An Indoor Localization System for Automotive Driving Competitions

Authors

  • Nandor Alpar Kilyen Department of Automation, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Romania
  • Rares Florin Lemnariu Department of Mechatronics, Faculty of Automotive, Mechatronics and Mechanical Engineering, Technical University of Cluj-Napoca, Romania
  • Ionut Muntean Department of Automation, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Romania
  • George Dan Mois Department of Automation, Faculty of Automation and Computer Science, Technical University of Cluj-Napoca, Romania

DOI:

https://doi.org/10.15837/ijccc.2024.1.6030

Keywords:

embedded systems, indoor positioning system, image processing

Abstract

Localization, in both indoor and outdoor settings, represents a problem that has received increased attention lately. This paper presents the development, testing, and validation of an indoor localization system for 1/10 scale vehicles based on the Robot Operating System (ROS) and ArUco marker detection. It has a distributed architecture, consisting of tens of Raspberry Pi (RPi) singleboard computers running ROS nodes and fitted with cameras, that monitor a certain area of the 14x14 m plane. The developed system has been successfully used in three editions of Bosch Future Mobility Challenge, an international student competition, where the participants are required to implement autonomous driving functionalities in an environment resembling a real-life city on small-scale automated vehicles.

References

Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-Ammar, M. A., Al-Khalifa, H. S. (2016). Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances. Sensors, 16(5). https://doi.org/10.3390/s16050707

https://doi.org/10.3390/s16050707

Assayag, Y., Oliveira, H., Souto, E., Barreto, R., Pazzi, R. (2020). Indoor Positioning System Using Dynamic Model Estimation. Sensors, 20(24). https://doi.org/10.3390/s20247003

https://doi.org/10.3390/s20247003

Chang, Q., Li, Q., Shi, Z., Chen, W., Wang, W. (2016). Scalable Indoor Localization via Mobile Crowdsourcing and Gaussian Process. Sensors, 16(3). https://doi.org/10.3390/s16030381

https://doi.org/10.3390/s16030381

Heya, T. A., Arefin, S. E., Chakrabarty, A., Alam, M. (2018). Image Processing Based Indoor Localization System for Assisting Visually Impaired People. 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), 1-7. https://doi.org/10.1109/UPINLBS.2018.8559936

https://doi.org/10.1109/UPINLBS.2018.8559936

Hirota, T., Tanaka, S., Iwasaki, T., Hosaka, H., Sasaki, K., Enomoto, M., Ando, H. (2007). DEVELOPMENT OF LOCAL POSITIONING SYSTEM USING BLUETOOTH. In E. Arai & T. Arai (Eds.), Mechatronics for Safety, Security and Dependability in a New Era (pp. 309-312). Elsevier. https://doi.org/https://doi.org/10.1016/B978-008044963-0/50063-1

https://doi.org/10.1016/B978-008044963-0/50063-1

Hua, J., He, L., Kang, Z., Yan, K. (2019). A force/position hybrid controller for rehabilitation robot [Article]. International Journal of Computers, Communications and Control, 14(5), 615-628.

https://doi.org/10.15837/ijccc.2019.5.3651

Kala, R. (2016). 2 - Basics of Autonomous Vehicles. In R. Kala (Ed.), On-Road Intelligent Vehicles (pp. 11-35). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-0-12- 803729-4.00002-7

https://doi.org/10.1016/B978-0-12-803729-4.00002-7

Khelifi, F., Bradai, A., Benslimane, A., Rawat, P., Atri, M. (2019). A Survey of Localization Systems in Internet of Things. In Mobile Networks and Applications, 24(3), 761-785. https://doi.org/10.1007/s11036-018-1090-3

https://doi.org/10.1007/s11036-018-1090-3

Kilyen, N. A., Lemnariu, R. F., Mois, G. D., Chen, Y., Morris, B. T., Muntean, I. (2021). The IEEE ITSS and Bosch Future Mobility Challenge: A Hands-on Start to Autonomous Driving

https://doi.org/10.1109/MITS.2021.3081939

[Technical Activities]. IEEE Intelligent Transportation Systems Magazine, 13(3), 276-282. https://doi.org/10.1109/MITS.2021.3081939

https://doi.org/10.1109/MITS.2021.3081939

Kushwaha, M.; Abirami, M.S. (2023). Intelligent Model for Avoiding Road Accidents Using Artificial NeuralNetwork, International Journal of Computers Communications&Control, 18(5), 5317, 2023.https://doi.org/10.15837/ijccc.2023.5.5317

Lee, H., Yoon, J., Jang, M.-S., Park, K.-J. (2021). A Robot Operating System Framework for Secure UAV Communications. Sensors, 21(4). https://doi.org/10.3390/s21041369

https://doi.org/10.3390/s21041369

Mocanu, I., Scarlat, G., Rusu, L., Pandelica, I., Cramariuc, B. (2018). Indoor localisation through probabilistic ontologies [Article]. International Journal of Computers, Communications and Control, 13(6), 988-1006. https://doi.org/10.15837/ijccc.2018.6.3022

https://doi.org/10.15837/ijccc.2018.6.3022

Nebbou, T., Lehsaini, M., Fouchal, H., Ayaida, M. (2019). An urban location service for vehicular area networks. Concurrency and Computation: Practice and Experience, 31(24), e4693. https://doi.org/https://doi.org/10.1002/cpe.4693

https://doi.org/10.1002/cpe.4693

Obeidat, H., Shuaieb, W., Obeidat, O., Abd-Alhameed, R. (2021). A Review of Indoor Localization Techniques and Wireless Technologies. Wireless Personal Communications, 119(1), 289-327. https://doi.org/10.1007/s11277-021-08209-5

https://doi.org/10.1007/s11277-021-08209-5

Oščádal, P., Heczko, D., Vysocký, A., Mlotek, J., Novák, P., Virgala, I., Sukop, M., Bobovský, Z. (2020). Improved Pose Estimation of Aruco Tags Using a Novel 3D Placement Strategy. Sensors, 20(17). https://doi.org/10.3390/s20174825

https://doi.org/10.3390/s20174825

Schauer, L. (2019). 2 - Wi-Fi Tracking Threatens Users' Privacy in Fingerprinting Techniques. In J. Conesa, A. Pérez-Navarro, J. Torres-Sospedra, and R. Montoliu (Eds.), Geographical and Fingerprinting Data to Create Systems for Indoor Positioning and Indoor/Outdoor Navigation (pp. 21-43). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-813189-3.00002-2

https://doi.org/10.1016/B978-0-12-813189-3.00002-2

Tomažič, S. (2021). Indoor Positioning and Navigation. Sensors, 21(14). https://doi.org/10.3390/s21144793

https://doi.org/10.3390/s21144793

Zhang, L., Cheng, Q., Wang, Y., Zeadally, S. (2008). A Novel Distributed Sensor Positioning System Using the Dual of Target Tracking. IEEE Transactions on Computers, 57(2), 246-260. https://doi.org/10.1109/TC.2007.70792

https://doi.org/10.1109/TC.2007.70792

[Online]. Available: https://picamera.readthedocs.io/en/release-1.13/, Accesed on 14 March 2023.

[Online]. Available: https://opencv.org/#, Accesed on 1 September 2023.

[Online]. Available: https://sourceforge.net/projects/aruco/, Accesed on 10 August 2023.

[Online]. Available: http://wiki.ros.org/nodelet, Accesed on 10 August 2023.

[Online]. Available: http://wiki.ros.org/image_proc, Accessed: 7 December 2022.

[Online]. Available: http://wiki.ros.org/tf, Accessed: 20 july 2023.

Additional Files

Published

2024-01-04

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.