Ant Colony Solving Multiple Constraints Problem: Vehicle Route Allocation


  • Sorin C. Negulescu "Lucian Blaga" University of Sibiu Faculty of Engineering 4, Emil CIORAN, IM 502 550025 Sibiu, Romania
  • Claudiu V. Kifor "Lucian Blaga" University of Sibiu Faculty of Engineering 4, Emil CIORAN, IM 502 550025 Sibiu, Romania
  • Constantin Oprean "Lucian Blaga" University of Sibiu Faculty of Engineering 4, Emil CIORAN, IM 502 550025 Sibiu, Romania


Ant Colony Optimisation, Vehicle Route Allocation Problem, Multi- Agent Systems


Ant colonies are successfully used nowadays as multi-agent systems (MAS) to solve difficult optimization problems such as travelling salesman (TSP), quadratic assignment (QAP), vehicle routing (VRP), graph coloring and satisfiability problem. The objective of the research presented in this paper is to adapt an improved version of Ant Colony Optimisation (ACO) algorithm, mainly: the Elitist Ant System (EAS) algorithm in order to solve the Vehicle Route Allocation Problem (VRAP). After a brief introduction in the first section about MAS and their characteristics, the paper presents the rationale within the second section where ACO algorithm and its common extensions are described. In the approach (the third section) are explained the steps that must be followed in order to adapt EAS for solving the VRAP. The resulted algorithm is illustrated in the fourth section. Section five closes the paper presenting the conclusions and intentions.


Bărbat B.E, Moiceanu A., Ple¸sca S., Negulescu S.C. (2007).Affordability and Paradigms in Agent- Based Systems. Computer Sc. J. of Moldova, 15, 2(44), pp.178-201.

Bărbat B.E., Negulescu S.C. (2006). From Algorithms to (Sub-)Symbolic Inferences in Multi- Agent Systems. International Journal of Computers, Communications and Control, 1, 3, pp.5-12.

Bărbat B.E., Negulescu S.C., Zamfirescu C.B. (2005). Human-Driven Stigmergic Control. Moving the Threshold. In N. Simonov (Ed.), Proc. of the 17th IMACS World Congress (Scientific Compu- tation, Applied Mathematics and Simulation), pp.86-92. Paris: ISBN 2- 915913-02-01.

Bonabeau E., Dorigo M., Theraulaz G. (1999). Swarm Intelligence: From Natural to Artificial Systems. New York: Oxford University Press.

Dorigo M., Maniezzo V., Colorni A. (1996). The Ant System: Optimisation by a Colony of Cooperating Agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 26 (1), pp.29-42.

Gambardella L.M., Di Caro G. (2005). The Ant Colony Optimization (ACO) Metaheuristic: a Swarm Intelligence Framework for Complex Optimization Tasks. Retrived 2008, from University of Bologna: First Summer School on Aspects of Complexity. Web site:Ëœfioretti/AC/AC2005/docs/slides_dicaro.pdf

Gambardella L.M., Dorigo M. (1995). Ant-Q: A Reinforcement Learning Approach to the Travelling Salesman Problem. In A. Prieditis and S. Russell (Ed.), Proceedings of the Eleventh Interna- tional Conference on Machine Learning (pp.252-260). San Francisco, CA: Morgan Kaufmann.

Negulescu S.C., Bărbat B.E. (2004). Enhancing the effectiveness of simple multi-agent systems through stigmergic coordination. In ICSC-NAISO (Ed.), Fourth International ICSC Symposium on ENGINEERING OF INTELLIGENT SYSTEMS (EIS 2004), pp.149-156. Canada: ICSC-NAISO Academic Press.

Negulescu S.C., Zamfirescu C.B., B˘arbat B.E. (2006). User-Driven Heuristics for nondeterministic problems. Studies in Informatics and Control (Special issue dedicated to the 2nd Romanian- Hungarian Joint Symp. on Applied Computational Intelligence), 15, 3, pp.289-296.

Stützle T., Hoos H.H. (2000). MAX-MIN Ant System. Future Generation Computer Systems, 16(8), pp.889-914.



Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.