Neural Networks-based Adaptive State Feedback Control of Robot Manipulators

Authors

  • Ghania Debbache Electrical Engineering Institute, Oum El-Bouaghi University, 04000 Oum El-Bouaghi, Algeria
  • Abdelhak Bennia Electronic Departement, Constantine University 25000 Constantine, Algeria
  • Noureddine Goléa Electrical Engineering Institute, Oum El-Bouaghi University, 04000 Oum El-Bouaghi, Algeria

Keywords:

Robot manipulator, neural networks, adaptive control, stability

Abstract

This paper proposes an adaptive control suitable for motion control of robot manipulators with structured and unstructured uncertainties. In order to design an adaptive robust controller, with the ability to compensate these uncertainties, we use neural networks (NN) that have the capability to approximate any nonlinear function over a compact space. In the proposed control scheme, we need not derive the linear formulation of robot dynamic equation and tune the parameters. To reduce the NNs complexity, we consider the properties of robot dynamics and the decomposition of the uncertainties terms. The proposed controller is robust against uncertainties and external disturbance. The validity of the control scheme is demonstrated by computer simulations on a two-link robot manipulator.

References

J. Y. Han, H. Hemami, and S. Yurkovich, Nonlinear adaptive control of a N-link robot with unknown load, Int. J. Robotics Res., vol. 6, no. 3, pp. 71-86, 1987. http://dx.doi.org/10.1177/027836498700600305

J. E. Slotine and W. Li, On the adaptive control of robot manipulators, Int. J. Robotics Res., vol. 6, no. 3, pp. 49-59, 1987. http://dx.doi.org/10.1177/027836498700600303

R. Ortega and M. Spong, Adaptive motion control of rigid robots: A tutorial, Proc. 27th Conf. on Decision and Control CDC, Austin, Texas, , pp. 1575-1584, Dec 1988. http://dx.doi.org/10.1109/cdc.1988.194594

J. J. Graig, Adaptive Control of Mechanical Manipulators, New York, Addison-Wesley, 1988.

Z. Qu, J. F. Dorsey and D. M. Dawson, Robust Control of robots by computed torque law, Systems and Control Letter, Vol.16, pp.25-32, 1991. http://dx.doi.org/10.1016/0167-6911(91)90025-A

G. Jumarie, Tracking control of mechanical systems via sliding Lagrangian, J. Intell. Robotic Syst., vol. 13, pp. 181-199, 1995. http://dx.doi.org/10.1007/BF01254851

S. Pandian and M. Hanmandlu, Adaptive generalized model-based control of robot manipulators, Int. J. Contr., vol. 58, no. 4, pp. 835-853, 1993. http://dx.doi.org/10.1080/00207179308923031

W. C. Ham, Adaptive control based on explicit model of robot manipulators, IEEE Trans. Automat. Contr., vol. 38, pp. 654-658, 1993. http://dx.doi.org/10.1109/9.250542

M. B. Leahy, M. A. Johnson, S. K. Rogers, Neural network payload estimation for adaptive robot control, IEEE Transactions on Neural Networks, Vol. 2, No. 1, pp. 93-100, Jan. 1991. http://dx.doi.org/10.1109/72.80294

M. Saad, P. Bigras, L.-A. Dessaint, K. Al-Haddad, Adaptive robot control using neural networks, IEEE Transactions on Industrial Electronics, Vol. 41, No. 2, pp. 173-181, Apr 1994. http://dx.doi.org/10.1109/41.293877

L. Behera, M.Gopal and S.Chaudhury, Inversion of RBF networks and applications to adaptive control of nonlinear systems, IEE Proc.-Control Theory Appl., Vol. 142, No. 6, Nov. 1995.

F. L. Lewis, A. Yesildirak, S. Jagannathan, Neural network control of robot manipulators and nonlinear systems, Taylor & Francis, Inc. Bristol, PA, USA 1998.

M. Quoy, S. Moga, P. Gaussier, Dynamical neural networks for planning and low-level robot control, IEEE Transactions on Systems, Man and Cybernetics, Part A, Vol. 33, No. 4, pp. 523-532, July 2003.

C. Torras, Natural inspiration for artificial adaptivity: some neurocomputing experiences in robotics, Proc. 4th Intl. Conf. on Unconventional Computation (UC'05), Sevilla, Spain, Oct. 2005. http://dx.doi.org/10.1007/11560319_5

M. J. D. Powell, "Radial basis functions for multivariable interpolation: A review," in Algorithms for Approximation of Functions and Data, J. C. Mason, M. G. Cox, Eds. Oxford, U.K.: Oxford Univ. Press, 1987, pp. 143-167.

E. J. Hartman, J. D. Keeler, and J. M. Kowalski, "Layered neural networks with gaussian hidden units as universal approximations," Neural Comp., vol. 2, no. 2, pp. 210-215, 1990. http://dx.doi.org/10.1162/neco.1990.2.2.210

T. Poggio and F. Girosi, "Networks for approximation and learning," Proc. IEEE, vol. 78, pp. 1481- 1497, Sept. 1990. http://dx.doi.org/10.1109/5.58326

J. Park and I. W. Sandberg, Universal approximation using radial-basis-function networks, Neural Comp. 3, 246-257, 1991. http://dx.doi.org/10.1162/neco.1991.3.2.246

B. Liu and J. Si, The best approximation to C2 function and its error bounds using regular-center gaussian networks, IEEE Trans. Neural Networks, vol. 5, pp.848-857, 1994.

R.J. Schilling, J.J. Jr. Carroll, A.F Al-Ajlouni, Approximation of nonlinear systems with radial basis function neural networks, IEEE Transactions on Neural Networks, vol. 12, pp. 1-15, 2001. http://dx.doi.org/10.1109/72.896792

H. Guang-Bin, P. Saratchandran, N. Sundararajan, A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation, IEEE Transactions on Neural Networks, vol. 16, pp. 57- 67, 2005 http://dx.doi.org/10.1109/TNN.2004.836241

S. S. Sastry and M. Bosdon, Adaptive control: Stability, Convergence and Robustness, Printice- Hall, 1989.

Published

2007-12-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.