PyBNEq - A Tool for Computing Bayes-Nash Equilibria

Authors

  • Iulian JoldeÅŸ BabeÅŸ-Bolyai University Department of Computer Science
  • Bazil Pí¢rv BabeÅŸ-Bolyai University Department of Computer Science
  • Ilie Parpucea BabeÅŸ-Bolyai University Department of Mathematics and Statistics
  • Vasile LupÅŸe Technical University Cluj-Napoca North Center Baia Mare

Keywords:

Bayes-Nash equilibrium, decision support systems, game with incomplete information

Abstract

This paper describes PyBNEq - a tool for computing Bayes-Nash equilibria for games of incomplete information. It is implemented in Python and has a graphical user interface, allowing the user to load/save/edit game data, and to find Bayes-Nash equilibria. Currently, PyBNEq implements Porter-Nudelman-Shoham algorithm for 2-player games and can be considered as a decision support system for solving games of incomplete information.

References

Ceppi, S., N. Gatti, N. Basilico, Computing Bayes-Nash Equilibria through Support Enumeration Methods in Bayesian Two-Player Strategic-Form Games in WI-IAT, Proc.of the 2009 IEEE/WIC/ACM Int. Joint Conference on Web Intelligence and Intelligent Agent Technology, 2: 541-548, 2009, DOI: 10.1109/WI-IAT.2009.209. http://dx.doi.org/10.1109/WI-IAT.2009.209

cplex reference, ftp://ftp.software.ibm.com/software/websphere/ilog/docs/optimization/cplex/refcallablelibrary.pdf

Eichberger, I., Game Theory for Economists, Academic Press, 1993.

Fehr, E. and K.M. Schmidt, Theories of Fairness and Reciprocity - Evidence and Economic Applications, in M. Dewatripont, L.P. Hansen and S.J. Turnovsky (eds.) Advances in Economics and Econometrics, Econometric Society Monographs, 8th World Congress, 1: 208-257, 2003.

Koller, D., N. Megiddo, and B. von Stengel, Efficient computation of equilibria for extensive two-person games, Games and Economic Behavior, 14(2): 220-246, 1996. http://dx.doi.org/10.1006/game.1996.0051

numpy home page, http://numpy.scipy.org/

Ochs, J. Coordination problems. In J.H. Kagel and A.E. Roth (eds.) Handbook of Experimental Economics, Princeton University Press, 195-251, 1995.

Parpucea, I., B. Pârv, and T. Socaciu, T. Modeling Uncertainty in a Decision Problem by Externalizing Information, INT J COMPUT COMUN, 6(2): 328-336, 2011.

Pârv, B. and I. Parpucea, Bayes-Nash Equilibrium in the Presence of Information Sources: Computational Issues, Studia Univ. Babes-Bolyai, Informatica, LVI (2011), 3: 33-38, 2011.

Porter, R., E. Nudelman, and Y. Shoham, Simple search methods for finding a Nash equilibrium, Proc. of the AAAI Conference on Artificial Intelligence (AAAI), 664-669, 2004.

Python home page, http://www.python.org/

Shoham, Y. and K. Leyton-Brown, Multiagent Systems: Algorithmic, Game Theoretic and Logical Foundations. Cambridge, USA: Cambridge University Press, 2008. http://dx.doi.org/10.1017/CBO9780511811654

pycplex reference, http://www.cs.toronto.edu/darius/software/pycplex/

wxpython reference, http://wxpython.org/

Published

2013-08-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.