On Guaranteed Global Exponential Stability Of Polynomial Singularly Perturbed Control Systems

Authors

  • Hajer Bouzaouache Laboratory of Study and Automatic Control of Processes Address: Polytechnic School of Tunisia (EPT) BP.743, 2078 La Marsa, Tunisia.
  • Naceur Benhadj Braiek Laboratory of Study and Automatic Control of Processes Address: Polytechnic School of Tunisia (EPT) BP.743, 2078 La Marsa, Tunisia.

Keywords:

Nonlinear singularly perturbed system, Integral manifold, Lyapunov stability, Kronecker product, Linear matrix inequalities (LMIs)

Abstract

The problem of global exponential stability for a class of nonlinear singularly perturbed systems is examined in this paper. The stability analysis is based on the use of basic results of integral manifold of nonlinear singularly perturbed systems, the composite Lyapunov method and the notations and properties of Tensoriel algebra. Some of the derived results are presented as linear matrix inequalities (LMIs) feasibility tests. Moreover, we pointed out that if the global exponential stability of the reduced order subsystem is established this is equivalent to guarantee the global exponential stability of the original high order closed loop system. An upper bound e1 of the small parameter e , can also be determined up to which established stability conditions via LMI’s are maintained verified. A numerical example is given to illustrate the proposed approach.

References

E. Benhadj Braiek, F. Rotella, M. Benrejeb, Algebraic criteria for global stability analysis of nonlinear systems, SAMS Journal, Vol.17, pp. 211-227, 1995.

P. Borne, J.C Gentina, On the stability of large nonlinear systems. Structured and simultaneous Lyapunov for system stability problem, Joint. Aut. Cont. Conf., Austin, Texas, 1974.

P. Borne, M. Benrejeb, On the stability of a class of interconnected systems. Application to the forced Working condition, Actes 4th IFAC Symposium MTS, Fredericton, Canada, 1977.

P. Borne and G. Dauphin-Tanguy, Singular perturbations, boundary layer problem, Systems and Control Encyclopedia, M.G.Singh Eds, Pergamon press, III I-2, 1987.

H. Bouzaouache, E. Benhadj Braiek, On the stability analysis of nonlinear systems using polynomial Lyapunov functions, IMACS World Congress, Paris, 2005.

H. Bouzaouache, Sur la représentation d'état des systèmes non linéaires singulièrement perturbés polynomiaux, Conférence Tunisienne de Génie Electrique CTGE, pp. 420-424, 2004.

H. Bouzaouache, E. Benhadj Braiek, M. Benrejeb, A reduced optimal control for nonlinear singularly perturbed systems", Systems Analysis Modelling Simulation Journal.Vol 43, pp. 75-87, 2003. http://dx.doi.org/10.1080/0232929031000116353

S. Boyd, L. El Ghaoui and Feron E. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia,1994. http://dx.doi.org/10.1137/1.9781611970777

J. W. Brewer, Kronecker product and matrix calculus in system theory, IEEE Trans.on Circ.Syst, 25, Nr9, pp. 772-781, 1978. http://dx.doi.org/10.1109/TCS.1978.1084534

C.C. Chen, Research on the feedback control of nonlinear singularly perturbed systems, PhD Thesis, Inst. Electrical Eng., NatSun Yat Sen Univ, Taiwan, Roc, 1994.

F. Ghorbel and M.W. Spong, Integral manifolds of singularly perturbed systems with application to rigid-link flexible joint multibody systems, International Journal of Nonlinear Mechanics 35, pp. 133-155, 2000. http://dx.doi.org/10.1016/S0020-7462(98)00092-4

M. Innocenti, L. Greco, L. Pollini, Sliding mode control for two time scale systems : stability issues, Automatica, Vol. 39,pp. 273-280,2003. http://dx.doi.org/10.1016/S0005-1098(02)00199-1

P.V. Kokotovic, H.K. Khalil, O'Reilly, Singular perturbation methods in control: analysis and design, academic Press , New york, 1986.

P.M. Sharkey and J. O'Reilly, Exact design manifold control of a class of NLSP systems, IEEE Trans. Automat. Contr., Vol.32, pp.933-937, 1987. http://dx.doi.org/10.1109/TAC.1987.1104469

J.J.E. Slotine, Applied nonlinear control, Englenwood Cliffs, NJ, Prentice Hall, 1991.

V.A. Sobolev, Integral manifolds and decomposition of singularly perturbed systems, Systems Control Letters, Vol.5, pp.169-179, 1984. http://dx.doi.org/10.1016/S0167-6911(84)80099-7

M.W.Spong, K. Khorasani, P.V. Kokotovic, An Integral Manifold approach to feedback control of flexible joint robots, IEEE J. Robot. Automat.3 (4), pp. 291-300, 1987. http://dx.doi.org/10.1109/JRA.1987.1087102

Published

2006-10-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.