Generalized Modus Ponens using Fodor’s Implication and T-norm Product with Threshold
Keywords:
t-norm, t-conorm, negation, implication, fuzzy number, generalized modus ponens ruleAbstract
Using Generalized Modus Ponens reasoning, we examine the values of the inferred conclusion depending on the correspondence between the premise of the rule and the observed fact. The conclusion is obtained using Fodor’s implication in order to represent a fuzzy if-then rule with a single input single output and the tnorm with threshold generated by t-norm product, as a compositional operator. A comparison study with the case when the standard t-norm product is used is made. Some comments and an example are presented in order to show how the obtained results can be used.References
T. Allahviranloo, M. Adabitabar Firozja, Note on "Trapezoidal approximation of fuzzy numbers", Fuzzy Sets and Systems 7, 2007, pp. 755-756. http://dx.doi.org/10.1016/j.fss.2006.10.017
B. Bouchon, Inferences with imprecisions and uncertainties in expert systems, in: A. Kandel (Ed), Fuzzy Expert Systems, Addison-Wesley, New York, 1987.
J. C. Buisson, H. Farreny, H. Prade, Dealing with imprecision and uncertainty in expert system DIABETO III, in: Proc. 2nd Int. Conf. on Artificial Intelligence, Marseille, 1986, pp. 705-721.
J. F. Baldwin, A new approach to approximate reasoning using fuzzy logic. Fuzzy Sets and Systems 2, 1979, pp. 309-325. http://dx.doi.org/10.1016/0165-0114(79)90004-6
E. Czogala, J. Leski, On equivalence of approximate reasoning results using different interpolations of fuzzy if-then rules, Fuzzy Sets and Systems 11, 2001, pp. 279-296. http://dx.doi.org/10.1016/S0165-0114(98)00412-6
K. Demirli, I.B. Turksen, Rule break up with compositional rule if inference, IEEE International Conference on Fuzzy Systems, San Diego, 1992, pp. 949-956. http://dx.doi.org/10.1109/fuzzy.1992.258784
D. Dubois, H. Prade, Operations in a fuzzy-valued logic, Information and Control 43, 1979, pp. 224-240. http://dx.doi.org/10.1016/S0019-9958(79)90730-7
D. Dubois, Modeles mathematiques de l'imprecis at de l'incertain en vue d,applications aux techniques d'aide a la decision, These d'Etat, Univ. Scientifique et Medicale, Grenoble, 1983
D. Dubois and H. Prade, Fuzzy logics and the generalized modus ponens revisited, Cybernetics and Systems 15, 1984, pp. 293-331. http://dx.doi.org/10.1080/01969728408927749
J. Fodor, On fuzzy implication operators, Fuzzy Sets and Systems 42, 1991, pp. 293-300 http://dx.doi.org/10.1016/0165-0114(91)90108-3
J. Fodor, M. Roubens, Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer, Dordrecht, 1994 http://dx.doi.org/10.1007/978-94-017-1648-2
J. Fodor, Contrapositive symmetry of fuzzy implications, Fuzzy Sets and Systems 69, 1995, pp. 141-156 http://dx.doi.org/10.1016/0165-0114(94)00210-X
J. Fodor, B. Bede, Recent Advances in Fuzzy Arithmetics, International Journal of Computers, Communications and Control, Vol. 1, Suppl. 5, 2006, pp. 199-207
S. Fukami, M. Mizumoto, K. Tanaka, Some considerations on fuzzy conditional inference, Fuzzy Sets and Systems 4, 1980, pp. 243-273. http://dx.doi.org/10.1016/0165-0114(80)90014-7
B. R. Gaines, Fundations of fuzzy reasoning, Int. J. Man-Machine Stud. 8, 1976, pp. 623-668. http://dx.doi.org/10.1016/S0020-7373(76)80027-2
P. Grzegorzewski, E. Mrowka, Trapezoidal approximations of fuzzy numbers - revisited, Fuzzy Sets and Systems 7, 2007, pp. 757-768. http://dx.doi.org/10.1016/j.fss.2006.11.015
M. M. Gupta, J. Qi, Theory of T-norms and fuzzy inference methods, Fuzzy Sets and Systems 40, 1991, pp. 431-450 http://dx.doi.org/10.1016/0165-0114(91)90171-L
I. Iancu, T-norms with threshold, Fuzzy Sets and Systems. Int. J. of Soft Computing and Intelligence 85 (1997), pp. 83-92
I. Iancu, Propagation of uncertainty and imprecision in knowledge-based systems, Fuzzy Sets and Systems 94, 1998, pp. 29-43. http://dx.doi.org/10.1016/S0165-0114(96)00224-2
I. Iancu, On a family of t-operators, Annals of the Univ. of Craiova, Mathematics and Computer Science serie, vol XXVI(1999),pp. 84-92
I. Iancu, Fuzzy connectives with applications in uncertainty management, Proc. of the 3-rd annual meeting of the Romanian Society of Mathematical Sciences, 1999, pp. 40-47
I. Iancu, On a Representation of an Uncertain Body of Evidence, Annals of the Univ. of Craiova, Mathematics and Computer Science serie, vol XXX(2003),pp. 100-108
I. Iancu, Operators with n-thresholds for uncertainty management. J. Appl. Math. & Computing. An Int. Journal, Vol 19(2005), No. 1-2, pp. 1-17, Publisher: Springer Berlin / Heidelberg
A. Giurca, I. Iancu, Approximate reasoning using Fodor's implication, Computational Intelligence, Theory and Applications - Int. Conf. 9th Fuzzy Days in Dortmund, Springer, 2006, pp. 513-520, Berlin.
I. Iancu, Generalized Modus Ponens Using Fodor's Implication and a Parametric T-norm, WSEAS Transaction on Systems 6(vol. 7), 2008, pp. 738-747 .
I. Iancu, Generalized Modus Ponens Reasoning for Rules with Partial Overlapping Between Premise and Observation, European Computing Conference, Malta, September 2008, pp. 37-43
E. H. Mamdani, Application of fuzzy logic to approximate reasoning using linguistic systems, IEEE Trans on Computers 26, 1977, pp. 1182-1191. http://dx.doi.org/10.1109/TC.1977.1674779
M. Mizumoto, H.-J. Zimmerman, Comparison on fuzzy reasoning methods, Fuzzy Sets and Systems 8, 1982, pp. 253-283. http://dx.doi.org/10.1016/S0165-0114(82)80004-3
M. Mizumoto, Fuzzy reasoning under new compositional rule of inference, Kybernetics 12, 1985, pp. 107-117. http://dx.doi.org/10.1108/eb005710
A. Nafarieh, J. M. Keller, A new approach to inference in approximate reasoning, Fuzzy Sets and Systems 41, 1991, pp. 17-37. http://dx.doi.org/10.1016/0165-0114(91)90155-J
D. Pacholczyk, Introduction d'un seuil dans le calcul de l'incertitude en logique floue, BUSEFAL 32, 1987, pp. 11-18
I. J. Rudas, J. Fodor, Information Aggregation in Intelligent Systems Using Generalized Operators, International Journal of Computers, Communications and Control, Vol. 1, No. 1, 2006, pp. 47-57 http://dx.doi.org/10.15837/ijccc.2006.1.2272
Y. Tsukamoto, An approach to fuzzy reasoning method. In: M. M. Gupta, R. K. Ragade and R. R. Yager (Eds.) Advances in Fuzzy Sets Theory and Applications, North-Holland, Amsterdam, 1979, pp. 137-149.
R. R. Yager, An approach to inference in approximate reasoning, Int. J. Man-Machine Stud. 13, 1980, pp. 323-338. http://dx.doi.org/10.1016/S0020-7373(80)80046-0
L. A. Zadeh, Fuzzy sets as a basis for a theory of a possibility, Fuzzy Sets and Systems 1, 1978, pp. 2-28. http://dx.doi.org/10.1016/0165-0114(78)90029-5
L. A. Zadeh, A theory of approximate reasoning, Machine Intelligence (Eds: J. E. Hayes, D. Mikie and L. I. Mikulich), John Wiley & Sons, New York, 1979, pp. 149-194.
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.