An Improved Local Descriptor based Object Recognition in Cluttered 3D Point Clouds
Keywords:
3D point cloud, local feature, object recognition, noise, density variationAbstract
Object recognition in three-dimensional point clouds is a new research topic in the field of computer vision. Numerous nuisances, such as noise, a varying density, and occlusion greatly increase the difficulty of 3D object recognition. An improved local feature descriptor is proposed to address these problems in this paper. At each feature point, a local reference frame is established by calculating a scatter matrix based on the geometric center and the weighted point-cloud density of its neighborhood, and an improved normal vector estimation method is used to generate a new signature of histograms of orientations (SHOT) local-feature descriptor. The geometric consistency and iterative closest point method realize 3D model recognition in the point-cloud scenes. The experimental results show that the proposed SHOT feature-extraction algorithm has high robustness and descriptiveness in the object recognition of 3D local descriptors in cluttered point-cloud scenes.References
Aldoma, A.; Marton, Z.; Tombari, F.; Wohlkinger, W. (2012); Tutorial: Point Cloud Library: Three-Dimensional Object Recognition and 6 DOF Pose Estimation, Robotics and Automation Magazine IEEE, 19, 80-91, 2012. https://doi.org/10.1109/MRA.2012.2206675
Aldoma, A.; Tombari, F.; Rusu, R.; Vincze, M. (2012); OUR-CVFH - Oriented, Unique and Repeatable Clustered Viewpoint Feature Histogram for Object Recognition and 6DOF Pose Estimation, LNCS, 7476, 113-122, 2012.
Arbeiter, G.; Fuchs, S.; Bormann, R.; Fischer, J.; Verl, A. (2012); Evaluation of 3D feature descriptors for classification of surface geometries in point clouds, Proceedings of IROS, 1644-1650, 2012.
Besl, P.; Mckay, N. (1992); A method for registration of 3-D shapes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239-256, 1992. https://doi.org/10.1109/34.121791
Bro, R.; Acar, E.; Kolda, T. (2008); Resolving the sign ambiguity in the singular value decomposition, Journal of Chemometrics, 22, 135-140, 2008. https://doi.org/10.1002/cem.1122
Ceron, A.; Prieto, F. (2013); Evaluating and Comparing of 3D Shape Descriptors for Object Recognition, LNCS, 8034, 484-492, 2013.
Chua, C.; Jarvis, R. (1997); Point signatures: a new representation for 3D object recognition, International Journal of Computer Vision, 25, 63-85, 1997. https://doi.org/10.1023/A:1007981719186
Frome, A.; Huber, D.; Kolluri, R.; Blow, T.; Malik, J. (2004); Recognizing Objects in Range Data Using Regional Point Descriptors, Lecture Notes in Computer Science, 3023, 224-237, 2004. https://doi.org/10.1007/978-3-540-24672-5_18
Guo, Y.; Sohel, F.; Bennamoun, M.; Lu , M.; Wan, J. (2013); Rotational projection statistics for 3d local surface description and object recognition, International Journal of Computer Vision, 105, 63-86, 2013. https://doi.org/10.1007/s11263-013-0627-y
Guo, Y.; Bennamoun, M.; Sohel, F.; Lu, Mu.; Wan, J. (2014); 3D Object Recognition in Cluttered Scenes with Local Surface Features: A Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36, 2270-2287, 2014. https://doi.org/10.1109/TPAMI.2014.2316828
Guo, Y.; Bennamoun, M.; Sohel, F.; Lu, M.; Wan, J. (2014); Performance Evaluation of 3D Local Feature Descriptors, Proceedings of ACCV, 178-194, 2014.
Guo, Y.; Sohel, F.; Bennamoun, M.; Lu, M.; Wan, J. (2013); TriSI: A Distinctive Local Surface Descriptor for 3D Modeling and Object Recognition, Proceedings of GRAPP, 86-93, 2013.
Guo, Y.; Sohel, F.; Bennamoun, M.; Wan, J.; Lu, M; A Novel Local Surface Feature for 3D Object Recognition under Clutter and Occlusion, Information Sciences, 293, 196-213, 2014. https://doi.org/10.1016/j.ins.2014.09.015
Johnson, A.; Hebert, M. (1999); Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 433-449, 1999. https://doi.org/10.1109/34.765655
Liao,S.; Chung, ACS. (2010); A novel multi-layer framework for non-rigid image registration, Proceedings of ISBI, 344-347, 2010.
Lin, C.; Chen, J.; Su, P.; Chen, C. (2014); Eigen-feature analysis of weighted covariance matrices for LiDAR point cloud classification, ISPRS Journal of Photogrammetry and Remote Sensing, 94, 70-79, 2014. https://doi.org/10.1016/j.isprsjprs.2014.04.016
Mian, A.; Bennamoun, M.; Owens, R. (2006); Three-dimensional model-based object recognition and segmentation in cluttered scenes, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 1584-1601, 2006. https://doi.org/10.1109/TPAMI.2006.213
Mian, A.; Bennamoun, M.; Owens, R. (2010); On the Repeatability and Quality of Keypoints for Local Feature-based 3D Object Retrieval from Cluttered Scenes, International Journal of Computer Vision, 89, 348-361, 2010. https://doi.org/10.1007/s11263-009-0296-z
Rusu, R.; Blodow, N.; Marton, Z.; Beetz, M. (2008); Aligning point cloud views using persistent feature histograms, Proceedings of IROS, 3384-3391, 2008.
Rusu, R.; Blodow, N.; Beetz, M. (2009); Fast Point Feature Histograms (FPFH) for 3D registration, Proceedings of ICRA, 3212-3217, 2009.
Rusu, R.; Holzbach, A.; Beetz, M.; Bradski, G. (2009); Detecting and segmenting objects for mobile manipulation, Proceedings of ICCVW, 47-54, 2009.
Rusu, R. (2010); Semantic 3D Object Maps for Everyday Manipulation in Human Living Environments, KI - Kunstliche Intelligenz, 24, 345-348, 2010.
Tombari, F.; Salti, S.; Stefano, L. (2010); Unique signatures of histograms for local surface description, Proceedings of ECCV, 356-369, 2010.
Wohlkinger, W.; Vincze, M. (2011) ; Ensemble of shape functions for 3D object classification, Proceedings of IEEE RO-BIO, 2987-2992, 2011.
Yamany, SM.; Farag, AA. (2002); Surface signatures: an orientation independent free-form surface representation scheme for the purpose of objects registration and matching, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 1105-1120, 2002. https://doi.org/10.1109/TPAMI.2002.1023806
Zhang, Z. (1994); Iterative point matching for registration of free-form curves and surfaces, International Journal of Computer Vision, 13, 119-152, 1994. https://doi.org/10.1007/BF01427149
Zhong, Y. (2009); Intrinsic shape signatures: A shape descriptor for 3D object recognition, Proceedings of ICCVW, 689-696, 2009. https://doi.org/10.1109/ICCVW.2009.5457637
PCL; pointclouds.org/.
3D Keypoint Detection Benchmark; www.vision.deis.unibo.it/keypoints3d/.
The Stanford 3D Scanning Repository; http://www.vision.deis.unibo.it/keypoints3d/.
SHOT: Unique Signatures of Histograms for Local Surface Description; www.vision.deis. unibo.it/research/80-shot.
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.