Medium Term Electric Load Forecasting Using TLFN Neural Networks

Authors

  • Danilo Bassi Universidad de Santiago de Chile Departamento de Ingenierí­a Informí¡tica Santiago, CHILE
  • Oscar Olivares Universidad de Santiago de Chile Departamento de Ingenierí­a Informí¡tica Santiago, CHILE

Keywords:

Neural network model, forecasting, gamma memory, electric load

Abstract

This paper develops medium term electric load forecasting using neural networks, based on historical series of electric load, economic and demographic variables. The neural network chosen for this work is the Time Lagged Feedforward Network (TLFN), which combines conventional network topology (multilayer perceptron) with good handling of time dependencies by means of gamma memory. This is a versatile mechanism that generalizes the short term structures of memory, based on delays and recurrences. This scheme allows smaller adjustments without requiring changes in the general network structure. The neural model gave satisfactory results exceeding those obtained by classical statistical models like multiple linear regression.

References

Bengio, S., Fesant, F., Collobert D., A Connectionist System for Medium - Term Horizon Time Series Prediction, International Workshop on Applications of Neural Networks to Telecommunications, IWANNT, Stockholm, Sweden, 1995.

Bishop, C., Neural Networks for Pattern Recognition, Oxford University Press, 1995.

Costa, N., Ribeiro, B., A neural prediction model for monitoring and fault diagnosis of a plastic injection moulding process, Centro de Informática e Sistemas da Universidade de Coimbra, 1999.

Freeman, J. and Skapura D., Redes Neuronales: Algoritmos, Aplicaciones y Técnicas de Programación, Versión en espa-ol de García-Bermejo, R. Joyanes, L. Addison Wesley / Díaz de Santos, Wilmington, Delaware, EUA, 1993.

García, J. and García, F., Econometría. Tema 5. Autocorrelación, Curso 2002/2003. Universidad de Huelva, 2002.

Gavrilas, M., Neural Network based Forecasting for Electricity Markets, Technical University of Iasi, Romania, 2002.

Hagan, M. and Behr, S., "The Time Series approach to short term load forecasting", IEEE Transactions on Power Systems, Vol. PWRS-2, NO. 3, 1997.

Instituto Nacional de Estadísticas (INE 2002b), Censo 2002. Síntesis de Resultados.

Karady, G., Short - Term Load Forecasting using Neural Networks and Fuzzy Logic, Arizona State University. Power Zone, 2001.

Khotanzad, A., Abaye A., "ANNSTLF - A Neural Network Based Electric Load Forecasting System". IEEE Trans. on Neural Networks, Vol. 8, No. 4, 1997. http://dx.doi.org/10.1109/72.595881

Martín del Brío, B., Sanz Molina A., Redes Neuronales y Sistemas Borrosos, 2da. Edición, Ra-Ma, Madrid, Espa-a, 2001.

Moro, Q., Series Temporales y Redes Neuronales Artificiales, Departamento de Informática Universidad de Valladolid. Pérez, C. (2001), Técnicas Estadísticas con SPSS, Prentice Hall, Madrid, Espa-a, 2002.

Principe J., Euliano N., Lefebvre W., Neural and Adaptive Systems: Fundamentals Through Simulations, John Wiley and Sons, New York, 2000.

Refenes, A., Burgess, A., Bentz, Y., "Neural Networks in Financial Engineering: A Study in Methodology". IEEE Transactions in Neural Networks, Vol 8; No. 6, 1997. http://dx.doi.org/10.1109/72.641449

Spiegel, M., Estadística, Serie de Compendios Schaum. Libros McGraw-Hill, Colombia, 1969.

Torche, A., Contabilidad Nacional. NúmerosIndices. Desestacionalización y Trimestralización, Trabajo Estadístico Número 63. Pontificia Universidad Católica de Chile. Insituto de Economía. Santiago, 1998.

Published

2006-04-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.