Hybrid Decision-Making Method within Dempster-Shafer Framework
DOI:
https://doi.org/10.15837/ijccc.2026.1.7246Keywords:
Multi-Criteria Decision Making, SWARA DS, CoCoSo DS, Dempster-Shafer, Picture Fuzzy Set theoryAbstract
Modern multi-criteria decision-making (MCDM) approaches must handle ambiguous and imprecise initial information about decision-making phenomena in an efficient way. Application of the Dempster-Shafer theory (DST) provides a strong mathematical basis for processing uncertain information. Due to the close relationship between fuzzy sets and DST, various fuzzy set environments are applied to model the DST system to solve multi-criteria decision-making problems. To work on this challenge, a picture fuzzy set (PFS) can be applied to model the vague information. This paper presents a novel MCDM approach, namely the hybrid SWARA DS and CoCoSo DS method, developed within Dempster-Shafer’s framework. The benefits of the new proposed approach in handling MCDM problems involving uncertain criteria and expert weightings are demonstrated through its application in selecting the optimal roof shape for a renovated single-family house. Sensitivity and comparative analyses validate the method’s reliability and effectiveness.
References
Aljaghoub, H.; Abumadi, F.; AlMallahi, M.N.; Obaideen, K.; Hai Alami, A. (2022). Solar PV cleaning techniques contribute to Sustainable Development Goals (SDGs) using Multi-criteria decision-making (MCDM): Assessment and review. International Journal of Thermofluids, 16, 2022. https://doi.org/10.1016/j.ijft.2022.100233
Ali, Z.; Mahmood, T.; Yang, M.-S. (2023). Aczel-Alsina Power Aggregation Operators for Complex Picture Fuzzy (CPF) Sets with Application in CPF Multi-Attribute Decision Making. Symmetry, 15(3), 651, 2023. https://doi.org/10.3390/sym15030651
Atanassov, K.T. (1999) Interval Valued Intuitionistic Fuzzy Sets. Studies in Fuzziness and Soft Computing, Physica, Heidelberg, 35, 1999. https://doi.org/10.1007/978-3-7908-1870-3_2
Attanassov, K.T. (1986) Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96, 1986. https://doi.org/10.1016/S0165-0114(86)80034-3
Ban, O.-I.; Dzitac, S.; Simó, A.; Florea, A. (2024). Romania Residents' Attitude Investigation toward the Transition to Renewable Energy Sources through Importance-Performance Analysis. Sustainability, 15, 14790, 2023. https://doi.org/10.3390/su152014790
Chatterjee, S.; Chakraborty, S. (2024). A comparative study on combined compromise solution (CoCoSo)-based optimization of drilling of aluminium metal matrix composites in fuzzy environments. International Journal on Interactive Design and Manufacturing, 18, 4737-4763, 2024. https://doi.org/10.1007/s12008-024-01743-z
Chen, S.-C.; Lai, M.-C.; Chu, C.-H.; Chen, H.-M.; Nafei, A. (2024). Enhanced Supplier Evaluation in Digital Transformation: A BWM-Neutrosophic TOPSIS Approach for Decision-Making Under Uncertainty. Studies in Informatics and Control, 33(4), 95-104, 2024. https://doi.org/10.24846/v33i4y202409
Cieślak, I.; Eźlakowski, B. (2023). The Use of GIS Tools for Decision-Making Support in Sustainable Energy Generation on the Example of the Solar Photovoltaic Technology: Using GIS tools to optimize photovoltaic investments. Bulletin of Geography. Socio-economic Series, 60(60), 157-171, 2023. https://doi.org/10.12775/bgss-2023-0021
Cuong, B.C. (2014). Picture fuzzy sets. Journal of Computer Science and Cybernetics, 30(4), 409-420, 2014. https://doi.org/10.15625/1813-9663/30/4/5032
Demir, G.; Damjanović, M.; Matović, B.; Vujadinović, R. (2022). Toward Sustainable Urban Mobility by Using Fuzzy-FUCOM and Fuzzy-CoCoSo Methods: The Case of the SUMP Podgorica. Sustainability, 14(9), 4972, 2022. https://doi.org/10.3390/su14094972
Dempster, A.P. (1967). Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statistics, 38(2), 325-339, 1967. https://doi.org/10.1214/aoms/1177698950
Dhumras, H.; Shukla, P.K.; Bajaj, R.K.; Jain, D.K.; Shukla, V.; Shukla, P.K. (2024). On Federated Learning-Oriented q-Rung Picture Fuzzy TOPSIS/VIKOR Decision-Making Approach in Electronic Marketing Strategic Plans. IEEE Transactions on Consumer Electronics, 70(1), 2557- 2565, 2024. https://doi.org/10.1109/TCE.2023.3325434
Duong, T.T.T.; Thao, N.X. (2021). A novel dissimilarity measure on picture fuzzy sets and its application in multi-criteria decision making. Soft Computing, 25, 15-25, 2021. https://doi.org/10.1007/s00500-020-05405-6
Dymova, L.; Sevastjanov, P. (2012). The operations on intuitionistic fuzzy values in the framework of Dempster-Shafer theory. Knowledge-Based Systems, 35, 132-143, 2012. https://doi.org/10.1016/j.knosys.2012.04.026
French, S. (2023). Reflections on 50 years of MCDM: Issues and future research needs. EURO Journal on Decision Processes, 11, 2023. https://doi.org/10.1016/j.ejdp.2023.100030
Gao, H.; Zhang, H.; Liu, P. (2019). Multi-Attribute Decision Making Based on Intuitionistic Fuzzy Power Maclaurin Symmetric Mean Operators in the Framework of Dempster-Shafer Theory. Symmetry, 11, 807, 2019. https://doi.org/10.3390/sym11060807
Garg, H.; Kaur, G. (2019) Cubic intuitionistic fuzzy sets and its fundamental properties. Journal of Multiple-Valued Logic and Soft Computing, 33, 507-537, 2019.
Ghoushchi, S.J.; Jalalat, S.M.; Bonab, S.R.; Ghiaci, A.M.; Haseli, G.; Tomaskova, H. (2022). Evaluation of Wind Turbine Failure Modes Using the Developed SWARA-CoCoSo Methods Based on the Spherical Fuzzy Environment. IEEE Access, 10, 86750-86764, 2022. https://doi.org/10.1109/ACCESS.2022.3199359
Hammoumi, A.E.; Chtita, S.; Motahhir, S.; Ghzizal, A.E. (2022). Solar PV energy: From material to use, and the most commonly used techniques to maximize the power output of PV systems: A focus on solar trackers and floating solar panels. Energy Reports, 8, 11992-12010, 2022. https://doi.org/10.1016/j.egyr.2022.09.054
Hinde, C.J.; Patching, R.S.; McCoy, S.A. (2007). Inconsistent intuitionistic fuzzy set and mass assignment. In K.T. Atanassov, M.Baczynski, J.Drewniak, J. Kacprzyk, M.Krawczak, E. Szmidt, M. Wygralak, S.Zadrozny (Eds.). Developments in fuzzy sets, intuitionistic fuzzy sets, generalized nets and related topics. I:Foundations, Warsaw:SRI PAS/IBS PAN., 133-153, 2007.
Hussain, S.; Hussain, Z.; Hussain, R.; Bakhet, A.; Arafat, H.; Zakarya, M.; Al-Thaqfan, A.A.I.; Ali, M. (2024). A Novel Framework for Belief and Plausibility Measures in Intuitionistic Fuzzy Sets: Belief and Plausibility Distance, Similarity, and TOPSIS for Multicriteria Decision Making. Axioms, 13, 858, 2024. https://doi.org/10.3390/axioms13120858
Jang, M.W.; Park, J.H.; Son, M.J. (2023). Probabilistic picture hesitant fuzzy sets and their application to multi-criteria decision-making. AIMS Mathematics, 8(4), 8522-8559, 2023. https://doi.org/10.3934/math.2023429
Joshi, M. (2024). Enhancing User Experience on Journal Websites: A Novel Entropy-based Weighing Method with MARCOS and COCOSO Ranking Approaches. Journal of Scientific & Industrial Research, 83(6), 2024. https://doi.org/10.56042/jsir.v83i6.8982
Karami, S.; Mousavi, S.M.; Antucheviciene, J. (2023). Enhancing Contractor Selection Process by a New Interval-Valued Fuzzy Decision-Making Model Based on SWARA and CoCoSo Methods. Axioms, 12, 729, 2023. https://doi.org/10.3390/axioms12080729
Keršulien˙e, V.; Zavadskas, E.K.; Turskis, Z. (2010). Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA). The Journal of Business Economics and Management, 11(2), 243-258, 2010. https://doi.org/10.3846/jbem.2010.12
Khalil, A.M.; Li, S.-G.; Garg, H.; Li, H.; Ma, S. (2019). New Operations on Interval-Valued Picture Fuzzy Set, Interval-Valued Picture Fuzzy Soft Set and Their Applications. IEEE Access, 7, 51236-51253, 2019. https://doi.org/10.1109/ACCESS.2019.2910844
Khan, S.; Abdullah, S.; Abdullah, L.; Ashraf, S. (2019). Logarithmic Aggregation Operators of Picture Fuzzy Numbers for Multi-Attribute Decision Making Problems. Mathematics, 7(7), 608, 2019. https://doi.org/10.3390/math7070608
Kumar, R.; Bisht, D.C.S. (2023). Picture fuzzy entropy: A novel measure for managing uncertainty in multi-criteria decision-making. Decision Analytics Journal, 9, 2023. https://doi.org/10.1016/j.dajour.2023.100351
Liu, D.; Luo, Y.; Liu, Z. (2020). The Linguistic Picture Fuzzy Set and Its Application in Multi- Criteria Decision-Making: An Illustration to the TOPSIS and TODIM Methods Based on Entropy Weight. Symmetry, 12(7), 1170, 2020. https://doi.org/10.3390/sym12071170
Liu, H.M.; Weng, S.Z. (2024). A Multi-attribute Decision-making Method for Interval Rough Number Information System Considering Distribution Types. International Journal of Computers Communications & Control, 19(4), 6633, 2024. https://doi.org/10.15837/ijccc.2024.4.6633
Lu, H.; Khalil, A.M.; Alharbi, W; A El-Gayar, M. (2021). A New Type of Generalized Picture Fuzzy Soft Set and Its Application in Decision Making. Journal of Intelligent & Fuzzy Systems, 40(6), 12459-12475, 2021. https://doi.org/10.3233/JIFS-201706
Luo, M.; Long, H. (2021). Picture Fuzzy Geometric Aggregation Operators Based on a Trapezoidal Fuzzy Number and Its Application. Symmetry, 13(1), 119, 2021. https://doi.org/10.3390/sym13010119
Maji, P.K.; Biswas, R.; Roy. A.R. (2001) Fuzzy soft sets. Journal of Fuzzy Mathematics, 9, 589- 602, 2001.
Maji, P.K.; Biswas, R.; Roy. A.R. (2001) Intuitionistic Fuzzy soft sets. Journal of Fuzzy Mathematics, 9, 677-692, 2001.
Metakides, G; Filip, F.G. (2025). Digital Enlightenment, Digital Humanism, and Computersupported Collaboration in Artificial Intelligence Era. Annals of Data Science, 2025. https://doi.org/10.1007/s40745-025-00640-w
Molnár, G.; Ürge-Vorsatz, D.; Chatterjee, S. (2022). Estimating the global technical potential of building-integrated solar energy production using a high-resolution geospatial model. Journal of Cleaner Production, 375, 2022. https://doi.org/10.1016/j.jclepro.2022.134133
Molodtsov, D. (1999) Soft Set Theory-First Results. Computers & Mathematics with Applications, 37(4-5), 19-31, 1999. https://doi.org/10.1016/S0898-1221(99)00056-5
Ortiz-Barrios, M.A.; Madrid-Sierra, S.L.; Petrillo, A.; Quezada, L.E. (2023). A novel approach integrating IF-AHP, IF-DEMATEL and CoCoSo methods for sustainability management in food digital manufacturing supply chain systems. Journal of Enterprise Information Management, 2023. https://doi.org/10.1108/JEIM-04-2023-0199
Pankaj, P.D.; Dilip, K.S. (2022). Application of Shannon entropy and CoCoSo methods in selection of the most appropriate engineering sustainability components. Cleaner Materials, 5, 2022. https://doi.org/10.1016/j.clema.2022.100118
Parsa Rad, A.; Khalilzadeh, M.; Banihashemi, S.A.; Božanić, D.; Milić, A.; Ćirović, G. (2024). Supplier Selection in Downstream Oil and Gas and Petrochemicals with the Fuzzy BWM and Gray COCOSO Methods Considering Sustainability Criteria and Uncertainty Conditions. Sustainability, 16, 2024. https://doi.org/10.3390/su16020880
Peng, X.; Garg, H. (2022). Intuitionistic fuzzy soft decision making method based on CoCoSo and CRITIC for CCN cache placement strategy selection. Artificial Intelligence Review, 55, 1567- 1604, 2022. https://doi.org/10.1007/s10462-021-09995-x
Peng, X.Y.; Zhao, Y.; Cai, Y.J.; Su, X. (2024). Application of multi-attribute decision-making method based on fuzzy influence diagram in green supplier selection. International Journal of Computers Communications & Control, 19(2), 6111, 2024. https://doi.org/10.15837/ijccc.2024.2.6111
Popović, M. (2021). An MCDM Approach for Personnel Selection using the CoCoSo Method. Journal of Process Management New Technologies, 9(3-4), 78-88, 2021. https://doi.org/10.5937/jouproman2103078P
Punetha, T., Komal, K., Pamucar, D. (2024). Novel picture fuzzy power partitioned Hamy mean operators with Dempster-Shafer theory and their applications in MCDM. Artificial Intelligence Review, 57, 145, 2024. https://doi.org/10.1007/s10462-024-10757-8
Qin, Y.; Qi, Q.; Shi, P.; Scott, P.J.; Jiang, X. (2020). Novel operational laws and power Muirhead mean operators of picture fuzzy values in the framework of Dempster-Shafer theory for multiple criteria decision making. Computers & Industrial Engineering, 149, 2020. https://doi.org/10.1016/j.cie.2020.106853
Rani, P.; Mishra, A.R.; Krishankumar, R.; Ravichandran, K.S.; Kar, S. (2021). Multi-criteria food waste treatment method selection using single-valued neutrosophic-CRITIC-MULTIMOORA framework. Applied Soft Computing, 111, 2021. https://doi.org/10.1016/j.asoc.2021.107657
Sasikumar, G.; Sivasangari, A. (2022). Multi-criteria decision-making for solar panel selection using an integrated analytical hierarchy process and VIKOR approach: a case study. International Journal of Business Information Systems, 40(2), 285-298, 2022. https://doi.org/10.1504/IJBIS.2022.123625
Shafer, G. (1976). A mathematical theory of evidence. Princeton: Princeton University Press, 1976. https://doi.org/10.1515/9780691214696
Shi, K.; Peng, J. (2024). An Online Review-Driven Picture Fuzzy Multi-Criteria Group Decision- Making Approach for Evaluating the Online Medical Service Quality of Doctors. Symmetry, 16(6), 639, 2024. https://doi.org/10.3390/sym16060639
Siwiec, D.; Pacana, A. (2021). Model of Choice Photovoltaic Panels Considering Customers' Expectations. Energies, 14, 2021. https://doi.org/10.3390/en14185977
Stanujkić, D.; Karabašević, D.; Popović, G.; Stanimirović, P.S.; Saračević, M.; Smarandache, F.; Katsikis, V.N.; Ulutaş, A. (2021). A New Grey Approach for Using SWARA and PIPRECIA Methods in a Group Decision-Making Environment. Mathematics, 9, 1554, 2021. https://doi.org/10.3390/math9131554
Sumerli, S.S.; Ünlü, M.; Yaşar, E. (2023). A New MCDM Approach in Evaluating Airport Service Quality: MEREC-Based MARCOS and CoCoSo Methods. International Journal of Management Academy, 6(1), 90-108, 2023. https://doi.org/10.33712/mana.1250335
Tian, C.; Peng, J. (2020). An integrated picture fuzzy ANP-TODIM multi-criteria decisionmaking approach for tourism attraction recommendation. Technological and Economic Development of Economy, 26(2), 331-354, 2020. https://doi.org/10.3846/tede.2019.11412
Torkayesh, A.E.; Ecer, F.; Pamucar, D.; Karamaşa, Ç. (2021). Comparative assessment of social sustainability performance: Integrated data-driven weighting system and CoCoSo model. Sustainable Cities and Society, 71, 2021. https://doi.org/10.1016/j.scs.2021.102975
Turskis, Z.; Bausys, R.; Smarandache, F.; Kazakeviči¯ut˙e-Januškevičien˙e, G.; Zavadskas, E. K.
(2022). M-generalised q-neutrosophic extension of CoCoSo method. International Journal of Computers, Communications & Control, 17(1), 1-12, 2022. https://doi.org/10.15837/ijccc.2022.1.4646
Wang, T.; Wu, X.; Garg, H.; Liu, Q.; Chen, G. (2023). A prospect theory-based MABAC algorithm with novel similarity measures and interactional operations for picture fuzzy sets and its applications. Engineering Applications of Artificial Intelligence, 126(A), 2023. https://doi.org/10.1016/j.engappai.2023.106787
Wang, L.; Li, N. (2019) Continuous Interval-valued Pythagorean Fuzzy aggregation operators for multiple attribute group decision making. Journal Metrics: International Journal of Intelligent Systems, 36 (6), 6245-6263, 2019. https://doi.org/10.3233/JIFS-182570
Wei, G. (2017). Picture fuzzy aggregation operators and their applications to multiple attribute decision making. Journal of Intelligent & Fuzzy Systems, 33(2), 713-724, 2017. https://doi.org/10.3233/JIFS-161798
Wei, G. (2018). TODIM Method for Picture Fuzzy Multiple Attribute Decision Making. Informatica, 29(3), 555-566, 2018. https://doi.org/10.15388/Informatica.2018.181
Xie, B.; Yuan, H. (2025). Enhancing the combined compromise solution method for group decision-making under intuitionistic fuzziness: an application to blended English teaching quality evaluation in vocational colleges. Soft Computing, 29, 1005-1017, 2025. https://doi.org/10.1007/s00500-025-10417-1
Yazdani, M.; Zarate, P.; Zavadskas, E.K.; Turskis, Z. (2024). A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems. Management Decision, 57(9), 2501-2519, 2024. https://doi.org/10.1108/MD-05-2017-0458
Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X
Zhang, P.; Tao, Z.; Liu, J.; Jin, F. Zhang, J. (2020). An ELECTRE TRI-based outranking approach for multi-attribute group decision making with picture fuzzy sets. Journal of Intelligent & Fuzzy Systems, 38(4), 4855-4868, 2020. https://doi.org/10.3233/JIFS-191540
Zhang, S.; Wei, G.; Gao, H.; Wei, C.; Wei, Y. (2019). EDAS method for multiple criteria group decision making with picture fuzzy information and its application to green suppliers selections. Technological and Economic Development of Economy, 25(6), 1123-1138, 2019. https://doi.org/10.3846/tede.2019.10714
Zhao, R.R; Luo, M.X.; Li, S.G.; Ma, L.N. (2023). A parametric similarity measure between picture fuzzy sets and its applications in multi-attribute decision-making. Iranian Journal of Fuzzy Systems, 20(1), 87-102, 2023.
Zheng, Y.; Qin, H.; Ma, X. (2024). A novel group decision making method based on CoCoSo and interval-valued Q-rung orthopair fuzzy sets. Scientific Reports, 14, 2024. https://doi.org/10.1038/s41598-024-56922-5
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 Romualdas Bausys, Birute Juodagalviene, Giruta Kazakeviciute-Januskeviciene, Ernestas Cepulionis, Edmundas Kazimieras Zavadskas

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.






