Robust PID Decentralized Controller Design Using LMI

Authors

  • Danica Rosinoví¡ Slovak University of Technology Institute for Control and Industrial Informatics Ilkoviˇcova 3 81219 Bratislava , Slovakia
  • Vojtech Veselí½ Slovak University of Technology Institute for Control and Industrial Informatics Ilkoviˇcova 3 81219 Bratislava , Slovakia

Keywords:

Uncertain systems, Robust stability, Decentralized control, Linear matrix inequalities (LMI), Lyapunov function

Abstract

The new LMI based method for robust stability analysis for linear uncertain system with PID controller is proposed. The general constrained structure of controller matrix is considered appropriate for both output feedback and decentralized control and the respective guaranteed cost control design scheme is presented. The sufficient robust stability condition is developed for extended quadratic performance index including first derivative of the state vector to damp oscillations. The obtained stability condition is formulated for parameter-dependent Lyapunov function.

References

Blondel, V. and J.N. Tsitsiklis (1997). NP-hardness of some linear control design problems. SIAM J. Control Optim., 35, pp.2118-2127. http://dx.doi.org/10.1137/S0363012994272630

Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan (1994). Linear matrix inequalities in system and control theory. SIAM Studies in Applied mathematics, Philadelphia. http://dx.doi.org/10.1137/1.9781611970777

Han, J. and R.E. Skelton (2003). An LMI optimization approach for structured linear controllers. In: Proc. 42nd IEEE CDC, Hawaii, USA, pp. 5143-5148.

Henrion, D., D. Arzelier and D. Peaucelle (2002). Positive polynomial matrices and improved LMI robustness conditions. In: 15th IFAC World Congress, Barcelona, Spain.

deOliveira, M.C., J. Bernussou and J.C. Geromel (1999). A new discrete-time robust stability condition. Systems and Control Letters, 37, pp. 261-265. http://dx.doi.org/10.1016/S0167-6911(99)00035-3

deOliveira, M.C., J.F. Camino and R.E. Skelton (2000). A convexifying algorithm for the design of structured linear controllers. In: Proc. 39nd IEEE CDC, Sydney, Australia, pp. 2781-2786.

Ge, Ming, Min-Sen Chiu, Qing-GuoWang (2002). Robust PID controller design via LMI approach. Journal of Process Control, 12, pp.3-13. http://dx.doi.org/10.1016/S0959-1524(00)00057-3

Gyurkovics, E., Takacs, T. (2000): Stabilisation of discrete-time interconnected systems under control constraints. IEE Proceedings - Control Theory and Applications, 147, No. 2, 137-144 http://dx.doi.org/10.1049/ip-cta:20000142

Peaucelle, D., D. Arzelier, O. Bachelier and J. Bernussou (2000). A new robustD-stability condition for real convex polytopic uncertainty. Systems and Control Letters, 40, pp. 21-30. http://dx.doi.org/10.1016/S0167-6911(99)00119-X

Rosinová, D., V. Veselý and V. Kuˇcera (2003). A necessary and sufficient condition for static output feedback stabilizability of linear discrete-time systems. Kybernetika, 39, pp. 447-459.

Rosinová, D. and V. Veselý (2003). Robust output feedback design of discrete-time systems - linear matrix inequality methods. In: 2th IFAC Conf. CSD'03 (CD-ROM), Bratislava, Slovakia.

Skelton, R.E., T. Iwasaki and K. Grigoriadis (1998). A Unified Algebraic Approach to Linear Control Design, Taylor and Francis.

Veselý, V. (2003). Robust output feedback synthesis: LMI Approach. In: 2th IFAC Conference CSD'03 (CD-ROM), Bratislava, Slovakia.

Zheng Feng, Qing-Guo Wang, Tong Heng Lee (2002). On the design of multivariable PID controllers via LMI approach. Automatica, 38, pp.517-526. http://dx.doi.org/10.1016/S0005-1098(01)00237-0

Published

2007-04-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.