Probability Transform Based on the Ordered Weighted Averaging and Entropy Difference

Authors

  • Lipeng Pan Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China
  • Yong Deng Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China

Keywords:

Dempster-Shafer evidence theory, probability transform, mass function, ordered weighted averaging, entropy difference

Abstract

Dempster-Shafer evidence theory can handle imprecise and unknown information, which has attracted many people. In most cases, the mass function can be translated into the probability, which is useful to expand the applications of the D-S evidence theory. However, how to reasonably transfer the mass function to the probability distribution is still an open issue. Hence, the paper proposed a new probability transform method based on the ordered weighted averaging and entropy difference. The new method calculates weights by ordered weighted averaging, and adds entropy difference as one of the measurement indicators. Then achieved the transformation of the minimum entropy difference by adjusting the parameter r of the weight function. Finally, some numerical examples are given to prove that new method is more reasonable and effective.

References

Abellán, J. (2011). Combining nonspecificity measures in Dempster-Shafer theory of evidence, International journal of general systems, 40(6), 611-622, 2011. https://doi.org/10.1080/03081079.2011.561204

Abellán, J. (2017). Analyzing properties of Deng entropy in the theory of evidence, Chaos Solitons & Fractals, 95, 195-199, 2017. https://doi.org/10.1016/j.chaos.2016.12.024

Abellán, J.; Mantas, C.J; Bossé, É. (2019). Basic Properties for Total Uncertainty Measures in the Theory of Evidence, Information Quality in Information Fusion and Decision Making, 99-108, 2019. https://doi.org/10.1007/978-3-030-03643-0_5

Atanassov, K.T. (1999). Intuitionistic fuzzy sets, Intuitionistic fuzzy sets, 1-137, 1999. https://doi.org/10.1007/978-3-7908-1870-3_1

Cai, Q.; Gao, X.; Deng, Y. (2020). Pignistic belief transform: A new method of conflict measurement, IEEE Access, 8(1), 15265-15272, 2020. https://doi.org/10.1109/ACCESS.2020.2966821

Cobb, B.R; Shenoy, P.P. (2006). On the plausibility transformation method for translating belief function models to probability models, International journal of approximate reasoning, 41(3), 314-330, 2006. https://doi.org/10.1016/j.ijar.2005.06.008

Cheong, K.H.; Koh, J.M. (2019). A hybrid genetic-Levenberg Marquardt algorithm for automated spectrometer design optimization, Ultramicroscopy, 202, 100-106, 2019. https://doi.org/10.1016/j.ultramic.2019.03.004

Deng, Y. (2016). Deng entropy, Chaos Solitons & Fractals, 91, 549-55, 2016. https://doi.org/10.1016/j.chaos.2016.07.014

Deng, W.; Deng, Y. (2018). Entropic methodology for entanglement measures, Physica A: Statistical Mechanics and its Applications, 512, 693-697, 2018. https://doi.org/10.1016/j.physa.2018.07.044

Deng, X.; Jiang, W. (2019). Evaluating green supply chain management practices under fuzzy environment: a novel method based on D number theory, International Journal of Fuzzy Systems, 21, 1389-1402, 2019. https://doi.org/10.1007/s40815-019-00639-5

Deng, Y.; Shi, W.; Zhu, Z.; Liu, Q. (2004). Combining belief functions based on distance of evidence, Decision support systems, 38(3), 489-493, 2004. https://doi.org/10.1016/j.dss.2004.04.015

Dempster, A.P. (1968). Upper and lower probabilities generated by a random closed interval, The Annals of Mathematical Statistics, 39(3), 957-966, 1968. https://doi.org/10.1214/aoms/1177698328

Dezert, J.; Smarandache, F. (2008). A new probabilistic transformation of belief mass assignment, 2008 11th International Conference on Information Fusion, 1-8, 2008.

Dzitac, I. Filip, F.G.; Manolescu, M.J.. (2017). Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh, International Journal of Computers Communications & Control, 12(6), 748-789, 2017. https://doi.org/10.15837/ijccc.2017.6.3111

Fei, L.; Deng, Y. (2020). Multi-criteria decision making in Pythagorean fuzzy environment, Applied Intelligence, 50(2), 537-561, 2020. https://doi.org/10.1007/s10489-019-01532-2

Fei, L.; Zhang, Q.; Deng, Y. (2018). Identifying influential nodes in complex networks based on the inverse-square law, Physica A: Statistical Mechanics and its Applications, 512, 1044-1059, 2018. https://doi.org/10.1016/j.physa.2018.08.135

Gao, Q.; Xu, D. (2019). An empirical study on the application of the Evidential Reasoning rule to decision making in financial investment, Knowledge-Based Systems, 164, 226-234, 2019. https://doi.org/10.1016/j.knosys.2018.10.039

Gao, S.; Deng, Y. (2019). An evidential evaluation of nuclear safeguards, International Journal of Distributed Sensor Networks, 15(12), 2019. https://doi.org/10.1177/1550147719894550

Ho, A. F. W.; To, B. Z. Y. S.; Koh, J.M.; Cheong, K. H. (2019). Forecasting Hospital Emergency Department Patient Volume Using Internet Search Data, IEEE Access, 7, 93387-93395, 2019. https://doi.org/10.1109/ACCESS.2019.2928122

Jaunzemis, A.D.; Holzinger, M.J.; Chan, M. W.; Shenoy, P.P. (2019). Evidence gathering for hypothesis resolution using judicial evidential reasoning, Information Fusion, 49, 26-45, 2019. https://doi.org/10.1016/j.inffus.2018.09.010

Jiang, W.; Cao, Y.; Deng, X. (2019). A Novel Z-network Model Based on Bayesian Network and Z-number, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2918999. https://doi.org/10.1109/TFUZZ.2019.2918999

Jiang, W.; Zhang, A.; Deng, Y. (2011). Proposing Interval Probability Transform(IPT) Method for Decision Making and Its Application, Journal of Northwestern Polytechnical University, 29(1), 44-48, 2011.

Jiroušek, R.; Shenoy, P. P. (2018). A new definition of entropy of belief functions in the Dempster- Shafer theory, International Journal of Approximate Reasoning, 92, 49-65, 2018. https://doi.org/10.1016/j.ijar.2017.10.010

Kang, B.; Zhang, P.; Gao, Z. et al. (2019). Environmental assessment under uncertainty using Dempster-Shafer theory and Z-numbers, Journal of Ambient Intelligence and Humanized Computing, DOI: 10.1007/s12652-019-01228-y. https://doi.org/10.1007/s12652-019-01228-y

Li, H.; Yuan, R.; Fu, J. (2019). A reliability modeling for multi-component systems considering random shocks and multistate degradation, IEEE Access, 7(1), 168805-168814, 2019. https://doi.org/10.1109/ACCESS.2019.2953483

Li, M.; Xu, H.; Deng, Y. (2019). Evidential Decision Tree Based on Belief Entropy, Entropy, 21(9), 897, 2019. https://doi.org/10.3390/e21090897

Li, Y.; Garg, H.; Deng, Y. (2020). A New Uncertainty Measure of Discrete Z-numbers, International Journal of Fuzzy Systems, 22(3), 760-776, 2020. https://doi.org/10.1007/s40815-020-00819-8

Liao, H.; Wu, X.; Mi, X.; Herrera, F. (2019). An integrated method for cognitive complex multiple experts multiple criteria decision making based on ELECTRE III with weighted Borda rule, Omega, DOI: 10.1016/j.omega.2019.03.010. https://doi.org/10.1016/j.omega.2019.03.010

Liu, F.; Gao, X.; Zhao, J.; Deng, Y. (2019). Generalized Belief Entropy and Its Application in Identifying Conflict Evidence, IEEE Access, 7(1), 126625-126633, 2019. https://doi.org/10.1109/ACCESS.2019.2939332

Liu, Q.; Tian, Y.; Kang, B. (2019). Derive knowledge of Z-number from the perspective of Dempster-Shafer evidence theory, Engineering Applications of Artificial Intelligence, 85, 754-764, 2019. https://doi.org/10.1016/j.engappai.2019.08.005

Liu, W.; Wang, T.; Zang, T. et al. (2020). A fault diagnosis method for power transmission networks based on spiking neural P systems with self-updating rules considering biological apoptosis mechanism, Complexity, DOI: 10.1155/2020/2462647. https://doi.org/10.1155/2020/2462647

Liu, Y.; Jiang, W. (2019). A new distance measure of interval-valued intuitionistic fuzzy sets and its application in decision making, Soft Computing, 23, 2019. https://doi.org/10.1007/s00500-019-04332-5

Liu, Y.-T.; Pal, N.R; Marathe, A.R; Lin, C.-T. (2018). Weighted Fuzzy Dempster-Shafer Framework for Multimodal Information Integration, IEEE Transactions on Fuzzy Systems, 26(1), 338- 352, 2018. https://doi.org/10.1109/TFUZZ.2017.2659764

Liu, Z.; Pan, Q.; Dezert, J.; Martin, A. (2018). Combination of classifiers with optimal weight based on evidential reasoning, IEEE Transactions on Fuzzy Systems, 26(3), 1217-1230, 2018. https://doi.org/10.1109/TFUZZ.2017.2718483

Liu, Z.; Liu, Y.; Dezert, J.; Cuzzolin, F. (2019). Evidence combination based on credal belief redistribution for pattern classification, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2911915. https://doi.org/10.1109/TFUZZ.2019.2911915

Luo, Z.; Deng, Y. (2019). A matrix method of basic belief assignment's negation in Dempster- Shafer theory, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2930027. https://doi.org/10.1109/TFUZZ.2019.2930027

Luo, Z.; Deng, Y. (2020). A vector and geometry interpretation of basic probability assignment in Dempster-Shafer theory, International Journal of Intelligent Systems, 35(6), 944-962, 2020. https://doi.org/10.1002/int.22231

Marra, M.; Emrouznejad, A.; Ho, W.; Edwards, J.S. (2015). The value of indirect ties in citation networks: SNA analysis with OWA operator weights, Information Sciences, 314, 135-151, 2015. https://doi.org/10.1016/j.ins.2015.02.017

Mo, H.; Deng, Y. (2019). Identifying node importance based on evidence theory in complex networks, Physica A: Statistical Mechanics & Its Applications, DOI: 10.1016/j.physa.2019.121538. https://doi.org/10.1016/j.physa.2019.121538

Murphy, C.K. (2000). Combining belief functions when evidence conflicts, Decision support systems, 29(1), 1-9, 2000. https://doi.org/10.1016/S0167-9236(99)00084-6

Pan, Y.; Zhang, L.; Li, Z.W.; Ding, L. (2019). Improved Fuzzy Bayesian Network-Based Risk Analysis With Interval-Valued Fuzzy Sets and D-S Evidence Theory, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2929024. https://doi.org/10.1109/TFUZZ.2019.2929024

Seiti, H.; Hafezalkotob, A.; Najafi, S.E.; Khalaj, M. (2018). A risk-based fuzzy evidential framework for FMEA analysis under uncertainty: An interval-valued DS approach, Journal of Intelligent & Fuzzy Systems, 1-12, 2018.

Shafer, G. (1976). A mathematical theory of evidence, Princeton university press, 42, 1976.

Smets, P. (2005). Decision making in the TBM: the necessity of the pignistic transformation, International Journal of Approximate Reasoning, 38(2), 133-147, 2005. https://doi.org/10.1016/j.ijar.2004.05.003

Song, Y.; Deng, Y. (2019). A new soft likelihood function based on power ordered weighted average operator, International Journal of Intelligent Systems, 34(11), 2988-2999, 2019. https://doi.org/10.1002/int.22182

Song, Y.; Deng, Y. (2019). Divergence measure of belief function and its application in data fusion, IEEE Access, 71(1), 107465-107472, 2019. https://doi.org/10.1109/ACCESS.2019.2932390

Song, Y.F.; Wang, X.D.; Lei, L.; Xue, A.J. (2014). Measurement of evidence conflict based on correlation coefficient, Journal on Communications, 35(5),95-100, 2014.

Tang, M.; Liao, H.; Li, Z.; Xu, Z.S. (2018). Nature disaster risk evaluation with a group decision making method based on incomplete hesitant fuzzy linguistic preference relations, International journal of environmental research and public health, 15(4), 751, 2018. https://doi.org/10.3390/ijerph15040751

Wang, C.; Tan, Z.; Ye, Y,. et al. (2017). A rumor spreading model based on information entropy, Scientific reports, 7(1), 1-14, 2017. https://doi.org/10.1038/s41598-017-09171-8

Wang, H.; Fang, Y.; Zio, E. (2019). Risk Assessment of an Electrical Power System Considering the Influence of Traffic Congestion on a Hypothetical Scenario of Electrified Transportation System in New York Stat, IEEE Transactions on Intelligent Transportation Systems, DOI: 10.1109/TITS.2019.2955359. https://doi.org/10.1109/TITS.2019.2955359

Wang, T.; Liu, W.; Zhao, J. et al. (2020). A rough set-based bio-inspired fault diagnosis method for electrical substations, International Journal of Electrical Power & Energy Systems, 119, 105961, 2020. https://doi.org/10.1016/j.ijepes.2020.105961

Wang, T.; Wei, X.; Huang, T. et al. (2019). Cascading Failures Analysis Considering Extreme Virus Propagation of Cyber-Physical Systems in Smart Grids, Complexity, DOI: 10.1155/2019/7428458. https://doi.org/10.1155/2019/7428458

Wang, T.; Wei, X.; Huang, T. et al. (2019). Modeling fault propagation paths in power systems: A new framework based on event SNP systems with neurotransmitter concentration, IEEE Access, 7, 12798-12808, 2019. https://doi.org/10.1109/ACCESS.2019.2892797

Wang, T.; Wang, J.; Ming, J. et al. (2018). Application of neural-like P systems with state values for power coordination of photovoltaic/battery microgrids, IEEE Access, 6, 46630-4664, 2018. https://doi.org/10.1109/ACCESS.2018.2865122

Wang, T.; Wei, X.; Wang, J. et al. (2020). A weighted corrective fuzzy reasoning spiking neural P system for fault diagnosis in power systems with variable topologies, Engineering Applications of Artificial Intelligence, 92, 103680, 2020. https://doi.org/10.1016/j.engappai.2020.103680

Wen, T.; Deng, Y. (2020). The vulnerability of communities in complex networks: An entropy approach, Reliability Engineering & System Safety, 196, 106782, 2020. https://doi.org/10.1016/j.ress.2019.106782

Wu, X.; Liao, H.; Xu, Z.S. et al. (2018). Probabilistic Linguistic MULTIMOORA: A Multicriteria Decision Making Method Based on the Probabilistic Linguistic Expectation Function and the Improved Borda Rule, IEEE Transactions on Fuzzy Systems, 26(6), 3688-3702, 2018. https://doi.org/10.1109/TFUZZ.2018.2843330

Xiao, F. (2019). Generalization of Dempster-Shafer theory: A complex mass function, Applied Intelligence, DOI: 10.1007/s10489-019-01617-y. https://doi.org/10.1007/s10489-019-01617-y

Xiao, F. (2019). A distance measure for intuitionistic fuzzy sets and its application to pattern classification problems, IEEE Transactions on Systems, Man, and Cybernetics: Systems, DOI: 10.1109/TSMC.2019.2958635. https://doi.org/10.1109/TSMC.2019.2958635

Xiao, F. (2019). EFMCDM: Evidential fuzzy multicriteria decision making based on belief entropy, IEEE Transactions on Fuzzy Systems, DOI: 10.1109/TFUZZ.2019.2936368. https://doi.org/10.1109/TFUZZ.2019.2936368

Xiao, F. (2020). A new divergence measure for belief functions in D-S evidence theory for multisensor data fusion, Information Sciences, 514, 462-483, 2020. https://doi.org/10.1016/j.ins.2019.11.022

Xiao, F. (2020). Generalized belief function in complex evidence theory, Journal of Intelligent & Fuzzy Systems, DOI: 10.3233/JIFS-179589. https://doi.org/10.3233/JIFS-179589

Xiao, F. (2020). CED: A distance for complex mass functions, IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2020.2984918. https://doi.org/10.1109/TNNLS.2020.2984918

Xiao, F.; Zhang, Z.; Abawajy, J. (2019). Workflow scheduling in distributed systems under fuzzy environment, Journal of Intelligent & Fuzzy Systems, 37(4), 5323-5333, 2019. https://doi.org/10.3233/JIFS-190483

Xu, P.; Zhang, R.; Deng, Y. (2018). A Novel Visibility Graph Transformation of Time Series into Weighted Networks, Chaos, Solitons & Fractals, 117, 201-208, 2018. https://doi.org/10.1016/j.chaos.2018.07.039

Xue, Y.; Deng, Y. (2020). Refined Expected Value Decision Rules under Orthopair Fuzzy Environment, Mathematics, 8(3), 442, 2020. https://doi.org/10.3390/math8030442

Yager, R.R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking, IEEE Transactions on systems, Man, and Cybernetics, 18(1), 183-190, 1988. https://doi.org/10.1109/21.87068

Yager, R.R. (2017). Generalized regret based decision making, Engineering Applications of Artificial Intelligence, 65, 400-405, 2017. https://doi.org/10.1016/j.engappai.2017.08.001

Yager, R.R.(2018). Interval valued entropies for dempster-shafer structures, Knowledge-Based Systems, 161, 390-397, 2018. https://doi.org/10.1016/j.knosys.2018.08.001

Yager, R.R. (2019). OWA aggregation with an uncertainty over the arguments, Information Fusion, 52, 206-212, 2019. https://doi.org/10.1016/j.inffus.2018.12.009

Yager, R.R. (2019). Generalized Dempster-Shafer Structures, IEEE Transactions on Fuzzy Systems, 27(3), 428-435, 2019. https://doi.org/10.1109/TFUZZ.2018.2859899

Yager, R.R. (2019). Extending Set Measures to Pythagorean Fuzzy Sets, International Journal of Fuzzy Systems, 21(2), 343-354, 2019. https://doi.org/10.1007/s40815-018-0580-6

Yan, H.; Deng, Y. (2020). An Improved Belief Entropy in Evidence Theory, IEEE Access, 8(1), 57505-57516, 2020. https://doi.org/10.1109/ACCESS.2020.2982579

Yang, G.; Yang, J.; Xu, D.; Khoveyni, M. (2017). A three-stage hybrid approach for weight assignment in MADM, Omega, 71, 93-105, 2017. https://doi.org/10.1016/j.omega.2016.09.011

Yuan, R.; Tang, M.; Wang, H.; Li, H. (2019). A Reliability Analysis Method of Accelerated Performance Degradation Based on Bayesian Strategy, IEEE Access, 7(1), 169047-169054, 2019. https://doi.org/10.1109/ACCESS.2019.2952337

Zadeh, L.A. (1965). Fuzzy sets, Information and control, 8(3), 338-353, 1965. https://doi.org/10.1016/S0019-9958(65)90241-X

Zadeh, L.A. (2011). A note on Z-numbers, Information Sciences, 181(14), 2923-2932, 2011. https://doi.org/10.1016/j.ins.2011.02.022

Zhang, H.; Deng, Y. (2020). Weighted belief function of sensor data fusion in engine fault diagnosis, Soft computing, 24(3), 2329-2339, 2020. https://doi.org/10.1007/s00500-019-04063-7

Zhou, M.; Liu, X.; Chen, Y.et al. (2019). Assignment of attribute weights with belief distributions for MADM under uncertainties, Knowledge-Based Systems, DOI: 10.1016/j.knosys.2019.105110. https://doi.org/10.1016/j.knosys.2019.105110

Zhou, M.; Liu, X.; Yang, J. et al. (2019). Evidential reasoning approach with multiple kinds of attributes and entropy-based weight assignment, Knowledge-Based Systems, 163, 358-375, 2019. https://doi.org/10.1016/j.knosys.2018.08.037

Zhou, Q.; Mo, H.; Deng, Y. (2020). A new divergence measure of pythagorean fuzzy sets based on belief function and its application in medical diagnosis, Mathematics, 8(1), 142, 2020. https://doi.org/10.3390/math8010142

Published

2020-06-08

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.