Distributed Compressed Sensing Algorithm for Cluster Architectures of WSNs
Keywords:
Wireless sensor networks, distributed compressed sensing, joint sparsity models, LEACH protocol, side informationAbstract
According to the traditional CS theory, each sensor node in the wireless sensor networks always is assumed to directly deliver relative information to sink node, which only considers the intra-signal correlation structure. In addition, these may lead to the loss of the node information and the overenergy consumption. To adjust the processing power and the energy limitation of the node, combined with the inter-signal correlation structure and the joint sparsity models - JSM1, this paper presents a new distributed compressed sensing algorithm for cluster architectures of wireless sensor networks; the proposed algorithm reconstructs the nodes based on side information. Simulation analysis shows that the improved distributed compressed sensing algorithm not only can access to the accurate reconstruction of the nodes, but also can reduce energy consumption during the process of algorithm greatly.References
Donoho D L.(2006); Compressed sensing, IEEE Transactions on Information Theory, 2006, ISSN 0018-9448, 52(4): 1289-1306.
Candés E.(2006); Compressive sampling, In: Proceedings of International Congress of Mathematicians, ISBN 978-3-03719-022-7, 1433-1452.
D.Baron et al (2005); Distributed compressive sensing, Technical Report, pre-print.
D.Baron et al (2005); An Information Theoretic Approach to Distributed Compressed Sensing, In: Conference on Communication, Control, and Computing, ISBN: 9781604234916.
M.F.Duarte et al (2005); Distributed Compressed Sensing of Jointly Sparse Signals, In: Proceeding of the 39th Asilomar Conference on Signals, Systems and Computation , ISSN 1058- 6393, 1537-1541.
J Tropp; A. Gilbert; M Strauss(2006); Algorithms for simultaneous sparse approximation, Part I: Greedy pursuit, Journal of Signal Processing, ISSN 0165-1684, 86: 572-588.
W Dai; O Milenkovic(2009); Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, ISSN 0018-9448, 55(5): 2230-2249.
L.Zhao; L.Q.Lian(2005); Distributed and Energy Efficient Self-organization for On-off Wireless Sensor Networks, International Journal of Wireless Information Networks, ISSN 1068- 9605, 12(1) : 211-215.
L.Qing; Q.Zhu; M.Wang(2006); Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks, ELSEVIER, Computer Communications,ISSN 0140-3664, 29(12): 2230-2237.
Y.X.Liu et al(2010); Regularized Adaptive Matching Pursuit Algorithm for Signal Reconstruction Based on Compressive Sensing, Journal of electronics and information, ISSN 1009- 5896, 32(11): 2713-2717.
D. Slepain; J. K. Wolf(1973); Noiseless coding of correlated information sources. IEEE Transaction on Information Theory, ISSN 0018-9448, 19(9): 471-480.
Nan Jiang(2014). WDEM: Weighted Dynamics and Evolution Models for Energy-Constrained Wireless Sensor Networks, Physica A: Statistical Mechanics and its Applications, ISSN 0378-4371, 404: 323-331.
Nan Jiang; Sixin Jin; Yan Guo; Yueshun He(2013);
Nan Jiang; Sixin Jin; Yan Guo; Yueshun He(2013); Localization of Wireless Sensor Network Based on Genetic Algorithm, International Journal of Computers Communications & Control, ISSN 1841-9844, 8(6): 825-837.
Nan Jiang; Rigui Zhou; Qiulin Ding(2009);
Nan Jiang; Rigui Zhou; Qiulin Ding(2009); Dynamics of Wireless Sensor Networks, International Journal of Distributed Sensor Networks, ISSN 1550-1329, 5(6): 693-707.
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.