Numerical P Systems with Thresholds

Authors

  • Zhiqiang Zhang Key Laboratory of Image Information Processing and Intelligent Control, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • Linqiang Pan Key Laboratory of Image Information Processing and Intelligent Control, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China http://orcid.org/0000-0002-4554-455X

Keywords:

membrane computing, numerical P system, computation power, universality, register machine

Abstract

Numerical P systems are a class of P systems inspired both from the structure of living cells and from economics. In this work, a control of using evolution programs is introduced into numerical P systems: a threshold is considered and a program can be applied only when the values of the variables involved in the production function of the program are greater than/equal to (lower-threshold) or smaller than/equal to (upper-threshold) the threshold. The computational power of numerical P systems with lower-threshold or upper-threshold is investigated. It is proved that numerical P systems with a lower-threshold, with one membrane and linear production functions, working both in the all-parallel mode and in the one-parallel mode are universal. The result is also extended to numerical P systems with an upperthreshold, by proving the equivalence of the numerical P systems with lower- and upper-thresholds.

References

Freund, R.; Oswald, M. (2002);GP Systems with Forbidding Context. Fundamenta Informaticae 49(1-3), 81-102.

Freund, R.; Păun, G. (2001); On the Number of Non-Terminal Symbols in Graph-Controlled, Programmed and Matrix Grammars. In: Machines, Computations, and Universality, 3rd Internat. Conf., MCU, Lecture Notes in Computer Science, vol. 2055, Springer, Berlin, 214-225. http://dx.doi.org/10.1007/3-540-45132-3_14

Ionescu, M.; Păun, G., Yokomori; T. (2006); Spiking Neural P Systems. Fundamenta Informaticae 71(2-3), 279-308.

Leporati, A.; Porreca, A.E.; Zandron, C.; Mauri, G. (2013); Improving Universality Results on Parallel Enzymatic Numerical P Systems. Proc. 11th Brainstorming Week on Membrane Computing, Sevilla, 4-8.

Martín-Vide, C.; Pazos, J.; Păun, Gh.; Rodriguez-Paton, A. (2003); Tissue P Systems. Theoretical Computer Science 296(2), 295-326. http://dx.doi.org/10.1016/S0304-3975(02)00659-X

Minsky, M.L. (1967); Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Păun, G. (2000); Computing with Membranes. Journal of Computer and System Sciences 61(1), 108-143. http://dx.doi.org/10.1006/jcss.1999.1693

Păun, G. (2002); Membrane Computing-An Introduction. Springer-Verlag, Berlin. http://dx.doi.org/10.1007/978-3-642-56196-2

Păun, G. (2013); Some Open Problems about Numerical P Systems. Proc. 11th Brainstorming Week on Membrane Computing, Sevilla, 245-252.

Păun, G.; Păun, R. (2006); Membrane Computing and Economics: Numerical P Systems. Fundamenta Informaticae, 73(1), 213-227.

Păun, G.;Rozenberg, G.; Salomaa A.(eds.)(2010); The Oxford Handbook of Membrane Computing. Oxford University Press, New York.

Pavel, A.B.; Arsene, O.; Buiu, C. (2010); Enzymatic Numerical P Systems-A New Class of Membrane Computing Systems. In: IEEE Fifth International Conference on Bio- Inspired Computing: Theories and Applications (BIC-TA), 1331-1336. http://dx.doi.org/10.1109/bicta.2010.5645071

Pavel, A.B.; Buiu, C. (2012); Using Enzymatic Numerical P Systems for Modeling Mobile Robot Controllers. Natural Computing 11(3), 387-393. http://dx.doi.org/10.1007/s11047-011-9286-5

Pavel, A.B.; Vasile, C.I.; Dumitrache, I. (2012); Robot Localization Implemented with Enzymatic Numerical P Systems. In: Biomimetic and Biohybrid Systems, Springer, 204- 215. http://dx.doi.org/10.1007/978-3-642-31525-1_18

Pavel, A.B.; Vasile, C.I.; Dumitrache, I. (2013); Membrane Computing in Robotics. In: Beyond Artificial Intelligence, Springer, Berlin, 125-135. http://dx.doi.org/10.1007/978-3-642-34422-0_9

Vasile, C.I.; Pavel, A.B.; Dumitrache, I. (2013); Universality of Enzymatic Numerical P Systems. International Journal of Computer Mathematics 90(4), 869-879. http://dx.doi.org/10.1080/00207160.2012.748897

Vasile, C.I.; Pavel, A.B.; Dumitrache, I.; Păun, G. (2012); On the Power of Enzymatic Numerical P Systems. Acta Informatica 49(6), 395-412. http://dx.doi.org/10.1007/s00236-012-0166-y

Wang, J.; Hoogeboom, H.J.; Pan, L.; Păun, G.; Pérez-Jiménez, M.J. (2010); Spiking Neural P Systems with Weights. Neural Computation 22(10), 2615-2646. http://dx.doi.org/10.1162/NECO_a_00022

Published

2016-01-26

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.