Evaluation Measures for Partitioning based Aspect Mining Techniques


  • Gabriela Czibula BabeÅŸ-Bolyai University 1, M. Kogălniceanu Street, 400084, Cluj-Napoca, Romania
  • Grigoreta Sofia Cojocar BabeÅŸ-Bolyai University 1, M. Kogălniceanu Street, 400084, Cluj-Napoca, Romania
  • Istvan Gergely Czibula BabeÅŸ-Bolyai University 1, M. Kogălniceanu Street, 400084, Cluj-Napoca, Romania


partitioning, aspect mining, crosscutting concern, evaluation


Aspect mining is a research direction that tries to identify crosscutting concerns in already developed software systems, without using aspect oriented programming. The goal is to identify them and then to refactor them to aspects, to achieve a system that can be easily understood, maintained and modified. In this paper we propose two new evaluation measures for evaluating the results of partitioning based aspect mining techniques. A small example on how to compute them is provided. The applicability of these measures to different aspect mining techniques is also discussed.


S. Breu and J. Krinke. Aspect Mining Using Event Traces. In Proceedings of International Conference on Automated Software Engineering (ASE), pages 310-315, 2004. http://dx.doi.org/10.1109/ase.2004.1342754

S. Breu and T. Zimmermann. Mining Aspects from Version History. In S. Uchitel and S. Easterbrook, editors, 21st IEEE/ACM International Conference on Automated Software Engineering (ASE 2006). ACM Press, September 2006. http://dx.doi.org/10.1109/ASE.2006.50

M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwé. On the use of clone detection for identifying crosscutting concern code. IEEE Transactions on Software Engineering, 31(10):804-818, 2005. http://dx.doi.org/10.1109/TSE.2005.114

M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and T. Tourwé. A Qualitative Comparison of Three Aspect Mining Techniques. In IWPC '05: Proceedings of the 13th International Workshop on Program Comprehension, pages 13-22. IEEE Computer Society, 2005. http://dx.doi.org/10.1109/WPC.2005.2

G. S. Cojocar(Moldovan) and G. Serban. A Formal Model for Partitioning based Aspect Mining. INFOCOMP Journal of Computer Science, Brazil, 6(3):19-26, 2007.

C. Cubillos, E. Urra and N. Rodríguez. Application of Genetic Algorithms for the DARPTW Problem. International Journal of Computers, Communication and Control, Vol. IV, No. 2:127-136, 2009.

B. Ganter and R. Wille. Formal Concept Analysis. Springer-Verlag, Berlin, Heidelberg, New York, 1996.

L. He and H. Bai. Aspect Mining using Clustering and Association Rule Method. International Journal of Computer Science and Network Security, 6(2):247-251, February 2006.

B. Henderson-Sellers. Object-Oriented Metrics: Measures of Complexity. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996.

A. Kellens, K. Mens, and P. Tonella. A Survey of Automated Code-level Aspect Mining Techniques. Transactions on Aspect-Oriented Software Development, Special Issue on Software Evolution, VI(LNCS 4640):145-164, 2007.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented Programming. In Proceedings European Conference on Object-Oriented Programming, volume LNCS 1241, pages 220-242. Springer-Verlag, 1997.

J. Krinke. Mining control flow graphs for crosscutting concerns. In 13th Working Conference on Reverse Engineering: IEEE International Astrenet Aspect Analysis (AAA) Workshop, pages 334-342, 2006. http://dx.doi.org/10.1109/wcre.2006.37

R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Manning Publications Co., 2003.

M. Marin, A. van, Deursen, and L. Moonen. Identifying Aspects Using Fan-in Analysis. In Proceedings of the 11th Working Conference on Reverse Engineering (WCRE2004)., pages 132-141. IEEE Computer Society, 2004.

G. S. Moldovan and G. Serban. Aspect Mining using a Vector-Space Model Based Clustering Approach. In Proceedings of Linking Aspect Technology and Evolution (LATE) Workshop, pages 36-40, Bonn, Germany, March, 20 2006. AOSD'06.

B. Nora, G. Said, and A. Fadila. A Comparative Classification of Aspect Mining Approaches. Journal of Computer Science, 2(4):322-325, 2006. http://dx.doi.org/10.3844/jcssp.2006.322.325

C. K. Roy, M. G. Uddin, B. Roy, and T. R. Dean. Evaluating Aspect Mining Techniques: A Case Study. In ICPC '07: Proceedings of the 15th IEEE International Conference on Program Comprehension, pages 167-176, Washington, DC, USA, 2007. IEEE Computer Society. http://dx.doi.org/10.1109/ICPC.2007.21

A. Sampaio, N. Loughran, A. Rashid, and P. Rayson. Mining Aspects in Requirements. In Early Aspects 2005: Aspect-Oriented Requirements Engineering and Architecture Design Workshop (held with AOSD 2005), Chicago, Illinois, USA, 2005.

G. Serban and G. S. Moldovan. A Graph Algorithm for Identification of Crosscutting Concerns. Studia Universitatis Babes-Bolyai, Informatica, LI(2):53-60, 2006.

G. Serban and G. S. Moldovan. A New k-means Based Clustering Algorithm in Aspect Mining. In Proceedings of 8th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC'06), pages 69-74, Timisoara, Romania, September, 26-29 2006. IEEE Computer Society. http://dx.doi.org/10.1109/synasc.2006.5

G. Serban and G. S. Moldovan. Aspect Mining using an Evolutionary Approach. WSEAS Transactions on Computers, 6(2):298-305, 2007.

D. Shepherd, E. Gibson, and L. Pollock. Design and Evaluation of an Automated Aspect Mining Tool. In 2004 International Conference on Software Engineering and Practice, pages 601-607. IEEE, June 2004.

D. Shepherd and L. Pollock. Interfaces, Aspects, and Views. In Proceedings of Linking Aspect Technology and Evolution Workshop(LATE 2005), March 2005.

P. Tonella and M. Ceccato. Aspect Mining through the Formal Concept Analysis of Execution Traces. In Proceedings of the IEEE Eleventh Working Conference on Reverse Engineering (WCRE 2004), pages 112-121, November 2004. http://dx.doi.org/10.1109/WCRE.2004.13

T. Tourwé and K. Mens. Mining Aspectual Views using Formal Concept Analysis. In SCAM'04: Proceedings of the Source Code Analysis and Manipulation, Fourth IEEE International Workshop on (SCAM'04), pages 97-106, Washington, DC, USA, 2004. IEEE Computer Society. http://dx.doi.org/10.1109/scam.2004.15



Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.