An Indoor Localization System for Automotive Driving Competitions
DOI:
https://doi.org/10.15837/ijccc.2024.1.6030Keywords:
embedded systems, indoor positioning system, image processingAbstract
Localization, in both indoor and outdoor settings, represents a problem that has received increased attention lately. This paper presents the development, testing, and validation of an indoor localization system for 1/10 scale vehicles based on the Robot Operating System (ROS) and ArUco marker detection. It has a distributed architecture, consisting of tens of Raspberry Pi (RPi) singleboard computers running ROS nodes and fitted with cameras, that monitor a certain area of the 14x14 m plane. The developed system has been successfully used in three editions of Bosch Future Mobility Challenge, an international student competition, where the participants are required to implement autonomous driving functionalities in an environment resembling a real-life city on small-scale automated vehicles.References
Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar, M. A., Al-Khalifa, H. S. (2016). Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors, 16(5). https://doi.org/10.3390/s16050707
https://doi.org/10.3390/s16050707
Assayag, Y., Oliveira, H., Souto, E., Barreto, R., Pazzi, R. (2020). Indoor Positioning System Using Dynamic Model Estimation. Sensors, 20(24). https://doi.org/10.3390/s20247003
https://doi.org/10.3390/s20247003
Chang, Q., Li, Q., Shi, Z., Chen, W., Wang, W. (2016). Scalable Indoor Localization via Mobile Crowdsourcing and Gaussian Process. Sensors, 16(3). https://doi.org/10.3390/s16030381
https://doi.org/10.3390/s16030381
Heya, T. A., Arefin, S. E., Chakrabarty, A., Alam, M. (2018). Image Processing Based Indoor Localization System for Assisting Visually Impaired People. 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), 1-7. https://doi.org/10.1109/UPINLBS.2018.8559936
https://doi.org/10.1109/UPINLBS.2018.8559936
Hirota, T., Tanaka, S., Iwasaki, T., Hosaka, H., Sasaki, K., Enomoto, M., Ando, H. (2007). DEVELOPMENT OF LOCAL POSITIONING SYSTEM USING BLUETOOTH. In E. Arai & T. Arai (Eds.), Mechatronics for Safety, Security and Dependability in a New Era (pp. 309-312). Elsevier. https://doi.org/https://doi.org/10.1016/B978-008044963-0/50063-1
https://doi.org/10.1016/B978-008044963-0/50063-1
Hua, J., He, L., Kang, Z., Yan, K. (2019). A force/position hybrid controller for rehabilitation robot [Article]. International Journal of Computers, Communications and Control, 14(5), 615-628.
https://doi.org/10.15837/ijccc.2019.5.3651
Kala, R. (2016). 2 - Basics of Autonomous Vehicles. In R. Kala (Ed.), On-Road Intelligent Vehicles (pp. 11-35). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-12- 803729-4.00002-7
https://doi.org/10.1016/B978-0-12-803729-4.00002-7
Khelifi, F., Bradai, A., Benslimane, A., Rawat, P., Atri, M. (2019). A Survey of Localization Systems in Internet of Things. In Mobile Networks and Applications, 24(3), 761-785. https://doi.org/10.1007/s11036-018-1090-3
https://doi.org/10.1007/s11036-018-1090-3
Kilyen, N. A., Lemnariu, R. F., Mois, G. D., Chen, Y., Morris, B. T., Muntean, I. (2021). The IEEE ITSS and Bosch Future Mobility Challenge: A Hands-on Start to Autonomous Driving
https://doi.org/10.1109/MITS.2021.3081939
[Technical Activities]. IEEE Intelligent Transportation Systems Magazine, 13(3), 276-282. https://doi.org/10.1109/MITS.2021.3081939
https://doi.org/10.1109/MITS.2021.3081939
Kushwaha, M.; Abirami, M.S. (2023). Intelligent Model for Avoiding Road Accidents Using Artificial NeuralNetwork, International Journal of Computers Communications&Control, 18(5), 5317, 2023.https://doi.org/10.15837/ijccc.2023.5.5317
Lee, H., Yoon, J., Jang, M.-S., Park, K.-J. (2021). A Robot Operating System Framework for Secure UAV Communications. Sensors, 21(4). https://doi.org/10.3390/s21041369
https://doi.org/10.3390/s21041369
Mocanu, I., Scarlat, G., Rusu, L., Pandelica, I., Cramariuc, B. (2018). Indoor localisation through probabilistic ontologies [Article]. International Journal of Computers, Communications and Control, 13(6), 988-1006. https://doi.org/10.15837/ijccc.2018.6.3022
https://doi.org/10.15837/ijccc.2018.6.3022
Nebbou, T., Lehsaini, M., Fouchal, H., Ayaida, M. (2019). An urban location service for vehicular area networks. Concurrency and Computation: Practice and Experience, 31(24), e4693. https://doi.org/https://doi.org/10.1002/cpe.4693
https://doi.org/10.1002/cpe.4693
Obeidat, H., Shuaieb, W., Obeidat, O., Abd-Alhameed, R. (2021). A Review of Indoor Localization Techniques and Wireless Technologies. Wireless Personal Communications, 119(1), 289-327. https://doi.org/10.1007/s11277-021-08209-5
https://doi.org/10.1007/s11277-021-08209-5
Oščádal, P., Heczko, D., Vysocký, A., Mlotek, J., Novák, P., Virgala, I., Sukop, M., Bobovský, Z. (2020). Improved Pose Estimation of Aruco Tags Using a Novel 3D Placement Strategy. Sensors, 20(17). https://doi.org/10.3390/s20174825
https://doi.org/10.3390/s20174825
Schauer, L. (2019). 2 - Wi-Fi Tracking Threatens Users' Privacy in Fingerprinting Techniques. In J. Conesa, A. Pérez-Navarro, J. Torres-Sospedra, and R. Montoliu (Eds.), Geographical and Fingerprinting Data to Create Systems for Indoor Positioning and Indoor/Outdoor Navigation (pp. 21-43). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-813189-3.00002-2
https://doi.org/10.1016/B978-0-12-813189-3.00002-2
Tomažič, S. (2021). Indoor Positioning and Navigation. Sensors, 21(14). https://doi.org/10.3390/s21144793
https://doi.org/10.3390/s21144793
Zhang, L., Cheng, Q., Wang, Y., Zeadally, S. (2008). A Novel Distributed Sensor Positioning System Using the Dual of Target Tracking. IEEE Transactions on Computers, 57(2), 246-260. https://doi.org/10.1109/TC.2007.70792
https://doi.org/10.1109/TC.2007.70792
[Online]. Available: https://picamera.readthedocs.io/en/release-1.13/, Accesed on 14 March 2023.
[Online]. Available: https://opencv.org/#, Accesed on 1 September 2023.
[Online]. Available: https://sourceforge.net/projects/aruco/, Accesed on 10 August 2023.
[Online]. Available: http://wiki.ros.org/nodelet, Accesed on 10 August 2023.
[Online]. Available: http://wiki.ros.org/image_proc, Accessed: 7 December 2022.
[Online]. Available: http://wiki.ros.org/tf, Accessed: 20 july 2023.
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Nandor Kilyen, Rares Lemnariu, Ionut Muntean, George Mois
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.