Approximating the Level Curves on Pascal’s Surface


  • Marilena Jianu Technical University of Civil Engineering, Bucharest, Romania
  • Leonard Daus Technical University of Civil Engineering, Bucharest, Romania
  • Mariana Nagy “Aurel Vlaicu” University of Arad, Romania
  • Roxana-Mariana Beiu “Aurel Vlaicu” University of Arad, Romania



It is well-known that in general the algorithms for determining the reliability polynomial associated to a two-terminal network are computationally demanding, and even just bounding the coefficients can be taxing. Obviously, reliability polynomials can be expressed in Bernstein form, hence all the coefficients of such polynomials are fractions of the binomial coefficients. That is why we have very recently envisaged using an extension of the classical discrete Pascal’s triangle (which comprises all the binomial coefficients) to a continuous version/surface. The fact that this continuous Pascal’s surface has real values in between the binomial coefficients makes it appealing as being a mathematical concept encompassing all the coefficients of all the reliability polynomials (which are integers, as resulting from counting processes) and more. This means that, the coefficients of any reliability polynomial can be represented as discrete steps (on level curves of integer values) on Pascal’s surface. The equation of this surface was formulated by means of the gamma function, for which quite a few approximation formulas are known. Therefore, we have started by reviewing many of those results, and have used a selection of those approximations for the level curves problem on Pascal’s surface. Towards the end, we present fresh simulations supporting the claim that some of these could be quite useful, as being both (reasonably) easy to calculate as well as fairly accurate.


Abramowitz, M.; Stegun, I.A. (eds.) (1972). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (10th printing), National Bureau of Standards, Appl. Math. Series 55, 1972.

Allen, L.; Kirby, R.C. (2021). Bounds-constrained polynomial approximation using the Bernstein basis, Tech. Rep. arXiv:2104.11819, Numerical Analysis (math.NA), 1-26, 2021., Accessed on 06 June 2022.

Apianus, P. (1527). Eyn newe vnnd wolgegründte underweysung aller Kauffmannß Rechnung in dreyen Büchern, Ingolstadt, 1527., Accessed on 06 June 2022.

Babbage, C. (1834). Babbage's calculating engine, Edinburgh Review, 59(120), 263-327, 1834. Available: Babbage% 27s_Calculating_Engine&oldid=5473361, Accessed on 06 June 2022.

Beiu, V.; Daus, L. (2015). Reliability bounds for two dimensional consecutive systems, Nano Comm. Nets., 6(3), 145-152, 2015.

Beiu, V.; Dragoi, V.-F.; Beiu, R.-M. (2020). Why reliability for computing needs rethinking, In Proc. Conf. Rebooting Comp. (ICRC2020), IEEE, 16-25, 2020.

Beiu, V.; Daus, L.; Jianu, M.; Mihai, A.; Mihai, I. (2022). On a surface associated with Pascal's triangle, Symmetry, 14, art. 411 (1-12), 2022.

Beiu, V. (2022). The unfolding road from dust to trust, In Proc. Intl. Conf. Adv. 3OM (Adv3OM 2021), Timisoara, Romania, 13-16 Dec. 2021, SPIE, art. 1217007 (1-7), 2022.

Bernstein, S.N. (1912/13). Démonstration du théorème de Weierstrass fondée sur le calcul des probabilities [Proof of the theorem of Weierstrass based on the calculus of probabilities], Comm. Kharkov Math. Soc., 13, 1-2, 1912/13.

Bondarenko, B.A. (1990). Generalized Pascal Triangles and Pyramids-Their Fractals, Graphs, and Applications, Izdatel'stvo "FAN" RUz, Tashkent, 1990. Translated by R.C. Bollinger (1993)., Accessed on 06 June 2022.

Brent, R.P. (2021). Asymptotic approximation of central binomial coefficients with rigorous error bounds, Open J. Math. Sci., 5(1), 380-386, 2021.

Brown, J.I.; Colbourn, C.J.; Cox, D.; Graves, C.; Mol, L. (2021). Network reliability: Heading out on the highway, Networks (Sp. Iss. 50 Years), 77(1), 146-160, 2021.

Burnside, W. (1917). A rapidly converging series for logN!, Messenger Math., 46, 157-159, 1917., Accessed on 06 June 2022.

Busard, H.L.L. (ed.) (1991). Jordanus de Nemore. De elementis arithmetice artis. A Medieval Treatise on Number Theory, Franz Steiner, Stuttgart, 1991. See p. 80 from the handwritten original, Accessed on 06 June 2022.

Cardano, G. (1570). Opus Novum de Proportionibus, . . . , Henric Petri, Basel, 1570. See p. 185 in, Accessed on 06 June 2022.

Causley, M.F. (2022). The gamma function via interpolation, Numer. Algo., 90(2), 687-707, 2022.

Chari, M.; Colbourn, C.J. (1997). Reliability polynomials: A survey, J. Comb. Info. Syst. Sci., 22(3/4), 177-193, 1997.

Chen, C.-P. (2016). A more accurate approximation for the gamma function, J. Number Th., 164, 417-428, 2016.

Cobeli, C.; Zaharescu, A. (2013). Promenade around Pascal triangle-Number motives, Bull. Math. Soc. Sci. Math. Roumanie, 56(104)1, 73-98, 2013.

Cohen, L.Z.; Kim, I.H.; Bartlett, S.D.; Brown, B.J. (2022). Low-overhead fault-tolerant quantum computing using long-range connectivity, Sci. Adv., 8(20), art. eabn1717 (1-12), 2022.

Colbourn, C.J. (1987). The Combinatorics of Network Reliability, Oxford Univ. Press, 1987.

Cowell, S.R.; Beiu, V.; Daus, L.; Poulin, P. (2018). On the exact reliability enhancements of small hammock networks, IEEE Access, 6, 25411-25426, 2018.

Daus, L.; Beiu, V. (2015). Lower and upper reliability bounds for consecutive-k-out-of-n:F systems, IEEE Trans. Rel., 64(3), 1128-1135, 2015.

Daus, L.; Jianu, M. (2020). Full Hermite interpolation of the reliability of a hammock network, Appl. Anal. Discr. Math., 14(1), 198-220, 2020.

Daus, L.; Jianu, M. (2021). The shape of the reliability polynomial of a hammock network, In Proc. Intl. Conf. Comp. Comm. & Ctrl. (ICCCC2020), 93-105, Springer AISC vol. 1243 (2021).

de Moivre, A. (1730). Miscellanea Analytica de Seriebus et Quadraturis (incl. Miscellaneis Analyticus Supplementum), J. Tonson & J. Watts, London, 1730.

Dixit, H.D.; Pendharkar, S.; Beadon, M.; Mason, C.; Chakravarthy, T.; Muthiah, B.; Sankar, S. (2021). Silent data corruptions at scale, Tech. Rep. arXiv:2102.11245, Hardware Architecture (cs.AR), 1-8, 2021. Available:, Accessed on 06 June 2022.

do Carmo, M. (1976). Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976.

Dragoi, V.-F.; Beiu, V. (2022). Fast reliability ranking of matchstick minimal networks, Networks, 79(4), 479-500, 2022.

Dutka, J. (1991). The early history of the factorial function, Arch. Hist. Exact Sci., 43(3), 225- 249, 1991.

Farina, A.; Giompapa, S.; Graziano, A.; Liburdi, A.; Ravanelli, M.; Zirilli, F. (2013). Tartaglia- Pascal's triangle: A historical perspective with applications, Sign. Imag. Video Proc., 7(1), 173- 188, 2013.

Formichella, S.; Straub, A. (2019). Gaussian binomial coefficients with negative arguments, Ann. Comb., 23(52), 725-748, 2019.

Fowler, D. (1996). The binomial coefficient function, Amer. Math. Month., 103(1), 1-17, 1996.

Fowler, D. (1996). A simple approach to the factorial function, Math. Gazette, 80(488), 378-381, 1996.

Fowler, D. (1999). A simple approach to the factorial function-The next step, Math. Gazette, 83(496), 53-57, 1999.

Gélinas, J. (2017). Original proofs of Stirling's series for log(n! ), Tech. Rep. arXiv: 1701.06689, History and Overview (math.HO), 1-9, 2017., Accessed on 06 June 2022.

Gosper, R.W. (1978). Decision procedure for indefinite hypergeometric summation, Proc. Nat. Acad. Sci. USA, 7(1), 40-42 (1978).

Gross, J.L. (2007). Combinatorial Methods with Computer Applications, Chapman & Hall, 2007.˜cs4205/files/CM4.pdf, Accessed on 06 June 2022.

Gubner, J.A. (2021). The gamma function and Stirling's formula, Tech. Note, 2021., Accessed on 06 June 2022.

Hirschhorn, M.D.; Villarino, M.B. (2014). A refinement of Ramanujan's factorial approximation, Ramanujan J., 34(1), 73-81, 2014.

Hochschild, P.H.; Turner, P.; Mogul, J.C.; Govindaraju, R.; Ranganathan, P.; Culler, D.E.; Vahdat, A.M. (2021). Cores that don't count, In Proc. Workshop Hot Topics Operating Syst. (HotOS'21), ACM Press, 9-16, 2021.

IBM (2021). IBM Quantum breaks the 100-qubit processor barrier. Available:, Accessed on 09 June 2022.

International Roadmap for Devices and Systems (IRDSTM), IEEE, 2021. Available:, Accessed on 06 June 2022.

Jianu, M.; Ciuiu, D.; Daus, L.; Jianu, M. (2022). Markov chain method for computing the reliability of hammock networks, Prob. Eng. & Info. Sci., 36(2), 276-293, 2022.

Johansson, F. (2021). Arbitrary-precision computation of the gamma function, HAL preprint, 2021., Accessed on 06 June 2022.

Kessler, D.A.; Schiff, J. (2021). The asymptotics of factorials, binomial coefficients and Catalan numbers, J. Integr. Seq., 24(8), art. 21.8.3 (1-15), 2021.

Lampret, V. (2006). Estimating the sequence of real binomial coefficients, J. Inequal. Pure Appl. Math., 7(5), art. 166 (1-16), 2006.

Lanier, D.; Trotoux, D. (1996). La formule de Stirling. XI-ième Colloque Inter-IREM d'Histoire des Mathématiques, Reims, Fance, 1-41, May 1996. French translation of pp. 102-105, 124- 128, 170-172 from Miscellaneis Analyticus Supplementum [37], and pp. 135-137 from Methodus DifferentialisSive Tractatus de Summatione et Interpolatione Serierum Infinitarum, Prop. XXVIII [40], Accessed on 06 June 2022.

Lawrencenko, S.A.; Magomedov, A.M.; Zgonnik, L.V. (2018). Problems with parameters and binomial identities (in Russian), Math. Sch., 6(1), 16-26, 2018.

Mascioni, V. (2012). An inequality for the binary entropy function and an application to binomial coefficients, J. Math. Inequal., 6(3), 501-507, 2012.

Mersenne, M. (1636). Harmonie Universelle, Sebastien Cramoisy, Paris, 1636. See Book 2 "Des Chants," p. 145 in, Accessed on 06 June 2022.

Mersenne, M. (1636). Harmonicorum Libri, Guillielmi Baudry, Paris, 1636. See XII, Accessed on 06 June 2022.

Michel, R. (2008). The (n+1)th proof of Stirling's formula, Amer. Math. Month., 115(9), 844-845, 2008.

Moore, E.F.; Shannon, C.E. (1956). Reliable circuits using less reliable relays-Part I, J. Frankl. Inst., 26(3), 191-208, 1956.

Moore, E.F.; Shannon, C.E. (1956). Reliable circuits using less reliable relays-Part II, J. Frankl. Inst., 262(4), 281-297, 1956.

Morris, S.A. (2022). Tweaking Ramanujan's approximation of n!, Fundam. J. Maths. Appls., 5(1), 10-15, 2022.

Mortici, C. (2011). A substantial improvement of the Stirling formula, Appl. Maths. Lett., 24(8), 1351-1354, 2011.

Namias, V. (1986). A simple derivation of Stirling's asymptotic series, Amer. Math. Month., 93(1), 25-29, 1986.

Nemes, G. (2010). New asymptotic expansion for the gamma function, Arch. Math., 95(2), 161- 169, 2010.

Northshield, S. (2011). Integrating across Pascal's triangle, J. Math. Anal. Appl., 374(2), 385-393, 2011.

Pascal, B. (1665). Traité du Triangle Arithmétique, Guillaume Desprez, Paris, 1665., Accessed on 06 June 2022.

Pearson, K. (1924). Historical note on the origin of the normal curve of errors, Biometrika, 16(3/4), 402-404, 1924. [Mentions that the second Supplementum, entitled Approximatio ad summam terminorium binomii (a + b)n in seriem expansi, is dated 12 Nov. 1733.]

Pellicer, R.; Alvo, A. (2012). Modified Pascal triangle and Pascal surfaces. Tech. Rep., art. 956605, 2012. Available:, Accessed on 06 June 2022.

Pérez-Rosés, H. (2018). Sixty years of network reliability, Maths. Comp. Sci., 12(3), 275-293, 2018.

Radford, D.E. (2021). Factorials and powers, a minimality result, Tech. Rep. arXiv:2106.02002, Number Theory (math.NT), 1-22, 2021., Accessed on 06 June 2022

Ramanujan, S. (1920). Notes, 1920.˜rao/ramanujan/notebookindex.htm, Accessed on 06 June 2022.

Ramanujan, S. (1988). The Lost Notebook and Other Unpublished Papers, Narosa Publ. H. & Springer, 1988.

Robbins, H. (1955). A remark on Stirling's formula, Amer. Math. Month., 62(1), 26-29 (1955).

Salwinski, D. (2018). The continuous binomial coefficient: An elementary approach, Amer. Math. Month., 125(3), 231-244, 2018.

Smith, S.T. (2020). The binomial coefficient C(n, x) for arbitrary x, Online J. Anal. Comb., 15, art. 176 (1-12), 2020.

Smith, W.D. (2006). The gamma function revisited, 29 Mar. 2006., Accessed on 06 June 2022.

Stanica, P. (2001). Good lower and upper bounds on binomial coefficients, J. Inequal. Pure Appl. Math., 2(3), art. 30 (1-5), 2001.

Stifel, M. (1544). Arithmetica Integra, Iohan Petreium, Nuremberg, 1544. See Book 1, Chp. VI p. 45v in, Accessed on 06 June 2022.

Stirling, J. (1730). Methodus Differentialis: Sive Tractatus de Summatione et Interpolatione Serierum Infinitarum, Gul. Bowyer & G. Strahan, London, 1730., Accessed on 06 June 2022.

Takita, M.; Yoder, T.J. (2022). How IBM Quantum is advancing quantum error correction with hardware experiments (2022). Available: correction, Accessed on 09 June 2022.

Tartaglia, N. (1556). General Trattato di Numeri et Misure, Curtio Troiano de i Nauò, Vinice, 1556., and in particular Part II, Book 2, Chp. XXI, p. 69r, Accessed on 06 June 2022.

Tweddle, I. (1984). Approximating n!. Historical origins and error analysis, Amer. J. Phys., 52(6), 487-488, 1984.

Tweddle, I. (2003). James Stirling's Methodus Differentialis - An annotated translation of Stirling's text, Springer, 2003.

Uspenskii, V.A. (1974). Pascal's Triangle (translated from Russian by Sookne, D.J.; McLarnan, T.). Univ. Chicago Press, 1974.

von Neumann, J. (1956). Probabilistic logics and the synthesis of reliable organisms from unreliable components, In Shannon, C.E.

McCarthy, J. (eds.), Automata Studies (AM-34), Princeton Univ. Press, 43-98, 1956. Available: mode/2up, Accessed on 06 June 2022.

Wilson, R.; Watkins, J.J. (eds.) (2015). Combinatorics: Ancient and Modern, Oxford Univ. Press, 2015.

Windschitl, R.H. (2002). A curious result, Nov. 2002. 11, Accessed on 06 June 2022.

Yang, Z.-H.; Tian, J.-F. (2018). An accurate approximation formula for gamma function, J. Inequal. Appl., 2018(1), art. 56 (1-9), 2018.

Additional Files



Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.