Steganalysis of ±k Steganography based on Noncausal Linear Predictor


  • K. Manglem Singh Dept of CSE NIT Manipur, Imphal -795001 India
  • Yambem Jina Chanu Department of Computer Science & Engineering, NERIST, Itanagar, India
  • Themrichon Tuithung Department of Computer Science & Engineering, NERIST, Itanagar, India


LSB embedding, noncausal linear predictor, RS analysis, steganalysis, steganography


The paper proposes a novel steganalytic technique for ±k steganography
based on noncausal linear predictor using prediction coefficients obtained from the autocorrelation
matrix for a block of pixels in the stego-image. The image is divided into
equal-size blocks, autocorrelation matrix is found for the block, and the appropriate
noncausal linear prediction coefficients is selected to predict all pixels in that block. A
pixel is assumed to be embedded with message bit if the absolute difference between
the original pixel value and predicted pixel value exceeds the pre-defined threshold.
The effectiveness of the proposed technique is verified using different images.


Kawaguchi E.; Noda H.; Niimi M.; Eason R.O. (2003); A Model of Anonymous Covert Mailing System Using Steganographic Scheme, in Information modelling and knowledge bases, XIV, H. Yaakkola et al. (Eds), IOS Press, 81-85.

Wang H.; Wang S. (2004); Cyber Warfare Steganography vs Steganalysis, ACM Commun., 47: 76-82.

Anderson R.J.; Pettitcolas, F.A.P. (1998); On The Limits Of Steganography, IEEE Journal on Selected Areas in Communication, 16(4): 474-481.

Zhang X.; Wang S. (2006); Dynamically Running Coding In Digital Watermarking, IEEE Signal Processing Letters, 13(3): 165-168.

Provos N.; Honeyman P. (2003); Hide And Seek: An Introduction To Steganography, IEEE Security And Privacy, 1(3): 32-44.

Westfeld A.; Pfitzmann A. (1999); Attack On Steganographic Systems, Proc. Information Hiding - 3rd Intel Workshop, Springer Verlag, 61-76.

Fridrich J.; Goljan M. (2000); Practical Steganalysis Of Digital Images - State Of The Art, Security And Watermarking Of Multimedia Contents IV, E.J. Delp III and P.W. Wong, editors, Proc. of SPIE, 4675, 1-13.

Zhi L.; Fen S.A.; Xian Y.Y.A. (2003); LSB Steganography Detection Algorithm, Proc. IEEE ISPIMRC, 2780-2783.

LSB Steganography Detection Algorithm, Proc. IEEE ISPIMRC, 2780-2783.

Zhang T.; Ping X. (2003); Reliable Detection Of LSB Steganography Based On The Difference Image Histogram, IEEE International Conference on Acoustics, Speech, and Signal Processing, 3: 545-548.

Mielikainen J. (2006); LSB Matching Revisted, IEEE Signal Processing Letters, 13(5): 285-287.

Li X.; Yang B.; Cheng D.; Zeng T. (2009); A Generalization Of LSB Matching, IEEE Signal Processing Letters, 16(2): 69-72.

Fridrich J.; Soukal D.; Goljan M. (2005); Maximum Likehood Destination Of Secret Message Length Embedded Using PMK Steganography In Spatial Domain, Proc. Of IST/SPIE Electronic Imaging: Security, Steganography And Watermarking Of Multimedia Contents, VII, 5681, 595-606.

Balram N.; Moura M.F. (1996); Noncausal Predictive Image Codec, IEEE Trans. On Image Processing, 5(8): 1229-1242.

Schroeder M.R.; Atal B.S. (1985); Code-excited Linear Prediction (CELP): High Quality Speech At Very Low Bit Rates, IEEE Proc. ICASSP, 937-940.

Fang W.; Yagle A.E. (1994); Two-dimensional Linear Prediction And Spectral Estimation In Polar Raster, IEEE Trans. On Signal Processing, 42(3): 628-641.

Jain A.K. (1989); Fundamental of Digital Image Processing, Prentice Hall, Information and System Science Series.

Singh K. M. (2012); Vector Median Filter Based On Noncausal Linear Prediction For Detection Of Impulse Noise From Images, Inderscience International Journal of Computational Science and Engineering, 7(4): 345-355.



Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.