Parameter Estimation for PMSM based on a Back Propagation Neural Network Optimized by Chaotic Artificial Fish Swarm Algorithm
Keywords:
Permanent Magnet Synchronous Motor(PMSM), Back Propagation Neural Network(BPNN), Chaotic Artificial Fish Swarm Algorithm(CAFSA), parameter estimation, identification accuracy, convergence speedAbstract
Permanent Magnet Synchronous Motor(PMSM) control system with strong nonlinearity makes it difficult to accurately identify motor parameters such as stator winding, dq axis inductance, and rotor flux linkage. Aiming at the premature convergence of traditional Back Propagation Neural Network(BPNN) in PMSM motor parameter identification, a new method of PMSM motor parameter identification is proposed. It uses Chaotic Artificial Fish Swarm Algorithm(CAFSA) to optimize the initial weights and thresholds of BPNN, and then strengthens training by BPNN algorithm. Thus, the global optimal network parameters are obtained by using the global optimization of CAFSA and the local search ability of BPNN. The simulation results and experimental data show that the initial value sensitivity of the network model optimized by CAFS-BPNN Algorithm is weak, the parameter setting is robust, and the system stability is good under complex conditions. Compared with other intelligent algorithms, such as RSL and PSO, CAFS-BPNNA has high identification accuracy and fast convergence speed for PMSM motor parameters.References
Babak, N.M.; Meibody-Tabar, F.; Sargos F.M.(2004). Mechanical sensorless control of PMSM with online estimation of stator resistance, IEEE Transactions on Industry Applications, 40(2), 457-471, 2004. https://doi.org/10.1109/TIA.2004.824490
Boileau, T.; Leboeuf, N.; Nahid-Mobarakeh, B. et al.(2011). Online Identification of PMSM Parameters: Parameter Identifiability and Estimator Comparative Study, IEEE Transactions on Industry Applications, 47(4), 1944-1957, 2011. https://doi.org/10.1109/TIA.2011.2155010
Bose, B. K.(2009). Power Electronics and Motor Drives Recent Progress and Perspective, IEEE Transactions on Industrial Electronics, 56(2), 581-588, 2009. https://doi.org/10.1109/TIE.2008.2002726
Chen, Z.; Zhong, Y.; Li J.(2011). Parameter identification of induction motors using Ant Colony Optimization, IEEE World Congress on Computational Intelligence, IEEE.2011.
Da, Y.; Shi, X.; Krishnamurthy, M.(2013). A New Approach to Fault Diagnostics for Permanent Magnet Synchronous Machines Using Electromagnetic Signature Analysis, IEEE Transactions on Power Electronics, 28(8), 4104-4112, 2013. https://doi.org/10.1109/TPEL.2012.2227808
Donoso, Y.; Montoya, G. A.; Solano F. (2015). An Energy-Efficient and Routing Approach for Position Estimation using Kalman Filter Techniques in Mobile WSNs, International Journal of Computers Communications & Control, 10(4), 500-507, 2015. https://doi.org/10.15837/ijccc.2015.4.1990
Gao, D.Q.(1998). On Structures of Supervised Linear Basis Function Feedforward Three-Layered Neural Networks, Chinese Journal of Computers, 21(1), 81-86, 1998.
Hajisalem, V.; Babaie, S.(2018). A Hybrid Intrusion Detection System Based on ABC-AFS Algorithm for Misuse and Anomaly Detection. Computer Network, 136, 37-50, 2018. https://doi.org/10.1016/j.comnet.2018.02.028
He, S.; Wu, Q. H.; Saunders, J. R.(2009). Group Search Optimizer - An Optimization Algorithm Inspired by Animal Searching Behavior, IEEE Transactions on Evolutionary Computation, 13(5), 973-990, 2009. https://doi.org/10.1109/TEVC.2009.2011992
Kim, J.; Jeong, I.; Lee, K.(2014). Fluctuating Current Control Method for a PMSM Along Constant Torque Contours, IEEE Transactions on Power Electronics, 29(11), 6064-6073, 2014. https://doi.org/10.1109/TPEL.2014.2299548
Liu K.; Zhang Q.; Chen J.; et al.(2011). Online Multiparameter Estimation of Nonsalient- Pole PM Synchronous Machines with Temperature Variation Tracking, IEEE Transactions on Industrial Electronics, 58(5), 1776-1788, 2011. https://doi.org/10.1109/TIE.2010.2054055
Liu, K.; Zhu, Z.Q.; Stone, D.A.(2013). Parameter Estimation for Condition Monitoring of PMSM Stator Winding and Rotor Permanent Magnets, IEEE Transactions on Industrial Electronics, 60(12), 5902-5913, 2013. https://doi.org/10.1109/TIE.2013.2238874
Liu, Q.; Hameyer, K.(2015). A fast online full parameter estimation of a PMSM with sinusoidal signal injection, Energy Conversion Congress & Exposition, IEEE, 2015. https://doi.org/10.1109/ECCE.2015.7310237
Liu, Z.H.; Wei, H.L.; Zhong, Q.C.; et al.(2017). Parameter Estimation for VSI-Fed PMSM based on a Dynamic PSO with Learning Strategies. IEEE Transactions on Power Electronics, 32(4), 3154-3165, 2017. https://doi.org/10.1109/TPEL.2016.2572186
Lu, K.; Vetuschi, M.; Rasmussen, P.O. et al.(2010). Determination of High-Frequency dand q- axis Inductances for Surface-Mounted Permanent-Magnet Synchronous Machines, IEEE Transactions on Instrumentation & Measurement, 59(9), 2376-2382, 2010. https://doi.org/10.1109/TIM.2009.2034578
Mirchandani, G.; Cao, W.(1989). On hidden nodes for neural nets, IEEE Transactions on Circuits and Systems, 36(5), 661-664, 1989. https://doi.org/10.1109/31.31313
Omar, S.H.; Roberto, M.R.; Jose, R.M.; Hayde, P.B.(2015). Parameter Identification of PMSMs Using Experimental Measurements and a PSO Algorithm, IEEE Transactions on Instrumentation & Measurement, 64(8), 2146-2154, 2015. https://doi.org/10.1109/TIM.2015.2390958
Pellegrino, G.; Vagati, A.; Guglielmi, P. et al.(2011). Performance Comparison Between Surface-Mounted and Interior PM Motor Drives for Electric Vehicle Application, IEEE Transactions on Industrial Electronics, 59(2), 803-811, 2011. https://doi.org/10.1109/TIE.2011.2151825
Sengottuvelan, P.; Rasath, N.(2016). BAFSA: Breeding Artificial Fish Swarm Algorithm for Optimal Cluster Head Selection in Wireless Sensor Networks, Wireless Personal Communications, 94(4), 1-13, 2016. https://doi.org/10.1007/s11277-016-3340-7
Shi, Y.; Sun, K.; Huang, L. et al.(2012). Online Identification of Permanent Magnet Flux Based on Extended Kalman Filter for IPMSM Drive With Position Sensorless Control, IEEE Transactions on Industrial Electronics, 59(11), 4169-4178, 2012. https://doi.org/10.1109/TIE.2011.2168792
Wei, C.; Xin, L.; Mei, C.(2009). Suboptimal Nonlinear Model Predictive Control Based on Genetic Algorithm, International Symposium on Intelligent Information Technology Application Workshops, IEEE, 2009.
Xiao, X.; Chen, C.; Zhang, M.(2010). Dynamic Permanent Magnet Flux Estimation of Permanent Magnet Synchronous Machines, IEEE Transactions on Applied Superconductivity, 20(3), 1085-1088, 2010. https://doi.org/10.1109/TASC.2010.2041435
Yan, H.; Wang, Y. R.; Shi, H. X.; Li, Q.; Zeng, Y. S.; Jaini, R.(2019). Solid-Liquid Flow of Axial Flow Pump in Loop Reactor and Operating Control with Single Invert, International Journal of Simulation Modelling, 18(3), 464-475, 2019. https://doi.org/10.2507/IJSIMM18(3)483
Zhang, D.(2017). High-speed Train Control System Big Data Analysis Based on Fuzzy RDF Model and Uncertain Reasoning, International Journal of Computers Communications & Control, 12(4), 577-591, 2017. https://doi.org/10.15837/ijccc.2017.4.2914
Zhang, D.; Sui, J.; Gong, Y.(2017). Large scale software test data generation based on collective constraint and weighted combination method, Tehnicki Vjesnik, 24(4), 1041-1050, 2017. https://doi.org/10.17559/TV-20170319045945
Zhang, H.P.; Ye, J.H.; Yang, X. P.; Muruve, N.W.; Wang, J.T.(2018). Modified Binary Particle Swarm Optimization Algorithm in Lot-Splitting Scheduling Involving Multiple Techniques, International Journal of Simulation Modelling, 17(3), 534-542, 2018. https://doi.org/10.2507/IJSIMM17(3)CO13
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.