Automatic Detection of Stalling Events using Machine Learning Algorithms

Authors

  • Andres Fernando Celis Velez Department of Telematics, University of Cauca, Colombia
  • Luis Miguel Castañeda Herrera Department of Telematics, University of Cauca, Colombia
  • José Luis Arciniegas Herrera Department of Telematics, University of Cauca, Colombia
  • Héctor Fabio Bermúdez Orozco Department of Electronics, University of Quindio, Colombia

DOI:

https://doi.org/10.15837/ijccc.2024.5.6636

Keywords:

DASH, Machine Learning, OTT, QOE, Stalling Events

Abstract

With the proliferation of new video streaming OTT service applications, content providers must guarantee an efficient, effective and satisfactory interaction between the user and the service application, to measure this they use the quality of experience (QoE). QoE in the context of telecommunications can be understood as the acceptability of a service perceived by end users. However, given the variability of the network and the different factors that can intervene during the service, this perception can be altered and one of these causes is stalling events. It is necessary to have an accurate method to detect stalling events, allowing content providers to make better decisions in the design of their OTT applications and thus reduce customer desertion and the economic losses of service or content providers. For this reason, in this paper firstly we show a comparative analysis of supervised algorithms showing its invalidity given the imbalance of the data despite the high levels of accuracy. Therfore, we propose as a contribution a novel method based on algorithms provided by SSAD (Semi Supervised Anomaly Detection) for the detection of stalling events. Finally, we observe that in our method the Isolation Forest model has the best performance, closer to 1 and we will show more detail about its performance in future works.

References

Ameigeiras, P.; Azcona-Rivas, A.; Navarro-Ortiz, J.; Ramos-Muñoz, J.J.; López- Soler, J.M. (2012). A simple model for predicting 487 the number and duration of rebuffering events for YouTube flows, IEEE Communications Letters, 16, 278-280. https://doi.org/10.1109/LCOMM.2011.121311.111682

Anwar, M.S.; Wang, J.; Ullah, A.; Khan, W.; Ahmad, S.; Fei, Z. (2020). Measuring quality of experience for 360-degree videos in virtual reality, Science China Information Sciences, 63, 1-15. https://doi.org/10.1007/s11432-019-2734-y

Bermudez, H.F.; Martinez-Caro, J.M.; Sanchez-Iborra, R.; Arciniegas, J.L.; Cano, M.D. (2019). . Live video-streaming evaluation using the ITU-T P.1203 QoE model in LTE networks, Computer Networks, 165, 106967,. https://doi.org/10.1016/j.comnet.2019.106967

Casas, P.; andWassermann, S. (2018). Improving QoE prediction in mobile video through machine learning, Proceedings of the 2017 8th International Conference on the Network of the Future, NOF, 2018-Janua, 1-7. https://doi.org/10.1109/NOF.2017.8251212

Cases, P.; Seufert, M.; Schatz, R. (2013). YOUQMON, ACM SIGMETRICS Performance Evaluation Review, 41, 44-46. https://doi.org/10.1145/2518025.2518033

Castaneda Herrera, L.M.; Campo Munoz, W.Y. and Duque Torres, A. (2022). Video Streaming Service Identification Using Incremental Learning on Software-Defined Network, PRZEGLĄD EEKTROTECHNICZNY, R. 98 NR 8/2022. https://doi.org/10.15199/48.2022.08.17

Dong, Y., Zhao, J., and Jin, J. (2017). Novel feature selection and classification of Internet video traffic based on a hierarchical scheme. Comput. Networks, 119, 102-111. https://doi.org/10.1016/j.comnet.2017.03.019

Ericsson, Ericsson ConsumerLab Report, April, 2022. [Online]. Available: https://www.ericsson.com/en/reports-and-papers/consumerlab/reports/5g-next-wave, Accesed on 1 May 2023.

Gadaleta, M.; Chiariotti, F.; Rossi, M.; Zanella, A (2017). D-DASH: A Deep Q-Learning Framework for DASH Video Streaming, IEEE Transactions on Cognitive Communications and Networking, 3, 703-718. https://doi.org/10.1109/TCCN.2017.2755007

Ghadiyaram, D.; Bovik, A.C.; Yeganeh, H.; Kordasiewicz, R.; Gallant, M. (2014). Study of the effects of stalling events on the quality of experience of mobile streaming videos. IEEE Global Conference on Signal and Information Processing, Global SIP, pp. 989-993. https://doi.org/10.1109/GlobalSIP.2014.7032269

Ghadiyaram, D.; Pan, J.; Bovik, A.C. (2019). A Subjective and Objective Study of Stalling Events in Mobile Streaming Videos. IEEE 485 Transactions on Circuits and Systems for Video Technology, 29, 183-197. https://doi.org/10.1109/TCSVT.2017.2768542

Ghadiyaram, D.; Pan, J.; Bovik, A.C. (2018). Learning a continuous-time streaming video QoE model. Processing IEEE Transactions on Image, 27, 2257-2271. https://doi.org/10.1109/TIP.2018.2790347

Hoßfeld, T.; Heegaard, P.E.; Varela, M.; Möller, S. (2016). QoE beyond the MOS: an in-depth look at QoE via better metrics and their relation to MOS. Quality and User Experience , 1, 1-23. https://doi.org/10.1007/s41233-016-0002-1

Installations, T.; Line, L.; Systems, D. ITU-T Vocabulary for performance, quality of service and quality of experience. International Telecommunication Union 2017.

Internet users in the world 2022 | Statista, url = https://www.statista.com/statistics/617136/digitalpopulation- worldwide/, urldate = 2022-05-15

Lee, K.; Lee, C. H. and Lee, J. "Semi-Supervised Anomaly Detection Algorithm Using Probabilistic Labeling (SAD-PL)," in IEEE Access, vol. 9, pp. 142972-142981, 2021, doi: 10.1109/ACCESS. 2021.3120710. https://doi.org/10.1109/ACCESS.2021.3120710

Mantu, R.; Chiroiu, M.; T,ăpus" N. (2024). Framework for evaluating TCP/IP extensionsin communication protocols,International Journal of Computers Communications&Control, 19(2),4906, 2024. https://doi.org/10.15837/ijccc.2024.2.4906

Martinez-Caro, J.M.; Cano, M.D. On the identification and prediction of stalling events to improve qoe in video streaming. Electronics (Switzerland) 2021, 10, 1-17. https://doi.org/10.3390/electronics10060753

Martino, G.; Gruenhagen, A.; Branlard, J.; Eichler, A.; Fey, G. and Schlarb, H. "Comparative Evaluation of Semi-Supervised Anomaly Detection Algorithms on High-Integrity Digital Systems," 2021 24th Euromicro Conference on Digital System Design (DSD), Palermo, Italy, 2021, pp. 123-130, doi: 10.1109/DSD53832.2021.00028. https://doi.org/10.1109/DSD53832.2021.00028

Meixner, B.; Kleinrouweler, J.W.; Cesar, P. 4G/LTE channel quality reference signal trace data set. Proceedings of the 9th ACM Multimedia Systems Conference, MMSys 2018 2018, pp. 387-392. https://doi.org/10.1145/3204949.3208132

NamHyunwoo.; KimKyung-Hwa.; CalinDoru.; SchulzrinneHenning. YouSlow. ACM SIGCOMM Computer Communication Review 2014, 44, 111-112. https://doi.org/10.1145/2740070.2631433

Nnamoko, N.; Korkontzelos, I. Efficient Treatment of Outliers and Class Imbalance for Diabetes Prediction. Artificial Intelligence in Medicine 2020, 104, 101815. https://doi.org/10.1016/j.artmed.2020.101815

Orozco H, f. (2018). A Survey on Feature Selection Techniques for Internet Traffic Classification, International Conference on Computational Intelligence and Communication Networks, 1375- 1380, 2015.

Poorzare, R.; Calveras Augé, A. (2023). Deep Learning TCP for Mitigating NLoS Impairments in5G mmWave,International Journal of Computers Communications&Control, 18(4), 4874, 2023. https://doi.org/10.15837/ijccc.2023.4.4874

QoE/stallingdataset, QoE dataset for stalling event detection, 2024. [Online]. Available: https://github.com/datasetQoEStall/Dataset, Accesed on 12 Jun 2024.

Robitza, W.; Goring, S.; Raake, A.; Lindegren, D.; Heikkilä, G.; Gustafsson, J.; List, P.; Feiten, B.; Wüstenhagen, U.; Garcia, M.N.; et al. HTTP adaptive streaming QoE estimation with ITU-T rec. P.1203 - Open databases and software 2018. pp. 466-471. https://doi.org/10.1145/3204949.3208124

Serral-Gracià, R.; Cerqueira, E.; Curado, M.; Yannuzzi, M.; Monteiro, E.; Masip-Bruin, X. An overview of quality of experience measurement challenges for video applications in IP networks. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 2010, 6074 LNCS, 252-263. https://doi.org/10.1007/978-3-642-13315-2_21

Seufert, M.; Casas, P.; Wehner, N.; Gang, L.; Li, K. Features that Matter : Feature Selection for On-line Stalling Prediction in Encrypted Video Streaming. IEEE INFOCOM 2019 - IEEE Conference on Computer CommunicationsWorkshops (INFOCOM WKSHPS) 2019, pp. 688-695. https://doi.org/10.1109/INFCOMW.2019.8845109

Staelens, N.; Coppens, P.; Van Kets, N.; Van Wallendaef, G.; Van Den Broeck, W.; De Cock, J.; De Turek, F. On the impact of video stalling and video quality in the case of camera switching during adaptive streaming of sports content. 2015 7th International Workshop on Quality of Multimedia Experience, QoMEX 2015 2015. https://doi.org/10.1109/QoMEX.2015.7148102

Scikit-learn, Machine Learning in Python, 2023. [Online]. Available: https://scikitlearn. org/stable/, Accesed on 15 June 2024.

Tao, X.; Duan, Y.; Xu, M.; Meng, Z.; Lu, J. Learning QoE of Mobile Video Transmission with Deep Neural Network: A Data-Driven 528 Approach. IEEE Journal on Selected Areas in Communications 2019, 37, 1337-1348. https://doi.org/10.1109/JSAC.2019.2904359

Villa-Pérez, M.E.; Álvarez-Carmona, M.; Loyola-González, O.; Medina-Pérez, M.A.; Velazco- Rossell, J.C.; Choo, K.K.R. (2021) Semi-supervised anomaly detection algorithms: A comparative summary and future research directions. Knowledge-Based Systems, 218, 106878. https://doi.org/10.1016/j.knosys.2021.106878

Additional Files

Published

2024-09-02

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.