Development of SMOTET-LSTM Model Based on Hyperparameter Tuning for Fault Classification in Multi-Sensor Nodes

Authors

  • Uğur Şansal Institute of Science, Department of Computer Engineering, Suleyman Demirel University, Turkey
  • Mevlüt Ersoy Department of Computer Engineering, Faculty of Engineering and Natural Sciences, Suleyman Demirel University Süleyman Demirel University, Turkey

DOI:

https://doi.org/10.15837/ijccc.2025.3.7046

Keywords:

Fault Detection, Classification, Deep Learning, Machine Learning

Abstract

In the context of Internet of Things (IoT) structures, sensor nodes have been observed to generate erroneous data due to their constrained operational capacity and position. The presence of faulty nodes can lead to significant challenges in communication, data traffic, and data evaluation. Consequently, it is imperative to segregate data obtained from faulty nodes from standard data. Concurrently, the identification of the specific fault type is paramount. The present study utilised machine learning and deep learning techniques to classify fault types, with the data collected from 54 sensors in a closed building over a period of 3 months. Initially, the performance analysis of the LSTM model was compared with that of Support Vector Machine (SVM), K-Nearest Neighbor (KNN) and Random Forest (RF) machine learning algorithms, given the utilisation of large amounts of data. Subsequently, as certain classes were characterised by limited data, data augmentation was implemented using synthetic data, and the SMOTET-LSTM model was developed through HPO (Hyper Parameter Optimization). This model demonstrated superior performance in comparison to the other algorithms.

References

Emperuman,M.;Chandrasekaran,S.(2020); Hybrid continuous density hmm-based ensemble neural networks for sensor fault detection and classification in wireless sensor network, Sensors, https://doi.org/10.3390/s20030745, 20,2020.

Vuran,M.C.; Akan,Ö.B.; Akyildiz,I.F.(2004); Spatio-temporal correlation: Theory and applications for wireless sensor networks, Comput. Networks, https://doi.org/10.1016/j.comnet.2004.03.007,45,245—259,2004

Yick.J.;Mukherjee,B.;Ghosal,D.(2008); Wireless sensor network survey, Comput. Networks., 52, 2292—2330,2008, https://doi.org/10.1016/j.comnet.2008.04.002

Ndiaye,M.; Hancke,G.P.; Abu-Mahfouz,A.M.(2017); Software defined networking for improved wireless sensor network management: A survey, Sensors,17 1—32,2017 https://doi.org/10.3390/s17051031

Cisco,T.;Internet,A.(2020); 2020 CISO Benchmark Report Comput. Fraud Secur,2020,4. https://doi.org/10.1016/s1361–3723(20)30026-9.

Chen,Y.; Son,S.H.(2005); A fault tolerant topology control in wireless sensor networks, 3rd ACS/IEEE Int. Conf. Comput. Syst. Appl,269-–276,2005 https://doi.org/10.1109/AICCSA.2005.1387051.

YU,M.; MOKHTAR,H.; MERABTI,.M.(2007); Fault Management in Wireless Sensor Networks, IEEE Wirel. Commun,13-–19.(2007)

Mahapatro,A.; Panda,A.K.(2014); Choice of detection parameters on fault detection in wireless sensor networks: A multiobjective optimization approach, Wirel. Pers. Commun, 78, 649- –669,(2014) https://doi.org/10.1007/s11277-014-1776-1.

Panda,M.; Khilar,P.M.(2014); Energy efficient distributed fault identification algorithm in wireless sensor networks, J. Comput. Networks Commun,(2014). https://doi.org/10.1155/2014/323754.

Munir,A.; Antoon,J.; Gordon-Ross,A.(2015); Modeling and analysis of fault detection and fault tolerance in wireless sensor networks, ACM Trans. Embed. Comput. Syst,14, (2015). https://doi.org/10.1145/2680538.

Swain,R.R.; Khilar, P.M.;Bhoi,S.K.(2018); Heterogeneous fault diagnosis for wireless sensor networks, Ad Hoc Networks., 69, 15—37,(2018) https://doi.org/10.1016/j.adhoc.2017.10.012.

Barooah,P.; Chenji,H.; Stoleru,R.; Kalmár-Nagy,T.(2012); Cut detection in wireless sensor networks, IEEE Trans. Parallel Distrib. Syst ,23, 483-–490, (2012) https://doi.org/10.1109/TPDS.2011.178.

Sahoo,M.N.;Khilar,P.M.(2014); Diagnosis of wireless sensor networks in presence of permanent and intermittent faults, Wirel. Pers. Commun. ,78, 1571—1591,(2014) https://doi.org/10.1007/s11277-014-1836-6.

Lee,M.H.; Choi,Y.H.(2008); Fault detection of wireless sensor networks, Comput. Commun,31,3469—3475,(2008) https://doi.org/10.1016/j.comcom.2008.06.014.

Chen,Q.; Lam,K.Y.; Fan,P.(2005); Distributed Bayesian algorithms for fault-tolerant event region detection in wireless sensor networks, IEEE Trans. Comput. , 54, 1182—1183,(2005). https://doi.org/10.1109/TC.2005.140.

Bagci,H.; Korpeoglu,I.; Yazici,A(2015); A distributed fault-tolerant topology control algorithm for heterogeneous wireless sensor networks, IEEE Trans. Parallel Distrib. Syst. , 26,914—923, (2015) https://doi.org/10.1109/TPDS.2014.2316142.

Zidi,S.; Moulahi,T.; Alaya,B.(2017); Fault detection in wireless sensor networks through SVM classifier, IEEE Sens. J. ,18, 340-–347,(2018) https://doi.org/10.1109/JSEN.2017.2771226.

Muhammed,T.; Shaikh,R.A(2017); An analysis of fault detection strategies in wireless sensor networks, J. Netw. Comput. Appl. , 78, 267—287, (2017) https://doi.org/10.1016/j.jnca.2016.10.019.

Prasojo,R.A; Gumilang,H.; Maulidevi Suwarno,N.U.; Soedjarno,B.A.(2020); A fuzzy logic model for power transformer faults’ severity determination based on gas level, gas rate, and dissolved gas analysis interpretation,Energies (Basel), 13 (4) (2020), p. 1009, 10.3390/en13041009

Manoj,T.; Ranga,C.; Ghoneim,S.S.M.; Rao,U.M.; Abdelwahab,S.A.M.(2023); Alternate and effective dissolved gas interpretation to understand the transformer incipient faults, IEEE Transact Dielectr Electr Insul , 30,(3), pp. 1231–1239, (2023) 10.1109/tdei.2023.3237795

Prasojo,R.A.(2023); et al. Precise transformer fault diagnosis via random forest model enhanced by synthetic minority over-sampling technique, 220,Article 109361, (2023) Electr Pow Systems Res, 10.1016/j.epsr.2023.109361

Wu,Z.; Zhou,M.; Lin,Z.;Chen,X.; Huang,Y.(2021); Improved genetic algorithm and XGBOOST classifier for power transformer fault diagnosis, Front Energy Res, 9,(2021) 10.3389/fenrg.2021.745744

Zhang,Y.; Li,X.; Zheng,H.; Yao,H.; Liu,J.;Zhang,C.; Jiao,J.(2019); A fault diagnosis model of power transformers based on dissolved gas analysis features selection and improved Krill Herd algorithm optimized support vector machine, IEEE Access, 7, pp. 102803-102811, (2019) 10.1109 /access. 2019.2927018

Dashtdar,M.; Flah,A.; Hosseinimoghadam,S.M.S.;Reddy,C.R.;Kotb,H.;AboRas,K.M.;Bortoni,E.C.(2022); Improving the power quality of island microgrid with voltage and frequency control based on a hybrid genetic algorithm and PSO, IEEE Access,10, pp. 105352-105365,(2022) 10.1109/ access.2022.3201819

Jiahao,Y.; Jiang,X.; Wang,S.; Jiang,K.; Yu,X.(2020); SVM-BILSTM: A fault detection method for the gas station IoT system based on deep learning, IEEE Access,8,203712–203723,(2020), https://doi.org/10.1109/ACCESS.2020.3034939.

Huang,H.; Zhao,L.; Huang,H.; Guo,S.(2020); Machine Fault Detection for Intelligent Self-Driving Networks, IEEE Commun. Mag.,58,40—46,(2020) https://doi.org/10.1109/MCOM.001.1900283.

Bakhshi Kiadehi,K.; Rahmani,A.M.; Sabbagh Molahosseini,A.(2021); A fault-tolerant architecture for internet-of-things based on software-defined networks, Telecommun. Syst,77, 155— 169,(2021) https://doi.org/10.1007/s11235-020-00750-1.

Leu,F.Y.; Tsai,K.L.; Susanto,H.; Gu,C.Y.(2020); You,I.; A Fault Tolerant Mechanism for UE Authentication in 5G Networks, Mob. Networks Appl. (2020). https://doi.org/10.1007/s11036- 019-01502-5.

Qian,J.;Tiwari,P.; Gochhayat,S.P; Pandey,H.M.(2020); A noble double dictionary based ECG Compression Technique for IoTH, IEEE Internet Things J.,4662 1–1,(2020) https://doi.org/10.1109/jiot.2020.2974678.

Saghiri,A.M.(2020); Blockchain Architecture, 161–176,(2020) https://doi.org/10.1007/978- 981-13-8775-3_8.

Wojciechowski, S.;Wilk,S.(2017); Difficulty Factors and Preprocessing in Imbalanced Data Sets: An Experimental Study on Artificial Data, Foundations of Computing and Decision Sciences.,vol. 42 no. 2, pp. 149-176. (2017) https://doi.org/10.1515/fcds-2017-0007

Zhang, M.; Lu, J.; Ma, N.; Cheng, T.C.E.; Hua G. (2022); A Feature Engineering and Ensem-ble Learning Based Approach for Repeated Buyers Prediction, International Journal of Computers Communications&Control, 17(6), 4988, 2022. https://doi.org/10.15837/ijccc.2022.6.4988

Cui,Y.;Ma.H.;Saha,T.(2014); "Improvement of power transformer insulation diagnosis using oil characteristics data preprocessed by SMOTEBoost technique," in IEEE Transactions on Dielectrics and Electrical Insulation, vol. 21, no. 5, pp. 2363–2373,2014, 10.1109/TDEI.2014.004547.

Verma,A.; Prakash,S.; Srivastava,V.; Kumar,A.; Mukhopadhyay,S.C.(2019); Sensing, Controlling, and IoT Infrastructure in Smart Building: A Review, IEEE Sens. J.,19, 9036—9046,(2019) https://doi.org/10.1109/JSEN.2019.2922409.

Peng,N.; Zhang,W.; Ling,H.; Zhang,Y.; Zheng,L.(2018); Fault-tolerant anomaly detection method in wireless sensor networks, Inf. 9,(2018). https://doi.org/10.3390/info9090236.

Kazmi,H.S.Z.; Javaid,N.; Awais,M.;Tahir,M.; Shim,S.O.; Bin Zikria,Y.(2019); Congestion avoidance and fault detection in WSNs using data science techniques, Trans. Emerg. Telecommun. Technol., Trans. Emerg. Telecommun. Technol. 1–21,2019 https://doi.org/10.1002/ett.3756.

Noshad,Z.; Javaid,N.; Saba,T.;Wadud,Z.; Saleem,M.Q.; Alzahrani,M.E.; Sheta,O.E.(2019); Fault detection in wireless sensor networks through the random forest classifier, Sensors.,19,1–21,2019. https://doi.org/10.3390/s19071568.

Javaid,A.;Javaid,N.; Wadud,Z.; Saba,T.; Sheta,O.E.; Saleem,M.Q.; Alzahrani,M.E.(2019); Machine learning algorithms and fault detection for improved belief function based decision fusion in wireless sensor networks, Sensors., 19,1—28,2019 https://doi.org/10.3390/s19061334.

Jafarali Jassbi,S.; Moridi,E.(2019); Fault Tolerance and Energy Efficient Clustering Algorithm in Wireless Sensor Networks, FTEC, Wirel. Pers. Commun., 107, 373—391,(2019) https://doi.org/10.1007/s11277-019-06281-6.

Jia,S.; Ma,L.; Qin,D.(2018); Fault detection modelling and analysis in a wireless sensor network, J. Sensors. 2018. https://doi.org/10.1155/2018/7935802.

Cristianini,N.; Ricci,E.(2008); Support Vector Machines, in: M.-Y. Kao (Ed.), Encycl. Algorithms, Springer US, Boston, MA, 2008: pp. 928—932. https://doi.org/10.1007/978-0- 387-30162-4_415.

BREIMAN,L.(2001); Random forests, Mach. Leatning. 45,5—32,(2001). https://doi.org/10.1007/978-3-662-56776-0_10.

Masetic,Z.; Subasi,A.(2016); Congestive heart failure detection using random forest classifier., Comput. Methods Programs Biomed,130 , 54—64, (2016). https://doi.org/10.1016/j.cmpb.2016.03.020.

Dilki,G.; Deniz Başar,Ö.; Yazar,S.; Author,C.; Tarihi,G.(2020); işletmelerin iflas tahmininde k- en yakın komşu algoritması üzerinden uzaklık ölçütlerinin karşılaştırılması, İstanbul Ticaret Üniversitesi Fen Bilim. Derg. 19 224—233,(2020) http://dergipark.gov.tr/ticaretfbd.

Yu,H.; Yu,J.(2005); A Modified SMO Algorithm for SVM Regression and Its Application in Quality Prediction of HP-LDPE, Springer,Berlin, Heidelberg, 2005. https://doi.org/https://doi.org/10.1007/11539087_79.

Sekulić, A.; Kilibarda, M.; Heuvelink, G.B.M.; Nikolić, M.(2020); Bajat, B. Random Forest Spatial Interpolation. Remote Sens. 2020, 12, 1687. https://doi.org/10.3390/rs12101687

Wang,Z.; Wu,C.; Zheng,K.; Niu,X.; Wang,X.(2019); “SMOTETomek-Based Resampling for Personality Recognition,” IEEE Access, vol. 7, pp. 129678—129689, 2019, 10.1109/ACCESS.2019.2940061.

Shelke1,M.S.; Deshmukh2,P.R.; Shandilya,V.K.(2017); “A Review on Imbalanced Data Handling UsingUndersampling and Oversampling Technique,”, International Journal of Recent Trends in Engineering and Research, vol. 3, no. 4, pp. 444-–449, 2017. 10.23883/ijrter.2017.3168.0uwxm.

Tra,V.; Duong,B.P.; Kim,J.M.(2019); Improving diagnostic performance of a power transformer using an adaptive over-sampling method for imbalanced data, IEEE Transact Dielectr Electr Insul, 26 (4) s. 1325–1333, (2019). 10.1109/tdei.2019.008034.

Gamel,Samah A.; Ghoneim,Sherif S.M; Sultan,Yara A.(2024); Improving the accuracy of diagnostic predictions for power transformers using a hybrid approach combining SMOTE and DNN, Computers and Electrical Engineering, Volume 117, 2024, 109232, ISSN 0045-7906, https://doi.org/10.1016/j.compeleceng.2024.109232.

[Online].S. Madden, Intel Lab Data, Available: http://db.csail.mit.edu/labdata/labdata.html (Accesed on 2 February 2025).

Falkner,S.; Klein,A.; Hutter,F.(2018); BOHB: Robust and efficient hyperparameter optimization at scale, ArXiv,(2018).

Additional Files

Published

2025-05-05

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.