Intelligent Autopilot Design for Fixed-Wing UAVs: Robust Stabilization and Trajectory Tracking Using Advanced Evolutionary and Swarm Optimization Algorithms

Authors

  • Majid Fayti Electrical systems, Energy Efficiency, and Telecommunications Laboratory, Department of Applied Physics, Faculty of Science and Technology, Marrakech, Morocco
  • Mostafa Mjahed Maths and Systems Department, Royal School of Aeronautics, Marrakech, Morocco
  • Hassan Ayad Electrical Systems, Energy Efficiency, and Telecommunications Laboratory, Department of Applied Physics, Faculty of Science and Technology, Marrakech, Morocco
  • Abdeljalil El Kari Electrical Systems, Energy Efficiency, and Telecommunications Laboratory, Department of Applied Physics, Faculty of Science and Technology, Marrakech, Morocco

DOI:

https://doi.org/10.15837/ijccc.2026.1.7197

Keywords:

Fixed-wing UAV, Intelligent Autopilot, Optimization, Differential Evolution, Ant Lion Optimizer, Bat Algorithm, Harmony Search, Trajectory Tracking

Abstract

This paper presents the development and analysis of an intelligent autopilot system for a fixedwing unmanned aerial vehicle (FWUAV), designed to stabilize and track critical flight parameters: airspeed, altitude, heading angle, and sideslip angle. The proposed system leverages a modular control architecture based on successive closed-loop control channels, enhanced by advanced optimization methods: Ant Lion Optimizer (ALO), Differential Evolution (DE), Bat Algorithm (BA), and Harmony Search (HS). Simulation results validate the robustness and efficiency of the autopilot system under various scenarios, including fixed set-point hovering and trajectory tracking for both straight-line and orbital paths, with and without wind perturbations. Comparative analyses with state-of-the-art methods from the literature demonstrate that the DE and ALO-based controllers consistently achieve superior performance in terms of precision and rapidity while maintaining adaptability to nonlinear dynamics and external disturbances. Furthermore, the findings highlight the potential of the proposed autopilot architecture and optimization methods in enhancing UAV control accuracy and robustness.

References

Abdelmoneim, M., & Osman, A. (2019). Lateral and Longitudinal Controllers Design for a Fixed Wing UAV, International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), 1-6, 2019. https://doi.org/10.1109/ICCCEEE46830.2019.9071049

Li, Y., Chen, C., & Chen, W. (2013). Research on Longitudinal Control Algorithm for Flying Wing UAV Based on LQR Technology, International Journal on Smart Sensing and Intelligent Systems, 6(5), 2155-2181, 2013. https://doi.org/10.21307/ijssis-2017-632

Putro, I. E., & Duhri, R. A. (2020). Longitudinal Stability Augmentation Control for Turbojet UAV Based on Linear Quadratic Regulator (LQR) Approach, AIP Conference Proceedings, 2226(April 2020). https://doi.org/10.1063/5.0002786

Duan, Z. (2013). Longitudinal Control Law Design and Simulation of Fixed-Wing UAV, Applied Mechanics and Materials, 241-244, 1128-1132, 2013. https://doi.org/10.4028/www.scientific.net/AMM.241-244.1128

Chandar, E. A. S. (2022). A Review on Longitudinal Control Law Design for a Small Fixed-Wing UAV, International Research Journal of Engineering and Technology, 9(2), 197-202, 2022.

Haridas, V., & Vivek, A. (2016). Longitudinal Guidance of Unmanned Aerial Vehicle Using Integral Sliding Mode Control, Procedia Technology, 25(Raerest), 36-43, 2016. https://doi.org/10.1016/j.protcy.2016.08.078

El Gmili, N., El Hamidi, K., Mjahed, M., El Kari, A., & Ayad, H. (2024). Intelligent Sliding Mode Control for Quadrotor Trajectory Tracking Under External Disturbances, Electrica, 24(2), 304-317, 2024. https://doi.org/10.5152/electrica.2024.23101

Dahmad, H. A., Ayad, H., Cerezo, A. G., and Mousannif, H. (2024). IT-2 Fuzzy Control and Behavioral Approach Navigation System for Holonomic 4WD/4WS Agricultural Robot, Int. J. Comput. Commun. Control, 19(3), 2024. https://doi.org/10.15837/ijccc.2024.3.6420

El Hamidi, K., Mjahed, M., El Kari, A., and Ayad, H. (2018). Neural and Fuzzy-Based Nonlinear Flight Control for an Unmanned Quadcopter, Int. Rev. Autom. Control, 11(3), 98-106, 2018. https://doi.org/10.15866/ireaco.v11i3.14055

Korany, M., Youssef, A., and El-Sheikh, G. (2014). Comparative Synthesis of UAV Flight Control in Presence of Actuators and Sensors Dynamics, Int. Conf. Electr. Eng., 9(9), 1-8, 2014. https://doi.org/10.21608/iceeng.2014.30458

Sarhan, A., and Ashry, M. (2013). Self-Tuned PID Controller for the Aerosonde UAV Autopilot, Int. J. Eng. Res. Technol., 2(12), 181-2278, 2013.

Mjahed, M. (2019). Flight Control System Design Using Neural Networks, Int. Robot. Autom. J., 5(3), 96-99, 2019. https://doi.org/10.15406/iratj.2019.05.00180

Mobarez, E. N., Sarhan, A., and Ashry, M. M. (2019). Classical and Intelligent Multivariable Controllers for Aerosonde UAV, Proc. - 2019 IEEE 9th Int. Conf. Intell. Comput. Inf. Syst. ICICIS 2019, 350-355, 2019. https://doi.org/10.1109/ICICIS46948.2019.9014824

Mobarez, E. N., Sarhan, A., and Ashry, M. M. (2020). Multi-Variable Controllers for Cooperative Flight of Multi-Fixed Wing UAVs, 2020 12th Int. Conf. Electr. Eng. ICEENG 2020, pp. 402-409, 2020. https://doi.org/10.1109/ICEENG45378.2020.9171776

Azegmout, M.; Mjahed, M.; El Kari, A.; Ayad, H. (2023). New Meta-heuristic-Based Approach for Identification and Control of Stable and Unstable Systems, International Journal of Computers Communications and Control, 18(4), 5294, 2023. https://doi.org/10.15837/ijccc.2023.4.5294

Oultiligh, A., Ayad, H., El Kari, A., Mjahed, M., and El Gmili, N. (2024). A Novel Improved Elephant Herding Optimization for Path Planning of a Mobile Robot, International Journal of Electrical and Computer Engineering (IJECE), 14(1), 206-217, 2024. https://doi.org/10.11591/ijece.v14i1.pp206-217

El Gmili, N., Mjahed, M., El Kari, A., and Ayad, H. (2019). Particle Swarm Optimization and Cuckoo Search-Based Approaches for Quadrotor Control and Trajectory Tracking, Applied Sciences, 9(8), 2019. https://doi.org/10.3390/app9081719

Siti, I., Mjahed, M., Ayad, H., and El Kari, A. (2019). New Trajectory Tracking Approach for a Quadcopter Using Genetic Algorithm and Reference Model Methods, Appl. Sci., 9(9), 2019. https://doi.org/10.3390/app9091780

Elbatal, A., Youssef, A. M., and Elkhatib, M. M. (2021). Smart Aerosonde UAV Longitudinal Flight Control System Based on Genetic Algorithm, Bull. Electr. Eng. Informatics, 10(5), 2433-2441, 2021. https://doi.org/10.11591/eei.v10i5.2342

D'Antuono, V., De Matteis, G., Trotta, D., and Zavoli, A. (2023). Optimization of UAV Robust Control Using Genetic Algorithm, IEEE Access, 11(10), 122252-122272, 2023. https://doi.org/10.1109/ACCESS.2023.3325845

Durmaz, M., Cící, K., Sarikaya, M., Bílící, M., and Bílgíç H. H. (2023). Metaheuristic Algorithm- Based Cascade PID Controller Design for Fixed-Wing Unmanned Aerial Vehicle, Eur. Mech. Sci., 7(4), 230-237, 2023. https://doi.org/10.26701/ems.1243796

Lastomo,D., Setiadi,H., and Djalal,M. R.(2017). Optimization pitch angle controller of rocket system using improved differential evolution algorithm, International Journal of Advances in Intelligent Informatics,3(1), 27-34, 2017. https://doi.org/10.26555/ijain.v3i1.83

Pradhan, R., MajhiS. K., Pradhan, J. K. and Pati, B. B.(2020). Optimal fractional order PID controller design using Ant Lion Optimizer,Ain Shams Engineering Journal,11(2), 281-291, 2020 https://doi.org/10.1016/j.asej.2019.10.005

Fayti, M., Mjahed, M., Ayad, H., and El Kari, A. (2022). Differential Evolution Approach for Identification and Control of Stable and Unstable Systems, 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), Istanbul, Turkey, 2022, pp. 218-223. https://doi.org/10.1109/CoDIT55151.2022.9804077

Fayti, M., Mjahed, M., Ayad, H., and El Kari, A. (2023). Recent Metaheuristic-Based Optimization for System Modeling and PID Controllers Tuning, Studies in Informatics and Control, 32(1), 57-67, 2023. https://doi.org/10.24846/v32i1y202306

Beard, R. W., and McLain, T. W. (2012). Small Unmanned Aircraft: Theory and Practice, Princeton University Press, Princeton. https://doi.org/10.1515/9781400840601

Mirjalili, S. (2015). The Ant Lion Optimizer. Advances in Engineering Software, 83, 80-98. https://doi.org/10.1016/j.advengsoft.2015.01.010

Storn, R. and Price, K.(1997). Differential Evolution-A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces, Kluwer Academic Publishers, 1997. https://doi.org/10.1023/A:1008202821328

Yang, X. and Hossein Gandomi, A. (2012). Bat algorithm: a novel approach for global engineering optimization, Engineering Computations, 29(5),464-483,2012 https://doi.org/10.1108/02644401211235834

Yi, J., Lu, C., and Li, G. (2019). A Literature Review on Latest Developments of Harmony Search and Its Applications to Intelligent Manufacturing, Mathematical Biosciences and Engineering, vol. 16(4), 2086-2117, 2019. https://doi.org/10.3934/mbe.2019102

Invernizzi, D. , Lovera, M. and Zaccarian, L. (2020). Integral ISS-Based Cascade Stabilization for Vectored-Thrust,IEEE Control Systems Letters, vol. 4(1), 43-48,2020 https://doi.org/10.1109/LCSYS.2019.2921535

Hosseini, S. M. , Bematol, I. , Ghazi, G. and Botez, R. M. (2024). Enhanced fuzzy-based supertwisting sliding-mode control system for the Cessna Citation X Lateral Motion, Aerospace,11(7), 2024. https://doi.org/10.3390/aerospace11070549

Qian, L. and Liu, H. H. T. (2022). Robust Control Study for Tethered Payload Transportation Using Multiple Quadrotors, Journal of Guidance, Control, and Dynamics, 45(3), 434-452, 2022. https://doi.org/10.2514/1.G006173

Guo, Y. , Luo, L. and Bao, C. (2022). Design of a Fixed-Wing UAV Controller Combined Fuzzy Adaptive Method and Sliding Mode Control, Mathematical Problems in Engineering, Article ID 2812671, 22 pages, 2022. https://doi.org/10.1155/2022/2812671

Elbatal,A. , Elkhatib, M. M. and Youssef, A. M.(2020). Intelligent Autopilot Design Based on Adaptive Neuro -Fuzzy Technique and Genetic Algorithm, 2020 12th International Conference on Electrical Engineering (ICEENG),377-382, 2020. https://doi.org/10.1109/ICEENG45378.2020.9171702

Additional Files

Published

2026-01-21

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.