Early detection of current faults in a squirrel cage motor using Discrete Wavelet Transform (DWT)
DOI:
https://doi.org/10.15837/ijccc.2025.3.6919Keywords:
Fault detection, Discrete Wavelet Transform, Induction motor, Squirrel cage rotor, Motor current signature analysis, Multispectral analysis, Rotor faultsAbstract
This paper presents a new method for early detection of broken rings and bars in induction motors operating in steady state. The approach uses multispectral analysis based on the Discrete Wavelet Transform (DWT) applied to stator current analysis. A comparison is made between the results obtained using Daubechies wavelets of levels 44 and 45 (db44 and db45). The method focuses on the energetic analysis of the high-level signal decomposition coefficients to detect the presence of left sideband components, which indicate rotor faults. The experimental results demonstrate the effectiveness of the method in distinguishing between healthy and faulty motor conditions, even under light load conditions where conventional techniques often struggle.
References
Antonino-Daviu J., Quijano López A., Rubbiolo M., Climente-Alarcon V., (2017) Diagnosis of the rotor condition in electric motors operating in mining facilities through the analysis of motor currents, IEEE Industry Applications Society Annual Meeting
Castelli M. J., Fossati J.P., Andrade (2008),” Metodología de monitoreo, detection de fallos y diagnostico en motores asíncronos”, IEEE, 7º encuentro de Energía, Potencia M. T., Instrumentación y Medidas, pp. 91-97.
Ciprian H., Loránd S.(2011), “Wavelet Analysis and Park’s Vector Based Condition Monitoring of Induction Machines”, Journal of ComputerScience and Control Systems, Vol. 5, No. 2, pp. 35-38
Cusidó, Romeral L., Ortega J. A., Rosero J. A., García Espinosa A. (2008), “Fault Detection in Induction Machines Using J. Power Spectral Density in Wavelet Decomposition”, IEEE Transactions on industrial electronics, Vol. 55, No. 2, pp. 633-643.ons Society Annual Meeting.
Espinosa Pérez D., Delgado J., (2012). Wavelets y Superresolución. Master These. Universidad Autónoma Metropolitana Unidad Iztapalapa
Fernández Tavitas D. A., Nieto González J. P. (2014), “Detección de barras rotas en motores de inducción utilizando SMCSA (Square Motor Current Signature Analysis)”, Research in Computing Science, Vol.73, pp. 193–202.
Guojian Li, Jian Wang, Yingwu Qin, Xuefeng Bai, Yuhan Jiang, Yi Deng, Zhiyuan Ma, Mengnan Cao. Enhancing Wind Farm Reliability: A Field of View Enhanced Convolutional Neural Network-Based Model for Fault Diagnosis and Prevention. International Journal of Computers Communications & Control. Vol. 19 No. 3 (2024). https://doi.org/10.15837/ijccc.2024.3.6609.
Liu, J.Z.; Qu, Q.L. ; Yang, H.Y. ; Zhang, J.M., Liu, Z.D. Deep Learning-based Intelligent Fault Diagnosis for Power Distribution Networks. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL. Vol 19, Issue 4. AUG 2024. DOI10.15837/ijccc.2024.4.6607
Martínez García Irving I and Peña Cabrera J. Mario, Analysis Optimization and Comparison to Detect Failures in the Squirrel-Cage Rotor using High-Level Wavelets, International Journal of Electrical and Electronics Research (IJEER) , Volume 11, Issue 4, Pages 966-972, e-ISSN: 2347-470X
Moin Siddiqui K., Giri V.K, (2012) “Broken Rotor Bar Fault Detection in Induction Motors Using Wavelet Transform”, International Conference on Computing, Electronics and Electrical Technologies [ICCEET], pp. 1-6.
Navarro Fuentes J., Elizarraras Martinez D. ( 2010), Introducción a la transformada Wavelet Continua. Editorial Reverté.
Pătras,cu, A.; Bucur, C.; Tănăsescu, A.; Toader F.A. (2024). Proposal of a Machine Learning Predictive Maintenance Solution Architecture, International Journal of Computers Communications & Control, 19(3), 6499, 2024. https://doi.org/10.15837/ijccc.2024.3.6499
Pineda caballero A. R. (1998). Teoría deWavelets, una alternative, Thesis, Universidad Nacional Autonoma de Mexico, Acatlan, México.
Pu Shi, Zheng Chen, Yuriy Vagapov. Wavelet Transform based Broken Rotor-bar Fault Detection and Diagnosis Performance Evaluations. International Journal of Computer Applications. 69, 14 ( May 2013), 36-43. DOI=10.5120/11913-8033.
Quian Tao, Vai Mang, Xu yuesheng, (2007). Wavelet Analysis and Applications. Basilea Suiza: Birkhäuser Verlag..
Rezazadeh M., Mariun N., Hamiruce M., Misron N. (2011), “Rotor fault condition monitoring techniques for squirrel-cage induction machine: A review”, Mechanical Systems and Signal Processing, Vol. 5. No. 8, pp.2827-2848.
Sbaa S, Bessous N, Pusca R, Romary R (2020). A comparative study dedicated to rotor failure detection in induction motors using MCSA, DWT, and EMD techniques. 2020 International Conference on Electrical Engineering (ICEE)DOI: 10.1109/ICEE49691.2020.9249774, https://univ-artois.hal.science/hal- 04296850/document.
Singh M. , Gafoor Shaik A. , “Broken Rotor Bar Fault Diagnosis of a Three-phase Induction Motor using Discrete Wavelet Transform”(2019), IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), pp. 13-17, 2019.
Viraj U. Patel (2019), “Condition Monitoring of Induction Motor for Broken Rotor Bar using Discrete Wavelet Transform and K-nearest Neighbor”, International Conference on Computing Methodologies and Communication (ICCMC).
Yun Guo C., Ping Li J. (2013), “Development and future of wavelet analysis”, 10th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), pp. 335- 338,.https://doi.org/10.15837/ijccc.2024.1.4xyz
Zhang, C.M.; Xu, X.Q.; Liu, S.L.; Li, Y.J.; Jiang, J.F. (2024). Fault Diagnosis and Localization of Transmission Lines Based on R-Net Algorithm Optimized by Feature Pyramid Network, International Journal of Computers Communications & Control, 19(4), 6608, 2024. https://doi.org/10.15837/ijccc.2024.4.6608
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 gaston h lefranc, Irving García-Martínez, Mario Peña-Cabrera, Roman Osorio-Comparan, Ismael Lopez-Juarez, Oscar Molotla

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.