Parameter Estimation for PMSM based on a Back Propagation Neural Network Optimized by Chaotic Artificial Fish Swarm Algorithm


  • Jianwu Jiang
  • Zhi Chen
  • Yihuai Wang
  • Tao Peng School of Computer Science and Technology, Soochow University, China
  • Shilang Zhu School of Computer Science and Technology, Soochow University, China
  • Lianmin Shi College of Information Engineering, Suzhou Institute of Trade & Commerce, China


Permanent Magnet Synchronous Motor(PMSM), Back Propagation Neural Network(BPNN), Chaotic Artificial Fish Swarm Algorithm(CAFSA), parameter estimation, identification accuracy, convergence speed


Permanent Magnet Synchronous Motor(PMSM) control system with strong nonlinearity makes it difficult to accurately identify motor parameters such as stator winding, dq axis inductance, and rotor flux linkage. Aiming at the premature convergence of traditional Back Propagation Neural Network(BPNN) in PMSM motor parameter identification, a new method of PMSM motor parameter identification is proposed. It uses Chaotic Artificial Fish Swarm Algorithm(CAFSA) to optimize the initial weights and thresholds of BPNN, and then strengthens training by BPNN algorithm. Thus, the global optimal network parameters are obtained by using the global optimization of CAFSA and the local search ability of BPNN. The simulation results and experimental data show that the initial value sensitivity of the network model optimized by CAFS-BPNN Algorithm is weak, the parameter setting is robust, and the system stability is good under complex conditions. Compared with other intelligent algorithms, such as RSL and PSO, CAFS-BPNNA has high identification accuracy and fast convergence speed for PMSM motor parameters.


Babak, N.M.; Meibody-Tabar, F.; Sargos F.M.(2004). Mechanical sensorless control of PMSM with online estimation of stator resistance, IEEE Transactions on Industry Applications, 40(2), 457-471, 2004.

Boileau, T.; Leboeuf, N.; Nahid-Mobarakeh, B. et al.(2011). Online Identification of PMSM Parameters: Parameter Identifiability and Estimator Comparative Study, IEEE Transactions on Industry Applications, 47(4), 1944-1957, 2011.

Bose, B. K.(2009). Power Electronics and Motor Drives Recent Progress and Perspective, IEEE Transactions on Industrial Electronics, 56(2), 581-588, 2009.

Chen, Z.; Zhong, Y.; Li J.(2011). Parameter identification of induction motors using Ant Colony Optimization, IEEE World Congress on Computational Intelligence, IEEE.2011.

Da, Y.; Shi, X.; Krishnamurthy, M.(2013). A New Approach to Fault Diagnostics for Permanent Magnet Synchronous Machines Using Electromagnetic Signature Analysis, IEEE Transactions on Power Electronics, 28(8), 4104-4112, 2013.

Donoso, Y.; Montoya, G. A.; Solano F. (2015). An Energy-Efficient and Routing Approach for Position Estimation using Kalman Filter Techniques in Mobile WSNs, International Journal of Computers Communications & Control, 10(4), 500-507, 2015.

Gao, D.Q.(1998). On Structures of Supervised Linear Basis Function Feedforward Three-Layered Neural Networks, Chinese Journal of Computers, 21(1), 81-86, 1998.

Hajisalem, V.; Babaie, S.(2018). A Hybrid Intrusion Detection System Based on ABC-AFS Algorithm for Misuse and Anomaly Detection. Computer Network, 136, 37-50, 2018.

He, S.; Wu, Q. H.; Saunders, J. R.(2009). Group Search Optimizer - An Optimization Algorithm Inspired by Animal Searching Behavior, IEEE Transactions on Evolutionary Computation, 13(5), 973-990, 2009.

Kim, J.; Jeong, I.; Lee, K.(2014). Fluctuating Current Control Method for a PMSM Along Constant Torque Contours, IEEE Transactions on Power Electronics, 29(11), 6064-6073, 2014.

Liu K.; Zhang Q.; Chen J.; et al.(2011). Online Multiparameter Estimation of Nonsalient- Pole PM Synchronous Machines with Temperature Variation Tracking, IEEE Transactions on Industrial Electronics, 58(5), 1776-1788, 2011.

Liu, K.; Zhu, Z.Q.; Stone, D.A.(2013). Parameter Estimation for Condition Monitoring of PMSM Stator Winding and Rotor Permanent Magnets, IEEE Transactions on Industrial Electronics, 60(12), 5902-5913, 2013.

Liu, Q.; Hameyer, K.(2015). A fast online full parameter estimation of a PMSM with sinusoidal signal injection, Energy Conversion Congress & Exposition, IEEE, 2015.

Liu, Z.H.; Wei, H.L.; Zhong, Q.C.; et al.(2017). Parameter Estimation for VSI-Fed PMSM based on a Dynamic PSO with Learning Strategies. IEEE Transactions on Power Electronics, 32(4), 3154-3165, 2017.

Lu, K.; Vetuschi, M.; Rasmussen, P.O. et al.(2010). Determination of High-Frequency dand q- axis Inductances for Surface-Mounted Permanent-Magnet Synchronous Machines, IEEE Transactions on Instrumentation & Measurement, 59(9), 2376-2382, 2010.

Mirchandani, G.; Cao, W.(1989). On hidden nodes for neural nets, IEEE Transactions on Circuits and Systems, 36(5), 661-664, 1989.

Omar, S.H.; Roberto, M.R.; Jose, R.M.; Hayde, P.B.(2015). Parameter Identification of PMSMs Using Experimental Measurements and a PSO Algorithm, IEEE Transactions on Instrumentation & Measurement, 64(8), 2146-2154, 2015.

Pellegrino, G.; Vagati, A.; Guglielmi, P. et al.(2011). Performance Comparison Between Surface-Mounted and Interior PM Motor Drives for Electric Vehicle Application, IEEE Transactions on Industrial Electronics, 59(2), 803-811, 2011.

Sengottuvelan, P.; Rasath, N.(2016). BAFSA: Breeding Artificial Fish Swarm Algorithm for Optimal Cluster Head Selection in Wireless Sensor Networks, Wireless Personal Communications, 94(4), 1-13, 2016.

Shi, Y.; Sun, K.; Huang, L. et al.(2012). Online Identification of Permanent Magnet Flux Based on Extended Kalman Filter for IPMSM Drive With Position Sensorless Control, IEEE Transactions on Industrial Electronics, 59(11), 4169-4178, 2012.

Wei, C.; Xin, L.; Mei, C.(2009). Suboptimal Nonlinear Model Predictive Control Based on Genetic Algorithm, International Symposium on Intelligent Information Technology Application Workshops, IEEE, 2009.

Xiao, X.; Chen, C.; Zhang, M.(2010). Dynamic Permanent Magnet Flux Estimation of Permanent Magnet Synchronous Machines, IEEE Transactions on Applied Superconductivity, 20(3), 1085-1088, 2010.

Yan, H.; Wang, Y. R.; Shi, H. X.; Li, Q.; Zeng, Y. S.; Jaini, R.(2019). Solid-Liquid Flow of Axial Flow Pump in Loop Reactor and Operating Control with Single Invert, International Journal of Simulation Modelling, 18(3), 464-475, 2019.

Zhang, D.(2017). High-speed Train Control System Big Data Analysis Based on Fuzzy RDF Model and Uncertain Reasoning, International Journal of Computers Communications & Control, 12(4), 577-591, 2017.

Zhang, D.; Sui, J.; Gong, Y.(2017). Large scale software test data generation based on collective constraint and weighted combination method, Tehnicki Vjesnik, 24(4), 1041-1050, 2017.

Zhang, H.P.; Ye, J.H.; Yang, X. P.; Muruve, N.W.; Wang, J.T.(2018). Modified Binary Particle Swarm Optimization Algorithm in Lot-Splitting Scheduling Involving Multiple Techniques, International Journal of Simulation Modelling, 17(3), 534-542, 2018.



Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.