Development of a Matlab(R) Toolbox for the Design of Grey-Box Neural Models

Authors

  • Gonzalo Acuña Universidad de Santiago de Chile Departamento de Ingenierí­a Informí¡tica Avda. Ecuador No 3659 - Casilla 10233; Santiago, Chile
  • Erika Pinto Universidad de Santiago de Chile Departamento de Ingenierí­a Informí¡tica Avda. Ecuador No 3659 - Casilla 10233; Santiago, Chile

Keywords:

Grey-Box Model, Neural Networks, One-Step-Ahead estimation, Multiple Prediction Output, Time variant parameter identification

Abstract

A Matlab Toolbox is developed for the design, construction and validation of grey-box neural network models. This toolbox, available in www.diinf.usach.cl=gacuna has been tested in simulations with a continuously stirred reactor process. The grey-box model performs well for validation data with 5% additive gaussian noise for one-step-ahead (OSA) and model-predictive-output (MPO) estimations.

References

Psichogios, D.; Ungar, L. (1992). "A Hybrid Neural Network-First Principles Approach to Process Modeling", Computers & Chemical Engineering, 38(10): 1499-1511. http://dx.doi.org/10.1002/aic.690381003

Thompson, M.; Kramer, M. (1994). "Modeling Chemical Processes Using Prior Knowledge and Neural Networks", Computers & Chemical Engineering , 40(8):1328-1340. http://dx.doi.org/10.1002/aic.690400806

Van Can, H; Hellinga, C.; Luyben, K.; Heijnen, J. (1996). "Strategy for Dynamic Process Modeling Based on Neural Network in Macroscopic Balances", AIChE Journal, 42:3403-3418. http://dx.doi.org/10.1002/aic.690421211

Thibault, J, Acu-a, G., Pérez-Correa, R., Jorquera, H., Molin, P., Agosin, E., (2000) "A hybrid representation approach for modelling complex dynamic bioprocesses" Bioprocess Engineering, 22(6):547-556. http://dx.doi.org/10.1007/s004499900110

Acu-a G.; Cubillos, F.; Thibault, J.; Latrille, E. (1999). "Comparison of Methods for Training Grey- Box Neural Network Models", Computers & Chemicals Engineering Supplement, 23:561-564. http://dx.doi.org/10.1016/S0098-1354(99)80138-0

Hornik K. Stinchcombe M., White H., (1989) "Multilayer Feedforward Networks Are Universal Approximators", Neural Networks, 2:359-366. http://dx.doi.org/10.1016/0893-6080(89)90020-8

Billings S.A., Jamaluddin H. B. y Chen S., (1992) "Properties of Neural Network with Applications to Modeling Non-linear Dynamical System", Int. J. Control, 55(1):193-224. http://dx.doi.org/10.1080/00207179208934232

Pinto Armijo, Erika (2004), "A Matlab based application for developing grey-box models", Memoria de Título de Ingeniería Civil Informática, Universidad de Santiago de Chile (in Spanish).

Hernández E.; Arkun, Y. (1992). "Study of the Control-Relevant Properties of Backpropagation Neural Network Models of Nonlinear Dynamical Systems", Computers & Chemical Engineering, 16(4):227-240. http://dx.doi.org/10.1016/0098-1354(92)80044-A

Published

2006-04-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.