Performance Improvement of Low-Cost Iterative Learning-Based Fuzzy Control Systems for Tower Crane Systems


  • Radu-Emil Precup Politehnica University of Timisoara
  • Raul-Cristian Roman
  • Elena-Lorena Hedrea
  • Claudia-Adina Bojan-Dragos
  • Miruna-Maria Damian
  • Monica-Lavinia Nedelcea



Iterative Learning Control, intelligent Proportional-Integral Controllers, fuzzy control, learning functions, Slime Mould Algorithm, tower crane systems


This paper is dedicated to the memory of Prof. Ioan Dzitac, one of the fathers of this journal and its founding Editor-in-Chief till 2021. The paper addresses the performance improvement of three Single Input-Single Output (SISO) fuzzy control systems that control separately the positions of interest of tower crane systems, namely the cart position, the arm angular position and the payload position. Three separate low-cost SISO fuzzy controllers are employed in terms of first order discrete-time intelligent Proportional-Integral (PI) controllers with Takagi-Sugeno-Kang Proportional-Derivative (PD) fuzzy terms. Iterative Learning Control (ILC) system structures with PD learning functions are involved in the current iteration SISO ILC structures. Optimization problems are defined in order to tune the parameters of the learning functions. The objective functions are defined as the sums of squared control errors, and they are solved in the iteration domain using the recent metaheuristic Slime Mould Algorithm (SMA). The experimental results prove the performance improvement of the SISO control systems after ten iterations of SMA.


[1] Dzitac, I.; Filip, F.G.; Manolescu, M.J. (2017). Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh, International Journal of Computers Communications & Control, 12(6), 748-789, 2017.

[2] Dzitac, I. (2021). Zadeh's centenary, International Journal of Computers Communications & Control, 16(1) 1-13, 2021.

[3] Precup, R.-E.; Hellendoorn, H. (2011). A survey on industrial applications of fuzzy control, Computers in Industry, 62(3), 213-226, 2011.

[4] Guerra, T.M.; Sala, A.; Tanaka, K. (2015). Fuzzy control turns 50: 10 years later, Fuzzy Sets and Systems, 281, 168-182, 2015.

[5] Precup, R.-E.; Angelov, P.; Costa, B.S.J.; Sayed-Mouchaweh, M. (2015). An overview on fault diagnosis and nature-inspired optimal control of industrial process applications, Computers in Industry, 74, 75-94, 2015.

[6] Xiang, X.-B.; Yu, C.-Y.; Lapierre, L.; Zhang, J.-L.; Zhang, Q. (2018). Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles, International Journal of Fuzzy Systems, 20, 572-586, 2018.

[7] Valdez, F.; Castillo, O.; Cortés-Antonio, P.; Melin, P. (2020). A survey of type-2 fuzzy logic controller design using nature inspired optimization, Journal of Intelligent and Fuzzy Systems, 39(5), 6169-6179, 2020.

[8] Bristow, D.A.; Tharayil, M.; Alleyne, A.G. (2006). A survey of iterative learning control, IEEE Control Systems Magazine, 26(3), 96-114, 2006.

[9] Preitl, S.; Precup, R.-E.; Preitl, Z.; Vaivoda, S.; Kilyeni, S.; Tar, J.K. (2007). Iterative feedback and learning control. Servo systems applications, IFAC Proceedings Volumes, 40(8), 16-27, 2007.

[10] Precup, R.-E.; Enache, F.-C.; Radac, M.-B.; Petriu, E.M.; Preitl, S.; Dragos, C.-A. (2013). Leadlag controller-based iterative learning control algorithms for 3D crane systems, in Madarász, L., Živcák, J. (eds.), Aspects of Computational Intelligence: Theory and Applications, Springer- Verlag: Berlin, Heidelberg, Topics in Intelligent Engineering and Informatics, 2, 25-38, 2013.

[11] Ahn, H.S.; Moore, K.L.; Chen, Y. (2007). Iterative Learning Control. Robustness and Monotonic Convergence for Interval Systems, Springer-Verlag, Berlin, Heidelberg, New York, 2007.

[12] Xu, J.X.; Panda, S.K.; Lee, T.H. (2009). Real-time Iterative Learning Control. Design and Applications, pringer-Verlag, Berlin, Heidelberg, New York, 2009.

[13] Owens, D.H.; Hí¤tí¶nen, J. (2005). Iterative learning control - An optimization paradigm, Annual Reviews in Control, 9(1), 57-70, 2005.

[14] Abidi, K.; Xu, J.X. (2011). Iterative learning control for sampled-data systems: From theory to practice, IEEE Transactions on Industrial Electronics 58(7), 3002-3015, 2011.

[15] Zhang, B.; Tang, G.-Y.; Shi, Z. (2006). PD-type iterative learning control for nonlinear timedelay system with external disturbance, Journal of Systems Engineering and Electronics 17(3), 600-605, 2006.

[16] Feng, Z.-J.; Zhang, Z.-J.; Pi, D.-Y. (2004). Open-closed loop PD-type iterative learning controller for nonlinear systems and its convergence, Proceedings of Fifth World Congress on Intelligent Control and Automation Hangzhou, China, 2, 1241-1245, 2004.

[17] Hamidaoui, M.; Shao, C.; Haouassi, S. (2020). A PD-type iterative learning control algorithm for one-dimension linear wave equation, International Journal of Control, Automation and Systems 18, 1045-1052, 2020.

[18] Meng, D.-Y.; Zhang, J.-Y. (2021). Design and analysis of data-driven learning control: an optimization-based approach, IEEE Transactions on Neural Networks and Learning Systems DOI: 10.1109/TNNLS.2021.3070920, 2021.

[19] Barton, K.L.; Alleyne, A.G. (2011). A norm optimal approach to time varying ILC with application to a multi-axis robotic testbed, IEEE Transactions on Control Systems Technology 19(1), 166-180, 2011.

[20] Axelsson, P.; Karlsson, R.; Norrlí¶f, M. (2014). Estimation-based norm optimal iterative learning control, Systems and Control Letters 73, 76-80, 2014.

[21] Son, T.D.; Pipeleers, G.; Swevers, J. (2016). Robust monotonic convergent iterative learning control, IEEE Transactions on Automatic Control 61(4), 1063-1068, 2016.

[22] Ge, X.; Stein, J.L.; Ersal, T. (2018). Frequency-domain analysis of robust monotonic convergence of norm-optimal iterative learning control, IEEE Transactions on Control Systems Technology 26(2), 637-651, 2018.

[23] Saab, S.S. (2001). A discrete-time stochastic learning control algorithm, IEEE Transactions on Automatic Control 46(6), 877-887, 2001.

[24] Rice, J.K.; Verhaegen, M. (2010). A structured matrix approach to efficient calculation of LQG repetitive learning controllers in the lifted setting, International Journal of Control 83(6), 1265- 1276, 2010.

[25] Chi, R.-H.; Hou, Z.-S. (2007). Dual-stage optimal iterative learning control for nonlinear nonaffine discrete-time systems, Acta Automatica Sinica 33(10), 1061-1065, 2007.

[26] Chi, R.-H.; Hou, Z.-S.; Jin, S.-T.; Wang, D.-W.; Chien, C.-J. (2015). Enhanced data driven optimal terminal ILC using current iteration control knowledge, IEEE Transactions on Neural Networks and Learning Systems 26(11), 2939-2948, 2015.

[27] Radac, M.-B.; Precup, R.-E.; Petriu, E.M. (2015). Model-free primitive based iterative learning control approach to trajectory tracking of MIMO systems with experimental validation, IEEE Transactions on Neural Networks and Learning Systems 26(11), 2925-2938, 2015.

[28] Hui, Y.; Chi, R.-H.; Huang, B.; Hou, Z.-S. (2021). Extended state observer-based data-driven iterative learning control for permanent magnet linear motor with initial shifts and disturbances, IEEE Transactions on Systems, Man, and Cybernetics: Systems 51(3), 1881-1891, 2021.

[29] Fliess, M.; Join, C. (2013). Model-free control, International Journal of Control 86(12), 2228- 2252, 2013.

[30] Precup, R.-E.; Roman, R.-C.; Teban, T.-A.; Albu, A.; Petriu, E.M.; Pozna, C. (2020). Modelfree control of finger dynamics in prosthetic hand myoelectric-based control systems, Studies in Informatics and Control 29(4), 399-410, 2020.

[31] Formentin, S.; Campi, M.C.; Caré, A.; Savaresi, S.M. (2019). Deterministic continuous-time Virtual Reference Feedback Tuning (VRFT) with application to PID design, Systems and Control Letters 127, 25-34, 2019.

[32] Sato, T.; Kusakabe, T.; Himi, K.; Arakim N.; Konishi, Y. (2021). Ripple-free data-driven dualrate controller using lifting technique: application to a physical rotation system, IEEE Transactions on Control Systems Technology 29(3), 1332-1339, 2021.

[33] Zamanipour, M. (2020). A novelty in Blahut-Arimoto type algorithms: optimal control over noisy communication channels, IEEE Transactions on Vehicular Technology 69(6), 6348-6358, 2020.

[34] Chi, R.-H.; Hui, Y.; Zhang, S.-H.; Huang, B.; Hou, Z.-S. (2020). Discrete-time extended state observer-based model-free adaptive control via local dynamic linearization, IEEE Transactions on Industrial Electronics 67(10), 8691-8701, 2020.

[35] Wang, H.-P.; Xu, H.; Tian, Y.; Tang, H. (2020). Alpha-variable adaptive model free control of iReHave upper-limb exoskeleton, Advances in Engineering Software 148, 102872, 2020.

[36] Lucchini, A.; Formentin, S.; Corno, M.; Piga, D.; Savaresi, S.M. (2020). Torque vectoring for high-performance electric vehicles: a data-driven MPC approach, IEEE Control Systems Letters 4(3), 725-730, 2020.

[37] Roman, R.-C.; Precup, R.-E.; Petriu, E.M. (2021). Hybrid data-driven fuzzy active disturbance rejection control for tower crane systems, European Journal of Control 58, 373-387, 2021.

[38] Pei, W.-Y.; Xi, Y.-J.; Hu, Y.-Z.; Yan, L.-T. (2021). Active disturbance rejection control approach to output-feedback stabilization of nonlinear system with Lévy noises, Systems and Control Letters 150, 104898, 2021.

[39] Fliess, M.; Join, C. (2021). Machine learning and control engineering: the model-free case, Arai K., Kapoor, S., Bhatia, R. (eds.), Proceedings of the Future Technologies Conference (FTC) 2020, Volume 1 Springer, Cham, Advances in Intelligent Systems and Computing, 1288, 258-278, 2021.

[40] Precup, R.-E.; Preitl, S.; Rudas, I.J.; Tar, J.K. (2006). On the use of iterative learning control in fuzzy control system structures, Proceedings of 7th International Symposium of Hungarian Researchers on Computational Intelligence Budapest, Hungary, 69-82, 2006.

[41] Precup, R.-E.; Preitl, S.; Kilyeni, S.; Tar, J.K.; Lustrea, B. (2007). Iterative learning control approach to fuzzy control systems development, Proceedings of IEEE Region 8 EUROCON 2007 Computer as a Tool Conference Warsaw, Poland, 692-697, 2007.

[42] Precup, R.-E.; Preitl, S.; Tar, J.K.; Takács, M. (2007). Optimization aspects in a class of fuzzy controlled servosystems, Proceedings of 11th International Conference on Intelligent Engineering Systems Budapest, Hungary, 235-240, 2007.

[43] Precup, R.-E.; Preitl, S.; Tar, J.K.; Tomescu, M.L.; Takács, M.; Korondi, P.; Baranyi, P. (2008). Fuzzy control system performance enhancement by iterative learning control, IEEE Transactions on Industrial Electronics 55(9), 3461-3475, 2008.

[44] Precup, R.-E.; Preitl, S.; Petriu, E.M.; Tar, J.K.; Fodor, J. (2008). Iterative learning-based fuzzy control system, Proceedings of 6th IEEE International Workshop on Robotic and Sensors Environments Ottawa, ON, Canada, 25-28, 2008.

[45] Preitl, S.; Precup, R.-E.; Radac, M.-B.; Dragos, C.-A.; Tar, J.K.; Fodor, J. (2008). On the stable design of stable fuzzy control systems with iterative learning control, Proceedings of 9th International Symposium of Hungarian Researchers on Computational Intelligence and Informatics Budapest, Hungary, 345-360, 2008.

[46] Wang, Y.-C.; Chien, C.-J.; Chi, R.-H.; Hou, Z.-S. (2015). A fuzzy-neural adaptive terminal iterative learning control for fed-batch fermentation processes, International Journal of Fuzzy Systems 17, 423-433, 2015.

[47] Li, J.-S.; Li, J.-M. (2016). Distributed adaptive fuzzy iterative learning control of coordination problems for higher order multi-agent systems, International Journal of Systems Science 47(10), 2318-2329, 2016.

[48] Yu, Q.-X.; Hou, Z.-S. (2021). Adaptive fuzzy iterative learning control for high-speed trains with both randomly varying operation lengths and system constraints, IEEE Transactions on Fuzzy Systems 29(8), 2408-2418, 2021.

[49] Shen, D.; Zhang, C.; Xu, J. (2019). Distributed learning consensus control based on neural networks for heterogeneous nonlinear multiagent systems, International Journal of Robust and Nonlinear Control 29(13), 4328-4347, 2019.

[50] Yu, Q.-X.; Hou, Z.-S.; Bu, X.-H.; Yu, Q.-F. (2020). RBFNN-based data-driven predictive iterative learning control for nonaffine nonlinear systems, IEEE Transactions on Neural Networks and Learning Systems 31(4), 1170-1182, 2020.

[51] Roman, R.-C.; Precup, R.-E.; Radac, M.-B. (2017). Model-free fuzzy control of twin rotor aerodynamic systems, Proceedings of 25th Mediterranean Conference on Control and Automation Valletta, Malta, 559-564, 2017.

[52] Precup, R.-E.; Roman, R.-C.; Safaei, A. (2021). Data-Driven Model-Free Controllers, 1st Ed., CRC Press, Boca Raton, FL, 2021.

[53] Li, S.-M.; Chen, H.-L.; Wang, M.-J.; Heidari, A.A.; Mirjalili, S. (2020). Slime mould algorithm: A new method for stochastic optimization, Future Generation Computer Systems 111, 300-323, 2020.

[54] Precup, R.-E.; David, R.-C.; Roman, R.-C.; Petriu, E.M.; Szedlak-Stinean, A.-I. (2021). Slime mould algorithm-based tuning of cost-effective fuzzy controllers for servo systems, International Journal of Computational Intelligence Systems 14(1), 1042-1052, 2021.

[55] Precup, R.-E.; David, R.-C.; Roman, R.-C.; Szedlak-Stinean, A.-I.; Petriu, E.M. (2021). Optimal tuning of interval type-2 fuzzy controllers for nonlinear servo systems using slime mould algorithm, International Journal of Systems Science DOI: 10.1080/00207721.2021.1927236, 2021.

[56] Precup, R.-E.; David, R.-C. (2019). Nature-Inspired Optimization Algorithms for Fuzzy Controlled Servo Systems, Butterworth-Heinemann, Elsevier, Oxford, UK, 2019.

[57] Precup, R.-E.; David, R.-C.; Petriu, E.M. (2017). Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity, IEEE Transactions on Industrial Electronics 64(1), 527-534, 2017.

[58] Bernal, E.; Lagunes, M.L.; Castillo, O.; Soria, S.; Valdez, F. (2021). Optimization of type-2 fuzzy logic controller design using the GSO and FA Algorithms, International Journal of Fuzzy Systems 23, 42-57, 2021.

[59] Lagunes, M.L.; Castillo, O.; Soria, J.; Valdez, F. (2021). Optimization of a fuzzy controller for autonomous robot navigation using a new competitive multi-metaheuristic model, Soft Computing 25, 11653-11672, 2021.

[60] Valdez, F.; Castillo, O.; Peraza, C. (2020). Fuzzy logic in dynamic parameter adaptation of harmony search optimization for benchmark functions and fuzzy controllers, International Journal of Fuzzy Systems 22, 1198-1211, 2020.

[61] Zeng, G.-Q.; Xie, X.-Q.; Chen, M.-R.; Weng, J. (2019). Adaptive population extremal optimization-based PID neural network for multivariable nonlinear control systems, Swarm and Evolutionary Computation 44, 320-334, 2019.

[62] Chen, M.-R.; Zeng, G.-Q.; Lu, K.-D. (2019). A many-objective population extremal optimization algorithm with an adaptive hybrid mutation operation, Information Sciences 498, 62-90, 2019.

[63] Wang, G.-G.; Tan, Y. (2019). Improving metaheuristic algorithms with information feedback models, IEEE Transactions on Cybernetics 49(2), 542-555, 2019.

[64] Gu, Z.-M.; Wang, G.-G. (2020). Improving NSGA-III algorithms with information feedback models for large-scale many-objective optimization, Future Generation Computer Systems 107, 49-69, 2020.

[65] Garg, H. (2019). A hybrid GSA-GA algorithm for constrained optimization problems, Information Sciences 478, 499-523, 2019.

[66] Osaba, E.; Del Ser, J.; Sadollah, A.; Bilbao, M.N.; Camacho, D. (2018). A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem, Applied Soft Computing 71, 277-290, 2018.

[67] Osaba, E.; Yang, X.S.; Fister Jr, I.; Del Ser, J.; Lopez-Garcia, P.; Vazquez-Pardavila, A.J. (2019). A discrete and improved bat algorithm for solving a medical goods distribution problem with pharmacological waste collection, Swarm and Evolutionary Computation 44, 273-286, 2019.

[68] Rodrí­guez, L.; Castillo, O.; Soria, J.; Melin, P.; Valdez, F.; González, C.I.; Martinez, G.E.; Soto, J. (2017). A fuzzy hierarchical operator in the grey wolf optimizer algorithm, Applied Soft Computing 57, 315-328, 2017.

[69] Melin, P.; Sánchez, D. (2018). Multi-objective optimization for modular granular neural networks applied to pattern recognition, Information Sciences 460-461, 594-610, 2018.

[70] Beruvides, G.; Quiza, R.; Haber, R.E. (2016). Multi-objective optimization based on an improved cross-entropy method. A case study of a micro-scale manufacturing process, Information Sciences 224, 161-173, 2016.

[71] Kaur, G.; Singh Gill, S.; Rattan, M. (2020). Whale optimization algorithm for performance improvement of silicon-on-insulator FinFETs, International Journal of Artificial Intelligence 18(1), 63-81, 2020.

[72] Moattari, M.; Moradi, M.H. (2020). Conflict monitoring optimization heuristic inspired by brain fear and conflict systems, International Journal of Artificial Intelligence 18(1), 45-62, 2020.

[73] Anh, H.P.H.; Huan, T.T. (2020). Optimal walking gait generator for biped robot using modified Jaya optimization technique, International Journal of Computational Intelligence. Systems 13(1), 382-399, 2020.

[74] Inteco Ltd. (2012). Tower Crane, User's Manual Inteco, Krakow, Poland, 2012.

[75] Roman, R.-C.; Precup, R.-E.; Petriu, E.M.; Hedrea, E.-L.; Bojan-Dragos, C.-A.; Radac, M.-B. (2019). Model-free adaptive control with fuzzy component for tower crane systems, Proceedings of 2019 IEEE International Conference on Systems, Man, and Cybernetics Bari, Italy, 1384-1389, 2019.

[76] Roman, R.-C.; Precup, R.-E.; Bojan-Dragos, C.-A.; Szedlak-Stinean, A.-I. (2019). Combined model-free adaptive control with fuzzy component by virtual reference feedback tuning for tower crane systems, Procedia Computer Science 162, 267-274, 2019.

[77] Roman, R.-C.; Precup, R.-E.; Petriu, E.M.; Dragan, F. (2019). Combination of data-driven active disturbance rejection and Takagi-Sugeno fuzzy control with experimental validation on tower crane systems, Energies 12(8), 1-19, 2019.

[78] Costin, H.; Rotariu, C.; Alexa, A.; Constantinescu, G.; Cehan, V.; Dionisie, B.; Andruseac, G.; Felea, V.; Crauciuc, E.; Scutariu, M. (2009). TELEMON - A complex system for real time medical telemonitoring, Proceedings of 11th International Congress of the IUPESM/World Congress on Medical Physics and Biomedical Engineering Munich, Germany, 92-95, 2009.

[79] Albu, A.; Precup, R.-E.; Teban, T.-A. (2019). Results and challenges of artificial neural networks used for decision-making in medical applications, Facta Universitatis Series: Mechanical Engineering 17(3), 285-308, 2019.

[80] Precup, R.-E.; Teban, T.-A.; Albu, A.; Borlea, A.-B.; Zamfirache, I.A.; Petriu, E.M. (2020). Evolving fuzzy models for prosthetic hand myoelectric-based control, IEEE Transactions on Instrumentation and Measurement 69(7), 4625-4636, 2020.

[81] Nyulászi, L.; Andoga, R.; Butka, P.; Fozo, L.; Kovacs, R.; Moravec, T. (2018). Fault detection and isolation of an aircraft turbojet engine using a multi-sensor network and multiple model approach, Acta Polytechnica Hungarica 15(2), 189-209, 2018.

[82] Johanyák, Z.C. (2015). A simple fuzzy logic based power control for a series hybrid electric vehicle, Proceedings of 9th IEEE European Modelling Symposium on Mathematical Modelling and Computer Simulation Madrid, Spain, 207-212, 2015.

[83] Ouadine, A.Y.; Mjahed, M.; Ayad, H.; El Kari, A. (2020). UAV quadrotor fault detection and isolation using artificial neural network and Hammerstein-Wiener model, Studies in Informatics and Control 29(3), 317-328, 2020.

[84] Ando, N.; Korondi, P.; Hashimoto, H. (2004). Networked telemicromanipulation systems "Haptic Loupe", IEEE Transactions on Industrial Electronics 51(6), 1259-1271, 2004.

[85] Blažic, S. (2014). On periodic control laws for mobile robots, IEEE Transactions on Industrial Electronics 61(7), 3660-3670, 2014.

[86] Bolla, K.; Johanyák, Z.C.; Kovács, T.; Fazekas, G. (2014). Local center of gravity based gathering algorithm for fat robots, Kóczy, L.T., Pozna, C.R., Kacprzyk, J. (eds.), Issues and Challenges of Intelligent Systems and Computational Intelligence Springer: Cham, Studies in Computational Intelligence, 530, 175-183, 2014.

[87] Vašcák, J.; Hvizdoš, J. (2016). Vehicle navigation by fuzzy cognitive maps using sonar and RFID technologies, Proceedings of IEEE 14th International Symposium on Applied Machine Intelligence and Informatics Herlany, Slovakia,75-80, 2016.

[88] Michail, K.; Deliparaschos, K.M.; Tzafestas, S.G.; Zolotas, A.C. (2016). AI-based actuator/sensor fault detection with low computational cost for industrial applications, IEEE Transactions on Control Systems Technology 24(1), 293-301, 2016.

[89] Angelov, P.; Škrjanc, I.; Blažic, S. (2013). Robust evolving cloud-based controller for a hydraulic plant, Proceedings of 2013 IEEE Conference on Evolving and Adaptive Intelligent Systems Singapore, 1-8, 2013.

[90] Costa, B.; Škrjanc, I.; Blažic, S.; Angelov, P. (2013). A practical implementation of self-evolving cloud-based control of a pilot plant, Proceedings of 2013 IEEE International Conference on Cybernetics Lausanne, Switzerland, 7-12, 2013.

[91] Blažic, S.; Škrjanc, I.; Matko, D. (2014). A robust fuzzy adaptive law for evolving control systems, Evolving Systems 5, 3-10, 2014.

[92] Hedrea, E.-L.; Precup, R.-E.; Roman, R.-C.; Petriu, E.M. (2021). Tensor product-based model transformation approach to tower crane systems modeling, Asian Journal of Control 23(3), 1313- 1323, 2021.

[93] Ileš, Å .; Matuško, J.; Lazar, M. (2021). Piece-wise ellipsoidal set-based model predictive control of linear parameter varying systems with application to a tower crane, Asian Journal of Control 23(3), 1324-1339, 2021.

[94] Kuczmann, M. (2021). Study of tensor product model alternatives, Asian Journal of Control 23(3), 1249-1261, 2021.

[95] Csapo, A.B. (2021). Cyclical inverse interpolation: An approach for the inverse interpolation of black-box models using tensor product representations, Asian Journal of Control 23(3), 1301- 1312, 2021.

[96] Németh, Z.; Kuczmann, M. (2021). Tensor product transformation-based modeling of an induction machine, Asian Journal of Control 23(3), 1280-1289, 2021.

[97] Várlaki, P.; Palkovics, L.; Rí¶vid, A. (2021). On modeling and identification of empirical partially intelligible white noise processes, Asian Journal of Control 23(3), 1262-1279, 2021.

[98] Boonyaprapasorn, A.; Kuntanapreeda, S.; Ngiamsunthorn, P.S.; Pengwang, E.; Sangpet, T. (2021). Tensor product model transformation-based control for fractional-order biological pest control systems, Asian Journal of Control 23(3), 1340-1351, 2021.

[99] Takarics, B.; Vanek, B. (2021). Robust control design for the FLEXOP demonstrator aircraft via Tensor Product models, Asian Journal of Control 23(3), 1290-1300, 2021.

[100] Castillo, O.; Bení­tez-Pérez, H. (2021). An improving NCS stabilization using a predictive pulsed control law, International Journal of Computers Communications & Control 15(6), 4052, 2021.

Additional Files



Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.