higher than any other case.
In the other cases of PI-based control strategies, it is obvious that, by comparing with the

case of openloop, a lower level of ammonia nitrogen concentration in the effluent corresponds
a higher level of phosphorus concentration. This is because without extra carbon resource, the
only way to decrease the ammonia is to increase the explosion of air, but this will lead a higher
level of nitrate nitrogen, which is harmful for the accumulation of phosphorus.

However, the case S5 is an exception, where both SNH4 and SPO4 are lower than the case of
openloop. Although the phosphorus is still above the limitation, but considering the concentra-
tion of ammonia nitrogen is relatively lower than many cases, the consequence is also beneficial.
This is because by controlling the waste sludge flow rate more suspended solids, including the
organisms, remain in the treatment plant circumstance, which is beneficial for both nitrogen and
phosphorus removal. Correspondingly, the COD and TSS in the effluent are higher than other
cases. Furthermore, the OCI is the lowest.

Fig.11 shows the tradeoff among OCI and EQI for the different PI-based control strategies.
In Fig.11, the horizontal axis means the operational cost index (OCI) and the vertical axis
represents the effluent quality index (EQI). Basically, higher operational cost leads to lower
effluent quality, which means that the performance of treatment plant is better. From Fig.11, it
is easy to conclude that those strategies including extra carbon flow (S4, S7, S9) cost much more
than other ones, but achieve lower effluent pollutant concentration. In fact, the performance of
S4 is the best among the 5 basic PI-based control strategies. Among all, S7 and S9 possess the
lowest effluent pollutant load without significant difference. However, when analyzing the control
strategies combined with the operational cost, the default control, S1, S6, S8 and S10 show a
good balance. But the main flaws of them are as followed: the average level of phosphorus in S6
and S8 exceeded the limit amount, and the instant level of phosphorus amount in all the 5 cases
violated the limitation for a great partial of the total evaluated time (64.43%, 36.01%, 49.55%,
46.88% and 38.69%, respectively).

Figure 11: The OCI against EQI graph of PI controllers

In Fig.11, the points that are closer to the origin mean lower effluent quality index with
less operational cost, therefor better tradeoff, when choosing the appropriate control, these ones
should receive more interest. Hence it is obvious that S10 made the best balance enter OCI and
EQI. Fig.12 and Fig.13 show a dynamic plant performance of WWTP for N and P under the
PI-based control strategy S10. To make a clear comparison with the fuzzy controller, in these
three figures we also added in the time response of certain components of effluent by using fuzzy
controllers, which will be anylized below.
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Figure 12: Total amount of nitrogen of effluent of S10

Figure 13: Total amount of phosphorus of effluent of S10

Figure 14: The comparison of OCI to EQI between PI-based and Fuzzy-based controllers
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Figure 15: Total amount of nitrogen of effluent of S1

Figure 16: Total amount of phosphorus of effluent of S1

Table 3: Comparison of PI and Fuzzy control strategies

average effluent open default S1 S6 S8 S10
concentration loop PI FUZZY PI FUZZY PI FUZZY PI FUZZY PI FUZZY

component limit
(g/m3)
SNH4 4 2.79 3.16 5.77 4.43 6.99 3.36 6.54 2.61 6.55 2.60 7.11
Ntot 18 15.50 17.15 17.04 15.19 15.91 15.36 17.73 14.82 16.42 15.01 18.10
SPO4 2 3.69 1.86 1.52 2.55 1.27 2.27 1.08 2.19 1.46 1.97 1.15
COD 125 45.54 45.44 45.36 45.46 45.40 45.45 45.32 46.04 44.80 46.02 44.83
TSS 35 13.95 14.15 14.12 14.05 14.17 14.08 14.12 14.59 13.62 14.60 13.69
EQI(kg/d) 5596 4496 4314 4741 4224 4643 4141 4672 4226 4597 4121

% of variation - -19.7% -22.9% -15.3% -24.5% -17.0% -26% -16.5% -24.5% -17.9% -26.4%
OCI(euro/d) 19175 19920 20047 19665 20057 19774 20203 19532 20283 19648 20416
% of variation - +3.9% +4.5% +2.6% +4.6% +3.1% +5.4% +1.9% +5.8% +2.5% +6.5%
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Fig.12 and Fig.13 show the most concerned component of waste water, nitragen (N) and
phosphorus (P) separately. From Fig.12, we can see that although the average amount of Ntot
is satisfied with the requirement according to Table.2, in some moments the Ntot of effluent
violates the limitation. However, the overall performance is rather good. When come to Fig.13,
the outcome is in contrast, the average amount of P of effluent is higher than the desired limit,
and neither is there much time satisfying the limitation. So this is the major defect of S10.
But considering the overall control performance and the cost of WWTP, S10 still draws a good
attention. So in the next step, we focus on replacing the PI controllers of S10 by fuzzy controllers.
In addition, since DF, S1, S6 and S8 also get a good comparison of OCI and EQI, as well as a
good ability for P removal, as can be seen in the Table.2 and Table.3, it is also necessary to build
up a fuzzy-based controller for these control strategies to see the performance. The procedure
and important information of designing fuzzy controller are mentioned in the second part.

The simulation results of fuzzy control strategy are showed in Table.3, to make a clear
comparison, in Table.3 we also repeat the situation of applying PI-based controllers. From this
table, we can see that by applying FCs, the average concentration of P in effluent becomes much
lower and satisfies with the requirement. But since the favorable condition for P removal is
contrary against the one of N removal, by applying FCs the amount of N rises. However, the
average concentration of total N in effluent is still under the limitation (except fuzzy-based S10),
this means that FCs are able to satisfy with the requirement of total N and total P simultaneously.
In addition, from the table we can also see that by applying FCs, the EQI is lower, but the OCI is
higher. To make a clear comparison, Table.3 also gives a percent (%) of variation of each control
strategy against openloop to see in how much degree OCI enlarged as well as EQI reduced.
From Table.3, we can see that in DC by applying fuzzy controllers EQI reduced about 3% more
than by applying PI controllers, and OCI only gained 0.6%. In other control configurations, by
applying fuzzy controllers, EQI reduced 8%-9% comparing with PI controllers, and OCI gained
about 2%-4%. This means fuzzy logic controllers are able to improve the WWPT performance
by increasing operational cost, however the degree of improvement is greater than the increase in
cost. Fig.14 gives a more clear way to see this conclusion. To see the dynamic plant perform, we
can refer to Fig.12 and Fig.13. It can be concluded that by applying fuzzy controllers in every
moment P gets a better removal.

Another phenomenon that is exihibited in Fig.15 and Fig.16 needs to be mentioned, which
show effluent concentrations of N and P of WWTP controlled by S1.Since S1 only contains
DO controllers, these two pictures can reveal the effect of DO on N and P removal process,
because despite of the same setpoint for both PI-based and fuzzy-based controllers, the regulated
instantaneous DO could vary according to different type of controllers. From Fig.15, we can see
that the PI controllers are beneficial for the N removal, but in some period (such as Day7 to
Day8 and Day13 to Day 14) the concentration of N did not change much, but from Fig.16 we
can see that all the time the amount of P by using Fuzzy controllers is below the one by using
PI controllers. From this point, the EQI of fuzzy controllers is lower than the PI controllers, as
showed in Table.3. It can be assumed that the process of P removal is more sensitive than the N
removal. Based on this assumption, the real concentration of DO in the fuzzy-based S1 at the
moment that N keeps the same could draw more interest, because under this condition we can
get better removal of P and at the same time do not affect the removal of N.

From the simulation results, we can see that by applying Fuzzy control strategies the perfor-
mance of WWTP is improved, and fuzzy control strategy could get a better operation result for
the wastewater treatment process in some degree.
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6 Conclusions

In this paper, at first a set of PI control strategies has been applied on the BSM1-P waste
water treatment plant to maintain the pollution component of effluent within regulations specified
limits. Good performance was achieved; it could be proved that the BSM1-P is efficient to
simulate the combined P and N removal WWTP. Among the 10 designed PI control strategies,
we chose a group that could make a better balance between OCI and EQI (DC, S1,S6, S8 and
S10) to test fuzzy logic controllers. From the results we could conclude that by applying FCs
the P removal consequent was enhanced. In this way, the most focused on component (P) of the
effluent was controlled under the required limit. The results show FC could be efficiently used
to control the WWTP, especially for the P removal.

However, in this paper, although a set of fuzzy control strategies was tested on the BSM1-
P, the operation was only replacing the FCs to the PI controllers. The control loop was not
changed at all and the set points were also the same. But as one of the most studied advanced
control strategies, fuzzy logic control could make a better improvement. Therefore, the future
work will not only concern to replace the FC to the PI controllers, but also make a combination
of fuzzy logic control and PI control. FCs could act as a higher level to make the important
decision as a human being, and the basic control loop could be accomplished by PI controller.
For example, when we focus on the concentration of P of effluent, it is not necessary to fix the
DO of three aerobic tanks to 2 mg/l; high level of DO is beneficial for the P removal, but harmful
to the denitrification process which is important for the N removal. Although according to the
reference, 2 mg/l of DO is an ideal amount for making the balance between P removal and N
removal, however in the real situation there are so many disturbances in the WWTP, it would
get a better control performance by adjusting the DO according to the specific situation. In this
way, we could get a better balance between P removal and N removal, as well as between OCI
and EQI.
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This book is meant to familiarize the reader with the state-of-art of research and application
results obtained in the domain of Intelligent Decision Support Systems (IDSS), biometric tech-
nologies and their integration. The author of the book is prof. A. Kaklauskas, the head of the
Department of Construction Economics and Real Estate Management of the Vilnius Gediminas
Technical University, Faculty of Engineering, Vilnius, Lithuania, a reputed author in the domain
of Intelligent Decision Support Systems, Multi-criteria Decision Making (MCDM) methods and
their applications in the construction, property management and the related fields. In the book,
the author makes an exhaustive review of results reported in the domain literature and presents
a detailed account of his practical achievements as well as his colleagues’.

The book is composed of seven chapters as follows.
Chapter 1, entitled "Introduction to Intelligent Decision Support Systems", sets the stage

for the following chapters. It introduces the main concepts of the domain and pays a special
attention to Artificial Intelligence (IA)- based advanced methods and their integration with Data
Base Management Systems (DBMS) and Human- Computer Interface (HCI).

Chapter 2, entitled "Intelligent Decision Support Systems", reviews basic concepts of several
new subclasses of IDSS, such as recommender, advisory and expert systems, data and text
mining. The integration of Artificial Neural Networks is addressed too. A big part of the
chapter provides abundant information about specific aspects of biometrics-based DSS, such as
voice and speech recognition, expression analysis and so on. Two very modern concepts and
associated technologies, namely Ambient Intelligence and Internet of Things, are described in
details. Several other subclasses of solutions based on various technologies, such as Genetic
algorithms, Fuzzy and Rough sets, Computer vision, robotic systems and so on, are surveyed in
the final part of the text of the chapter.

The remaining part of the text contains the presentation of various conceptual and application
results obtained by professor Kaklauskas and his colleagues. Chapter 3 introduces the model of
passive house to be used in a qualitative analysis and design of the corresponding intelligent
system.

Chapter 4 contains the results obtained in biometric and self-assessment of the student
progress system and describes two relevant case studies.

Copyright © 2006-2015 by CCC Publications
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Chapter 5 addresses the subject of analysis of user’s emotions and work productivity by
using the state of blood circulatory system and describes a web- based biometric computer
mouse advisory system.

The content of chapter 4 is complemented by the interesting solutions presented in chapter 6,
which addresses student progress assessment by using an intelligent pupil analysis and presents
two case studies.

Chapter 7 addresses also the education domain and presents recommender-system-based so-
lutions meant to increase student productivity.

One book addresses two modern research domains: intelligent and integrated decision sup-
port systems and biometrics-based human-computer interface. It can be explained, in my view,
by the huge effort made by the author and his colleagues to find solutions to problems of the real
world. The presentation of the research and application results obtained by the author and his
colleagues over the years is a special merit of the book, beside the variety of the topics addressed.
Consequently, I warmly recommend the book to PhD and MSc students and instructors, as an
up-to-date source of knowledge. I think the book can also be a valuable tool for those consultants
who are willing to master new concepts and technologies in order to get a competitive advantage
on the market of computer applications.

F. G. Filip
Romanian Academy
Bucharest, Romania
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