Probability Transform Based on the Ordered Weighted Averaging and Entropy Difference
Keywords:
Dempster-Shafer evidence theory, probability transform, mass function, ordered weighted averaging, entropy differenceAbstract
Dempster-Shafer evidence theory can handle imprecise and unknown information, which has attracted many people. In most cases, the mass function can be translated into the probability, which is useful to expand the applications of the D-S evidence theory. However, how to reasonably transfer the mass function to the probability distribution is still an open issue. Hence, the paper proposed a new probability transform method based on the ordered weighted averaging and entropy difference. The new method calculates weights by ordered weighted averaging, and adds entropy difference as one of the measurement indicators. Then achieved the transformation of the minimum entropy difference by adjusting the parameter r of the weight function. Finally, some numerical examples are given to prove that new method is more reasonable and effective.References
Abellán, J. (2011). Combining nonspecificity measures in Dempster-Shafer theory of evidence, International journal of general systems, 40(6), 611-622, 2011. https://doi.org/10.1080/03081079.2011.561204
Abellán, J. (2017). Analyzing properties of Deng entropy in the theory of evidence, Chaos Solitons & Fractals, 95, 195-199, 2017. https://doi.org/10.1016/j.chaos.2016.12.024
Abellán, J.; Mantas, C.J; Bossé, É. (2019). Basic Properties for Total Uncertainty Measures in the Theory of Evidence, Information Quality in Information Fusion and Decision Making, 99-108, 2019. https://doi.org/10.1007/978-3-030-03643-0_5
Atanassov, K.T. (1999). Intuitionistic fuzzy sets, Intuitionistic fuzzy sets, 1-137, 1999. https://doi.org/10.1007/978-3-7908-1870-3_1
Cai, Q.; Gao, X.; Deng, Y. (2020). Pignistic belief transform: A new method of conflict measurement, IEEE Access, 8(1), 15265-15272, 2020. https://doi.org/10.1109/ACCESS.2020.2966821
Cobb, B.R; Shenoy, P.P. (2006). On the plausibility transformation method for translating belief function models to probability models, International journal of approximate reasoning, 41(3), 314-330, 2006. https://doi.org/10.1016/j.ijar.2005.06.008
Cheong, K.H.; Koh, J.M. (2019). A hybrid genetic-Levenberg Marquardt algorithm for automated spectrometer design optimization, Ultramicroscopy, 202, 100-106, 2019. https://doi.org/10.1016/j.ultramic.2019.03.004
Deng, Y. (2016). Deng entropy, Chaos Solitons & Fractals, 91, 549-55, 2016. https://doi.org/10.1016/j.chaos.2016.07.014
Deng, W.; Deng, Y. (2018). Entropic methodology for entanglement measures, Physica A: Statistical Mechanics and its Applications, 512, 693-697, 2018. https://doi.org/10.1016/j.physa.2018.07.044
Deng, X.; Jiang, W. (2019). Evaluating green supply chain management practices under fuzzy environment: a novel method based on D number theory, International Journal of Fuzzy Systems, 21, 1389-1402, 2019. https://doi.org/10.1007/s40815-019-00639-5
Deng, Y.; Shi, W.; Zhu, Z.; Liu, Q. (2004). Combining belief functions based on distance of evidence, Decision support systems, 38(3), 489-493, 2004. https://doi.org/10.1016/j.dss.2004.04.015
Dempster, A.P. (1968). Upper and lower probabilities generated by a random closed interval, The Annals of Mathematical Statistics, 39(3), 957-966, 1968. https://doi.org/10.1214/aoms/1177698328
Dezert, J.; Smarandache, F. (2008). A new probabilistic transformation of belief mass assignment, 2008 11th International Conference on Information Fusion, 1-8, 2008.
Dzitac, I. Filip, F.G.; Manolescu, M.J.. (2017). Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh, International Journal of Computers Communications & Control, 12(6), 748-789, 2017. https://doi.org/10.15837/ijccc.2017.6.3111
Fei, L.; Deng, Y. (2020). Multi-criteria decision making in Pythagorean fuzzy environment, Applied Intelligence, 50(2), 537-561, 2020. https://doi.org/10.1007/s10489-019-01532-2
Fei, L.; Zhang, Q.; Deng, Y. (2018). Identifying influential nodes in complex networks based on the inverse-square law, Physica A: Statistical Mechanics and its Applications, 512, 1044-1059, 2018. https://doi.org/10.1016/j.physa.2018.08.135
Gao, Q.; Xu, D. (2019). An empirical study on the application of the Evidential Reasoning rule to decision making in financial investment, Knowledge-Based Systems, 164, 226-234, 2019. https://doi.org/10.1016/j.knosys.2018.10.039
Gao, S.; Deng, Y. (2019). An evidential evaluation of nuclear safeguards, International Journal of Distributed Sensor Networks, 15(12), 2019. https://doi.org/10.1177/1550147719894550
Ho, A. F. W.; To, B. Z. Y. S.; Koh, J.M.; Cheong, K. H. (2019). Forecasting Hospital Emergency Department Patient Volume Using Internet Search Data, IEEE Access, 7, 93387-93395, 2019. https://doi.org/10.1109/ACCESS.2019.2928122
Jaunzemis, A.D.; Holzinger, M.J.; Chan, M. W.; Shenoy, P.P. (2019). Evidence gathering for hypothesis resolution using judicial evidential reasoning, Information Fusion, 49, 26-45, 2019. https://doi.org/10.1016/j.inffus.2018.09.010
Jiang, W.; Cao, Y.; Deng, X. (2019). A Novel Z-network Model Based on Bayesian Network and Z-number, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2918999. https://doi.org/10.1109/TFUZZ.2019.2918999
Jiang, W.; Zhang, A.; Deng, Y. (2011). Proposing Interval Probability Transform(IPT) Method for Decision Making and Its Application, Journal of Northwestern Polytechnical University, 29(1), 44-48, 2011.
Jiroušek, R.; Shenoy, P. P. (2018). A new definition of entropy of belief functions in the Dempster- Shafer theory, International Journal of Approximate Reasoning, 92, 49-65, 2018. https://doi.org/10.1016/j.ijar.2017.10.010
Kang, B.; Zhang, P.; Gao, Z. et al. (2019). Environmental assessment under uncertainty using Dempster-Shafer theory and Z-numbers, Journal of Ambient Intelligence and Humanized Computing, DOI: 10.1007/s12652-019-01228-y. https://doi.org/10.1007/s12652-019-01228-y
Li, H.; Yuan, R.; Fu, J. (2019). A reliability modeling for multi-component systems considering random shocks and multistate degradation, IEEE Access, 7(1), 168805-168814, 2019. https://doi.org/10.1109/ACCESS.2019.2953483
Li, M.; Xu, H.; Deng, Y. (2019). Evidential Decision Tree Based on Belief Entropy, Entropy, 21(9), 897, 2019. https://doi.org/10.3390/e21090897
Li, Y.; Garg, H.; Deng, Y. (2020). A New Uncertainty Measure of Discrete Z-numbers, International Journal of Fuzzy Systems, 22(3), 760-776, 2020. https://doi.org/10.1007/s40815-020-00819-8
Liao, H.; Wu, X.; Mi, X.; Herrera, F. (2019). An integrated method for cognitive complex multiple experts multiple criteria decision making based on ELECTRE III with weighted Borda rule, Omega, DOI: 10.1016/j.omega.2019.03.010. https://doi.org/10.1016/j.omega.2019.03.010
Liu, F.; Gao, X.; Zhao, J.; Deng, Y. (2019). Generalized Belief Entropy and Its Application in Identifying Conflict Evidence, IEEE Access, 7(1), 126625-126633, 2019. https://doi.org/10.1109/ACCESS.2019.2939332
Liu, Q.; Tian, Y.; Kang, B. (2019). Derive knowledge of Z-number from the perspective of Dempster-Shafer evidence theory, Engineering Applications of Artificial Intelligence, 85, 754-764, 2019. https://doi.org/10.1016/j.engappai.2019.08.005
Liu, W.; Wang, T.; Zang, T. et al. (2020). A fault diagnosis method for power transmission networks based on spiking neural P systems with self-updating rules considering biological apoptosis mechanism, Complexity, DOI: 10.1155/2020/2462647. https://doi.org/10.1155/2020/2462647
Liu, Y.; Jiang, W. (2019). A new distance measure of interval-valued intuitionistic fuzzy sets and its application in decision making, Soft Computing, 23, 2019. https://doi.org/10.1007/s00500-019-04332-5
Liu, Y.-T.; Pal, N.R; Marathe, A.R; Lin, C.-T. (2018). Weighted Fuzzy Dempster-Shafer Framework for Multimodal Information Integration, IEEE Transactions on Fuzzy Systems, 26(1), 338- 352, 2018. https://doi.org/10.1109/TFUZZ.2017.2659764
Liu, Z.; Pan, Q.; Dezert, J.; Martin, A. (2018). Combination of classifiers with optimal weight based on evidential reasoning, IEEE Transactions on Fuzzy Systems, 26(3), 1217-1230, 2018. https://doi.org/10.1109/TFUZZ.2017.2718483
Liu, Z.; Liu, Y.; Dezert, J.; Cuzzolin, F. (2019). Evidence combination based on credal belief redistribution for pattern classification, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2911915. https://doi.org/10.1109/TFUZZ.2019.2911915
Luo, Z.; Deng, Y. (2019). A matrix method of basic belief assignment's negation in Dempster- Shafer theory, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2930027. https://doi.org/10.1109/TFUZZ.2019.2930027
Luo, Z.; Deng, Y. (2020). A vector and geometry interpretation of basic probability assignment in Dempster-Shafer theory, International Journal of Intelligent Systems, 35(6), 944-962, 2020. https://doi.org/10.1002/int.22231
Marra, M.; Emrouznejad, A.; Ho, W.; Edwards, J.S. (2015). The value of indirect ties in citation networks: SNA analysis with OWA operator weights, Information Sciences, 314, 135-151, 2015. https://doi.org/10.1016/j.ins.2015.02.017
Mo, H.; Deng, Y. (2019). Identifying node importance based on evidence theory in complex networks, Physica A: Statistical Mechanics & Its Applications, DOI: 10.1016/j.physa.2019.121538. https://doi.org/10.1016/j.physa.2019.121538
Murphy, C.K. (2000). Combining belief functions when evidence conflicts, Decision support systems, 29(1), 1-9, 2000. https://doi.org/10.1016/S0167-9236(99)00084-6
Pan, Y.; Zhang, L.; Li, Z.W.; Ding, L. (2019). Improved Fuzzy Bayesian Network-Based Risk Analysis With Interval-Valued Fuzzy Sets and D-S Evidence Theory, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2929024. https://doi.org/10.1109/TFUZZ.2019.2929024
Seiti, H.; Hafezalkotob, A.; Najafi, S.E.; Khalaj, M. (2018). A risk-based fuzzy evidential framework for FMEA analysis under uncertainty: An interval-valued DS approach, Journal of Intelligent & Fuzzy Systems, 1-12, 2018.
Shafer, G. (1976). A mathematical theory of evidence, Princeton university press, 42, 1976.
Smets, P. (2005). Decision making in the TBM: the necessity of the pignistic transformation, International Journal of Approximate Reasoning, 38(2), 133-147, 2005. https://doi.org/10.1016/j.ijar.2004.05.003
Song, Y.; Deng, Y. (2019). A new soft likelihood function based on power ordered weighted average operator, International Journal of Intelligent Systems, 34(11), 2988-2999, 2019. https://doi.org/10.1002/int.22182
Song, Y.; Deng, Y. (2019). Divergence measure of belief function and its application in data fusion, IEEE Access, 71(1), 107465-107472, 2019. https://doi.org/10.1109/ACCESS.2019.2932390
Song, Y.F.; Wang, X.D.; Lei, L.; Xue, A.J. (2014). Measurement of evidence conflict based on correlation coefficient, Journal on Communications, 35(5),95-100, 2014.
Tang, M.; Liao, H.; Li, Z.; Xu, Z.S. (2018). Nature disaster risk evaluation with a group decision making method based on incomplete hesitant fuzzy linguistic preference relations, International journal of environmental research and public health, 15(4), 751, 2018. https://doi.org/10.3390/ijerph15040751
Wang, C.; Tan, Z.; Ye, Y,. et al. (2017). A rumor spreading model based on information entropy, Scientific reports, 7(1), 1-14, 2017. https://doi.org/10.1038/s41598-017-09171-8
Wang, H.; Fang, Y.; Zio, E. (2019). Risk Assessment of an Electrical Power System Considering the Influence of Traffic Congestion on a Hypothetical Scenario of Electrified Transportation System in New York Stat, IEEE Transactions on Intelligent Transportation Systems, DOI: 10.1109/TITS.2019.2955359. https://doi.org/10.1109/TITS.2019.2955359
Wang, T.; Liu, W.; Zhao, J. et al. (2020). A rough set-based bio-inspired fault diagnosis method for electrical substations, International Journal of Electrical Power & Energy Systems, 119, 105961, 2020. https://doi.org/10.1016/j.ijepes.2020.105961
Wang, T.; Wei, X.; Huang, T. et al. (2019). Cascading Failures Analysis Considering Extreme Virus Propagation of Cyber-Physical Systems in Smart Grids, Complexity, DOI: 10.1155/2019/7428458. https://doi.org/10.1155/2019/7428458
Wang, T.; Wei, X.; Huang, T. et al. (2019). Modeling fault propagation paths in power systems: A new framework based on event SNP systems with neurotransmitter concentration, IEEE Access, 7, 12798-12808, 2019. https://doi.org/10.1109/ACCESS.2019.2892797
Wang, T.; Wang, J.; Ming, J. et al. (2018). Application of neural-like P systems with state values for power coordination of photovoltaic/battery microgrids, IEEE Access, 6, 46630-4664, 2018. https://doi.org/10.1109/ACCESS.2018.2865122
Wang, T.; Wei, X.; Wang, J. et al. (2020). A weighted corrective fuzzy reasoning spiking neural P system for fault diagnosis in power systems with variable topologies, Engineering Applications of Artificial Intelligence, 92, 103680, 2020. https://doi.org/10.1016/j.engappai.2020.103680
Wen, T.; Deng, Y. (2020). The vulnerability of communities in complex networks: An entropy approach, Reliability Engineering & System Safety, 196, 106782, 2020. https://doi.org/10.1016/j.ress.2019.106782
Wu, X.; Liao, H.; Xu, Z.S. et al. (2018). Probabilistic Linguistic MULTIMOORA: A Multicriteria Decision Making Method Based on the Probabilistic Linguistic Expectation Function and the Improved Borda Rule, IEEE Transactions on Fuzzy Systems, 26(6), 3688-3702, 2018. https://doi.org/10.1109/TFUZZ.2018.2843330
Xiao, F. (2019). Generalization of Dempster-Shafer theory: A complex mass function, Applied Intelligence, DOI: 10.1007/s10489-019-01617-y. https://doi.org/10.1007/s10489-019-01617-y
Xiao, F. (2019). A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, DOI: 10.1109/TSMC.2019.2958635. https://doi.org/10.1109/TSMC.2019.2958635
Xiao, F. (2019). EFMCDM: Evidential fuzzy multicriteria decision making based on belief entropy, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2936368. https://doi.org/10.1109/TFUZZ.2019.2936368
Xiao, F. (2020). A new divergence measure for belief functions in D-S evidence theory for multisensor data fusion, Information Sciences, 514, 462-483, 2020. https://doi.org/10.1016/j.ins.2019.11.022
Xiao, F. (2020). Generalized belief function in complex evidence theory, Journal of Intelligent & Fuzzy Systems, DOI: 10.3233/JIFS-179589. https://doi.org/10.3233/JIFS-179589
Xiao, F. (2020). CED: A distance for complex mass functions, IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2020.2984918. https://doi.org/10.1109/TNNLS.2020.2984918
Xiao, F.; Zhang, Z.; Abawajy, J. (2019). Workflow scheduling in distributed systems under fuzzy environment, Journal of Intelligent & Fuzzy Systems, 37(4), 5323-5333, 2019. https://doi.org/10.3233/JIFS-190483
Xu, P.; Zhang, R.; Deng, Y. (2018). A Novel Visibility Graph Transformation of Time Series into Weighted Networks, Chaos, Solitons & Fractals, 117, 201-208, 2018. https://doi.org/10.1016/j.chaos.2018.07.039
Xue, Y.; Deng, Y. (2020). Refined Expected Value Decision Rules under Orthopair Fuzzy Environment, Mathematics, 8(3), 442, 2020. https://doi.org/10.3390/math8030442
Yager, R.R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking, IEEE Transactions on systems, Man, and Cybernetics, 18(1), 183-190, 1988. https://doi.org/10.1109/21.87068
Yager, R.R. (2017). Generalized regret based decision making, Engineering Applications of Artificial Intelligence, 65, 400-405, 2017. https://doi.org/10.1016/j.engappai.2017.08.001
Yager, R.R.(2018). Interval valued entropies for dempster-shafer structures, Knowledge-Based Systems, 161, 390-397, 2018. https://doi.org/10.1016/j.knosys.2018.08.001
Yager, R.R. (2019). OWA aggregation with an uncertainty over the arguments, Information Fusion, 52, 206-212, 2019. https://doi.org/10.1016/j.inffus.2018.12.009
Yager, R.R. (2019). Generalized Dempster-Shafer Structures, IEEE Transactions on Fuzzy Systems, 27(3), 428-435, 2019. https://doi.org/10.1109/TFUZZ.2018.2859899
Yager, R.R. (2019). Extending Set Measures to Pythagorean Fuzzy Sets, International Journal of Fuzzy Systems, 21(2), 343-354, 2019. https://doi.org/10.1007/s40815-018-0580-6
Yan, H.; Deng, Y. (2020). An Improved Belief Entropy in Evidence Theory, IEEE Access, 8(1), 57505-57516, 2020. https://doi.org/10.1109/ACCESS.2020.2982579
Yang, G.; Yang, J.; Xu, D.; Khoveyni, M. (2017). A three-stage hybrid approach for weight assignment in MADM, Omega, 71, 93-105, 2017. https://doi.org/10.1016/j.omega.2016.09.011
Yuan, R.; Tang, M.; Wang, H.; Li, H. (2019). A Reliability Analysis Method of Accelerated Performance Degradation Based on Bayesian Strategy, IEEE Access, 7(1), 169047-169054, 2019. https://doi.org/10.1109/ACCESS.2019.2952337
Zadeh, L.A. (1965). Fuzzy sets, Information and control, 8(3), 338-353, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X
Zadeh, L.A. (2011). A note on Z-numbers, Information Sciences, 181(14), 2923-2932, 2011. https://doi.org/10.1016/j.ins.2011.02.022
Zhang, H.; Deng, Y. (2020). Weighted belief function of sensor data fusion in engine fault diagnosis, Soft computing, 24(3), 2329-2339, 2020. https://doi.org/10.1007/s00500-019-04063-7
Zhou, M.; Liu, X.; Chen, Y.et al. (2019). Assignment of attribute weights with belief distributions for MADM under uncertainties, Knowledge-Based Systems, DOI: 10.1016/j.knosys.2019.105110. https://doi.org/10.1016/j.knosys.2019.105110
Zhou, M.; Liu, X.; Yang, J. et al. (2019). Evidential reasoning approach with multiple kinds of attributes and entropy-based weight assignment, Knowledge-Based Systems, 163, 358-375, 2019. https://doi.org/10.1016/j.knosys.2018.08.037
Zhou, Q.; Mo, H.; Deng, Y. (2020). A new divergence measure of pythagorean fuzzy sets based on belief function and its application in medical diagnosis, Mathematics, 8(1), 142, 2020. https://doi.org/10.3390/math8010142
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.