Developing Integrated Performance Measurement System using Component Based Approach

Authors

  • Souhail Sekkat LM2I- ENSAM. Universita Moulay Ismail Marjane II Beni Mahammed, BP 4024, Meknes Alismailia, Meknes, Maroc
  • Khalid Kouiss LIMOS IFMA. Campus de Clermont-Ferrand/Les Czeaux - BP 265 - 63175 Aubire Cedex, France.
  • Janah Saadi LISER. ENSEM. Universit Hassan II. An Chok, BP 8118, Oasis, Casablanca, Maroc.
  • Laurent Deshayes MANBAT TECHNOLOGY. 3 rue Abou Baker Mohammed Ibnou Zohr, Residence la Tulipe, quartier des Hpitaux, Casablanca, Maroc.

Keywords:

Manufacturing Execution Systems, Business Intelligence, Performances Measurement Systems, Component Based Approach.

Abstract

In an industrial context defined by more acute competition, performance measurement becomes a control tool. The Business Intelligence module of Manufacturing Execution System (MES) software achieves Performances analysis function. However, the implementation of performance indicators in information system is a difficult problem. Indeed, the enterprises need methods to specify and to install their Performance Measurement System (PMS). In this paper, we propose a methodology of performance indicators implementation. We use the UML language to develop PMS model and Component Based Programming for its implementation. This method facilitates Performances Measurement System design and implementation.

References

MESA International. 2010. Data Architecture for MOM: The Manufacturing Master Data Approach. White Paper 37. https://services.mesa.org/ResourceLibrary/.

Halang, W. A., Sanz, R., Babuska, R., Roth, H., 2006. Information and communication technology embraces control. Status report prepared by the IFAC: Coordinating Committee on Computers, Cognition and Communication. Annual Reviews in Control, 30: 31-400. http://dx.doi.org/10.1016/j.arcontrol.2006.03.001

Wonderware. Wonderware Manufacturing Execution Systems Software Solutions. http://www.wonderware-benelux.com/

MAPEX. Production and timing control. http://www.emapex.com/en.

Cross Database Technology. DataEXchanger l'EAI 100 % oprationnel. www.DataEXchanger.com.

M. Ghazanfari, M. Jafari, S. Rouhani. A tool to evaluate the business intelligence of enterprise systems, Scientia Iranica, 18 (6): 1579-1590, 2011. http://dx.doi.org/10.1016/j.scient.2011.11.011

AMICE. (1993). CIMOSA: CIM open system architecture (2nd revised and extended ed.), Berlin: Springer-Verlag.

Adrian Alexandrescu. A Development Process for Enterprise Information Systems Based on Automatic Generation of the Components, Int J Comput Commun, 3(S):168-172.

Yang. C. O., Guan, T. Y., Lin, J. S., 2000. Developing a computer shop floor control model for CIM systems using object modelling technique, Computers in Industry 41. pp: 213-238. http://dx.doi.org/10.1016/S0166-3615(99)00057-3

Krassi. B. A. 2002. Distributed computing and automation: Industrial applications. http://www.automationit.hut.fi/julkaisut.

Chiron, F., 2009. Contribution à la flexibilitÊet à la rapiditÊde conception des systèmes automatises avec lutilisation dUML. These de Doctorat en Informatique; universitc Blaise Pascal Clermont.

ANSI/ISA-95.00.03-2005 (2005). Enterprise-Control System Integration. Part 3: Activity models of manufacturing operations management, ISBN: 1-55617-955-3.

Published

2013-02-18

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.