Computational Intelligence-based PM2.5 Air Pollution Forecasting

Authors

  • Mihaela Oprea Automatic Control, Computers and Electronics Department Petroleum-Gas University of Ploiesti Romania, 100680 Ploiesti, Bd. Bucuresti, 39
  • Sanda Florentina Mihalache Automatic Control, Computers and Electronics Department Petroleum-Gas University of Ploiesti Romania, 100680 Ploiesti, Bd. Bucuresti, 39
  • Marian Popescu Automatic Control, Computers and Electronics Department Petroleum-Gas University of Ploiesti Romania, 100680 Ploiesti, Bd. Bucuresti, 39

Keywords:

computational intelligence, PM2.5 air pollution forecasting, ANFIS, ANN, ANN architecture identification

Abstract

Computational intelligence based forecasting approaches proved to be more efficient in real time air pollution forecasting systems than the deterministic ones that are currently applied. Our research main goal is to identify the computational intelligence model that is more proper to real time PM2.5 air pollutant forecasting in urban areas. Starting from the study presented in [27]a, in this paper we first perform a comparative study between the most accurate computational intelligence models that were used for particulate matter (fraction PM2.5) air pollution forecasting: artificial neural networks (ANNs) and adaptive neuro-fuzzy inference system (ANFIS). Based on the obtained experimental results, we make a comprehensive analysis of best ANN architecture identification. The experiments were realized on datasets from the AirBase databases with PM2.5 concentration hourly measurements. The statistical parameters that were computed are mean absolute error, root mean square error, index of agreement and correlation coefficient.

References

Alfaro M.D.; Sepúlveda J.M.; Ulloa J.A. (2013); Forecasting Chaotic Series in Manufacturing Systems by Vector Support Machine Regression and Neural Networks, International Journal of Computers Communications & Control, ISSN 1841-9836, 8(1), 8-17, 2013. https://doi.org/10.15837/ijccc.2013.1.163

Bezdek J.C. (1994); What is computational intelligence?, Computational Intelligence - Imitating Life, IEEE World Congress on Computational Intelligence (WCCI), ISBN: 978- 0780311046, 1-12, 1994.

Carbajal-Hernández J.J.; Sánchez-Fernández L.P.; Carrasco-Ochoa J.A.; Martínez-Trinidad J.F. (2012); Assessment and prediction of air quality using fuzzy logic and autoregressive models, Atmospheric Environment, 60, 37-50, 2013.

Cherif A.; Cardot H.; Boné R. (2011); SOM time series clustering and prediction with recurrent neural networks, Neurocomputing, ISSN: 0925-2312, 74(11), 1936-1944, 2011.

Cherkassky V., Krasnopolsky V.; Solomatine D.P., Valdes J. (2006); Computational intelligence in earth sciences and environmental applications: Issues and challenges, Neural Networks, 19, 113-121, 2006. https://doi.org/10.1016/j.neunet.2006.01.001

Connor J.T., Martin R., Atlas L.E. (1994); Recurrent neural networks and robust time series prediction, IEEE Transactions on Neural Networks, 5(2), 240-254, 1994. https://doi.org/10.1109/72.279188

Domanska D., Wojtylak M. (2012); Application of fuzzy time series models for forecasting pollution concentrations, Expert Systems with Applications, 39, 7673-7679, 2012. https://doi.org/10.1016/j.eswa.2012.01.023

Elangasinghe M.A.; Singhal N.; Dirks K.N.; Salmond J.A.; Samarasinghe S. (2014); Complex time series analysis of PM10 and PM2.5 for a coastal site using artificial neural network modeling and k-means clustering, Atmospheric Environment, 94, 106-116, 2014. https://doi.org/10.1016/j.atmosenv.2014.04.051

Feng X.; Li Q.; Zhu Y.; Hou J.; Jin L.; Wang J. (2015); Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation, Atmospheric Environment, 107, 118-128, 2015. https://doi.org/10.1016/j.atmosenv.2015.02.030

Fernando H.J.S., Mammarella M.C., Grandoni G., Fedele P., Di Marco R.; Dimitrova R., Hyde P. (2012); Forecasting PM10 in metropolitan areas: Efficacy of neural network, Environmental Pollution, ISSN 0269-7491, 163, 62-67, 2012.

Fu M., Wang W., Le Z., Khorram M.S. (2015); Prediction of particulate matter concentrations by developed feed-forward neural network with rolling mechanism and gray model, Neural Computing & Applications, 26(8), 1789-1797, 2015. https://doi.org/10.1007/s00521-015-1853-8

Gardner M.W., Dorling S.R. (1998); Artificial neural networks (the multilayer perceptron)- a review of applications in the atmospheric sciences, Atmospheric Environment, 32, 2627- 2636, 1998. https://doi.org/10.1016/S1352-2310(97)00447-0

Hertz J., Krogh A., Palmer R.G. (1991); Introduction to the theory of neural computation, Addison Wesley, ISBN: 978-0201515602, 1991.

Hornik K., Stinchcombe M., White H. (1989); Multilayer feedforward networks are universal approximators, Neural Networks, 2, 356-366, 1989.

Jang R. (1993); ANFIS: Adaptive-Network-Based Fuzzy Inference System, IEEE Transactions on Systems, Man and Cybernetics, 23(3), 665-685, 1995.

Karatzas K.D., Voukantsis D. (2008); Studying and predicting quality of life atmospheric parameters with the aid of computational intelligence methods, International Congress on Environmental Modelling and Software (iEMS), 2, 1133-1139, 2008.

Kumar Chandar S., Sumathi M., Sivanadam S.N. (2016); Forecasting Gold Prices Based on Extreme Learning Machine, International Journal of Computers Communications & Control, ISSN 1841-9836, 11(3), 372-380, 2016.

Kurt A., Oktay A.B. (2010); Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks, Expert Systems with Applications, 37, 7986-7992, 2010. https://doi.org/10.1016/j.eswa.2010.05.093

Mandic D., Chambers J. (2001); Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability, ISBN: 978-0-471-49517-8, Wiley, 2001.

Marquardt D. (1963); An algorithm for least squares estimation of nonlinear parameters, SIAM Journal of Applied Mathematics, ISSN: 0036-1399, 11, 431-441, 1963.

McKendry I.G. (2002); Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting, Journal of the Air & Waste Management Association, 52, 1096-1101, 2002. https://doi.org/10.1080/10473289.2002.10470836

Mihalache S.F., Popescu M.; Oprea M. (2015); Particulate Matter Prediction using ANFIS Modelling Techniques, Proc. of 19th International Conference on System Theory, Control and Computing (ICSTCC), October 14-16, Cheile Gradistei, Romania, ISBN: 978-1-4799- 8481-7, 895-900, 2015.

Nebot A., Mugica F. (2014); Small-Particle Pollution Modeling Using Fuzzy Approaches, M.S. Obaidat et al. (eds.), Simulation and Modeling Methodologies, Technologies and Applications, Advances in Intelligent Systems and Computing, ISBN: 978-3-319-03580-2, Springer International Publ. 239-252, 2014. https://doi.org/10.1007/978-3-319-03581-9_17

Ong B.T., Sugiura K., Zettsu K. (2016); Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5, Neural Computing & Applications, ISSN: 1433-3058, 27, 1553-1566, 2016.

Oprea M., Buruiana V., Matei A. (2010); A Microcontroller-based Intelligent System for Real-time Flood Alerting, International Journal of Computers Communications & Control, ISSN 1841-9836, 5(5), 844-851, 2010. https://doi.org/10.15837/ijccc.2010.5.2245

Oprea M.; Dragomir E.G.; Mihalache S.F.; Popescu M. (2014); Prediction methods and techniques for PM2.5 concentration in urban environment (in Romanian), S. Iordache and D. Dunea (eds.), Methods to assess the effects of air pollution with particulate matter on children's health (in Romanian), MatrixRom, ISBN: 978-606-25-0121-1, 387-428, 2014.

Oprea M.; Mihalache S.F., Popescu M. (2016); A comparative study of computational intelligence techniques applied to PM2.5 air pollution forecasting, Computers Communications and Control (ICCCC), 2016 6th International Conference on, ISBN: 978-1-5090-1735-5, 103-108, 2016.

Ordieres J.B., Vergara E.P., Capuz R.S., Salazar R.E. (2005); Neural network prediction model for fine particulate matter (PM2.5) on the US-Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua), Environmental Modelling & Software, ISSN: 1364-8152, 20, 547-559, 2005.

Palit A.K., Popovic D. (2005); Computational Intelligence in Time Series Forecasting - Theory and Engineering Applications, Springer, ISBN 978-1-85233-948-7, 2005.

Pasero E., Mesin L. (2010); Artificial Neural Networks to Forecast Air Pollution, In: Air Pollution, Vanda Villanyi (Ed.), InTech, ISBN: 978-953-307-143-5, 221-240, 2010.

Peréz P., Trier A., Reyes J. (2000); Prediction of PM2.5 concentrations several hours in advance using neural networks in Santiago, Chile, Atmospheric Environment, ISSN 1352- 2310, 34, 1189-1196, 2000.

Polat K., Durduran S.S. (2012); Usage of output-dependent data scaling in modeling and prediction of air pollution daily concentration values (PM10) in the city of Konya, Neural Computing and Applications, ISSN: 1433-3058, 21, 2153-2162, 2012.

Savic M., Mihajlovic I., Arsic M., Živkovic Z. (2014); Adaptive-network-based fuzzy inference system (ANFIS) model-based prediction of the surface ozone concentration, Journal of the Serbian Chemical Society, ISSN 1820-7421, 79(10), 1323-1334, 2014.

Schäfer A.M., Zimmermann H.-G. (2006); Recurrent neural networks are universal approximators, ICANN, 16th International Conference, Proceedings, ISBN 978-3-540-38627-8, 1, 632-640, 2006.

Thomas S., Jacko R.B. (2007); Model for forecasting expressway fine particulate matter and carbon monoxide concentration: application of regression and neural network model, Journal of Air Waste Management Association, ISSN: 2162-2906, 57(4), 480-488, 2007.

Voukantsis D.; Karatzas K.; Kukkonen J.; Räsänen T.; Karppinen A.; Kolehmainen M.(2011); Intercomparison of air quality data using principal component analysis and forecasting of PM10 and PM2.5 concentrations using artificial neural networks, in Thessaloniki and Helsinki, Science of the Total Environment, ISSN: 0048-9697, 409, 1266-1276, 2011.

Zhang G., Patuwo B.E.; Hu M.Y. (1998); Forecasting with artificial neural networks: the state of the art, International Journal of Forecasting, ISSN: 0169-2070, 14(1), 35-62, 1998.

Published

2017-04-23

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.