Identification of ERD using Fuzzy Inference Systems for Brain-Computer Interface
Keywords:
Event Related Desynchronization (ERD), Brain-Computer Interface (BCI), electroencephalography (EEG), fuzzy inference system.Abstract
A Brain-Computer Interface uses measurements of scalp electric potential (electroencephalography - EEG) reflecting brain activity, to communicate with external devices. Recent developments in electronics and computer sciences have enabled applications that may help users with disabilities and also to develop new types of Human Machine Interfaces. By producing modifications in their brain potential activity, the users can perform control of different devices. In order to perform actions, this EEG signals must be processed with proper algorithms. Our approach is based on a fuzzy inference system used to produce sharp control states from noisy EEG data.References
Brendan Z. Allison, Dennis J. McFarland, Gerwin Schalk, Shi Dong Zheng, Melody Moore Jackson, Jonathan R. Wolpaw, Towards an independent brain-computer interface using steady state visual evoked potentials, Clinical Neurophysiology, 119(2): 399-408, 2008 http://dx.doi.org/10.1016/j.clinph.2007.09.121
Janis J Daly, Jonathan R., Wolpaw, Brain-computer interfaces in neurological rehabilitation, The Lancet Neurology, 7(11): 1032-1043, 2008 http://dx.doi.org/10.1016/S1474-4422(08)70223-0
Carlo Menon, Cristina de Negueruela, José del R. Millán, Oliver Tonet, Federico Carpi, Michael Broschart, Pierre Ferrez, et. all, Prospects of brain-machine interfaces for space system control, Acta Astronautica, 64(4): 448-456, 2009 http://dx.doi.org/10.1016/j.actaastro.2008.09.008
Elisabeth V.C. Friedrich, Dennis J. McFarlanda, Christa Neuperb, Theresa M. Vaughan, Peter Brunner, Jonathan R. Wolpaw, A scanning protocol for a sensorimotor rhythm-based brain-computer interface, Biological Psychology, pp. 80(2): 169-175, 2009
Marcel van Gerven, Ole Jensen, Attention modulations of posterior alpha as a control signal for two-dimensional brain-computer interfaces, Journal of Neuroscience Methods, 179(1): 78- 84 http://dx.doi.org/10.1016/j.jneumeth.2009.01.016
Lucia Rita Quitadamo, Maria Grazia Marciani, Gian Carlo Cardarilli, Luigi Bianchi, Describing Different Brain Computer Interface Systems Through a Unique Model: A UML Implementation, Neuroinform, 6: 81-96, 2008, DOI 10.1007/s12021-008-9015-0 http://dx.doi.org/10.1007/s12021-008-9015-0
I.H. Iversen, N. Ghanayim, A. Kübler, N. Neumann, N. Birbaumer, J. Kaiser, A braincomputer interface tool to assess cognitive functions in completely paralyzed patients with amyotrophic lateral sclerosis, Clinical Neurophysiology, 119(10): 2214-2223, 2008 http://dx.doi.org/10.1016/j.clinph.2008.07.001
G. Pfurtscheller, T. Solis-Escalante, Could the beta rebound in the EEG be suitable to realize a "brain switch"?, Clinical Neurophysiology, 120(11): 24-29, 2008
Marios G. Philiastides, Paul Sajda, EEG-Informed fMRI Reveals Spatiotemporal Characteristics of Perceptual Decision Making, The Journal of Neuroscience, 27(48):13082-13091, 2007 http://dx.doi.org/10.1523/JNEUROSCI.3540-07.2007
A. Vuckovic, F. Sepulveda, Quantification and visualisation of differences between two motor tasks based on energy density maps for brain-computer interface applications, Clinical Neurophysiology, 119(2): 446-458, 2008 http://dx.doi.org/10.1016/j.clinph.2007.10.015
Oliver Tonet, Martina Marinelli, Luca Citi, Paolo Maria Rossini, Luca Rossini, Giuseppe Megali, et. all, Defining brain -machine interface applications by matching interface performance with device requirements, Journal of Neuroscience Methods, Brain-Computer Interfaces (BCIs), 167(1): 91-104, 2008
Hyun K. Kim, Shinsuk Park, Mandayam A. Srinivasan, Developments in brain-machine interfaces from the perspective of robotics, Human Movement Science, 28(2): 191-203, 2009 http://dx.doi.org/10.1016/j.humov.2008.12.001
Febo Cincotti, Donatella Mattia, Fabio Aloise, Simona Bufalari, Gerwin Schalk, Giuseppe Oriolo, et. all, Non-invasive brain-computer interface system: Towards its application as assistive technology, Brain Research Bulletin, Special Issue: Robotics and Neuroscience, 775(6): 796-803, 2008
F. Galán, M. Nuttin, E. Lew, P.W. Ferrez, G. Vanacker, J. Philips, J. del R. Millán, A brain-actuated wheelchair: Asynchronous and non-invasive Brain-computer interfaces for continuous control of robots, Clinical Neurophysiology, 119(9): 2159-2169, 2008 http://dx.doi.org/10.1016/j.clinph.2008.06.001
Chia-Lin Chang, Zhanpeng Jin, Hou-Cheng Chang, Allen C. Cheng, From neuromuscular activation to end-point locomotion: An artificial neural network-based technique for neural prostheses, Journal of Biomechanics, 42(8): 982-988, 2009 http://dx.doi.org/10.1016/j.jbiomech.2009.03.030
Febo Cincotti, Donatella Mattia, Fabio Aloise, Simona Bufalari, Laura Astolfi, Fabrizio De Vico Fallani, et. all, High-resolution EEG techniques for brain-computer interface applications, Journal of Neuroscience Methods, Brain-Computer Interfaces (BCIs), 167(1): 31-42, 2008
Valerie Morash, Ou Bai, Stephen Furlani, Peter Lina, Mark Halletta, Classifying EEG signals preceding right hand, left hand, tongue, and right foot movements and motor imageries, Clinical Neurophysiology, 119(11): 2570-2578, 2008 http://dx.doi.org/10.1016/j.clinph.2008.08.013
Vadim V. Nikulin, Friederike U. Hohlefeld, Arthur M. Jacobs, Gabriel Curio, Quasimovements: A novel motor-cognitive phenomenon, Neuropsychologia, 46(2): 727-742, 2008
Farhad Faradji, Rabab K. Ward, Gary E. Birch, Plausibility Assessment of a 2-State Self- Paced Mental Task-Based BCI Using the No-Control Performance Analysis, Journal of Neuroscience Methods, 180(2): 330-339, 2009 http://dx.doi.org/10.1016/j.jneumeth.2009.03.011
Daniel Pérez-Marcos, Jens-Uwe Knote, Reinhard Both, Galina Ivanova, Quantification of cognitive-induced brain activity: An efficient method for online applications, Computers in Biology and Medicine, 38(11-12): 1194-1202, 2008 http://dx.doi.org/10.1016/j.compbiomed.2008.09.005
Seong-eun Ro, Joon Hwan Choi, Taejeong Kim, A new action potential classifier using 3- Gaussian model fitting, Advances in Neural Information Processing (ICONIP 2006) / Brazilian Symposium on Neural Networks (SBRN 2006), Neurocomputing, 71(16-18): 3631-3634, 2008
Mingjun Zhong, Fabien Lotte, Mark Girolami, Anatole Lécuyer, Classifying EEG for brain computer interfaces using Gaussian processes, Pattern Recognition Letters, 29(3):354-359, 2008 http://dx.doi.org/10.1016/j.patrec.2007.10.009
Jo-Anne Ting, Aaron D'Souza, Kenji Yamamoto, Toshinori Yoshioka, Donna Hoffman, Shinji Kakeif, et. all, Variational Bayesian least squares: An application to brain -machine interface data, Neural Networks, 21(8): 1112-1131, 2008 http://dx.doi.org/10.1016/j.neunet.2008.06.012
Tonio Balla, Evariste Demandt, Isabella Mutschler, Eva Neitzel, Carsten Mehring, Klaus Vogt, et. all, Movement related activity in the high gamma range of the human EEG, NeuroImage, 41(2): 302-310, 2008
Shang-Ming Zhou, John Q. Gan, Francisco Sepulveda, Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface, Information Sciences, 178(6): 1629-1640, 2008 http://dx.doi.org/10.1016/j.ins.2007.11.012
F. Darvas, J.G. Ojemann, L.B. Sorensen, Bi-phase locking - a tool for probing non-linear interaction in the human brain, NeuroImage, 46(1): 123-132, 2009 http://dx.doi.org/10.1016/j.neuroimage.2009.01.034
Wei-Yen Hsu, Yung-Nien Sun, EEG-based motor imagery analysis using weighted wavelet transform features, Journal of Neuroscience Methods, 175(2): 310-318, 2009
Wu Ting, Yan Guo-zheng, Yang Bang-hua, Sun Hong, EEG feature extraction based on wavelet packet decomposition for brain computer interface, Measurement, 41(6): 618-62, 2008 http://dx.doi.org/10.1016/j.measurement.2007.07.007
Dean Cvetkovic, Elif Derya Ãœbeyli, Irena Cosic, Wavelet transform feature extraction from human PPG, ECG, and EEG signal responses to ELF PEMF exposures: A pilot study, Digital Signal Processing, 18(5): 861-874, 2008 http://dx.doi.org/10.1016/j.dsp.2007.05.009
Vahid Abootalebi, Mohammad Hassan Moradib, Mohammad Ali Khalilzadeh, A new approach for EEG feature extraction in P300-based lie detection, Computer Methods and Programs in Biomedicine, 94(1): 48-57, 2009 http://dx.doi.org/10.1016/j.cmpb.2008.10.001
R. Murat Demirer, Mehmet Sirac Ozerdem, Coskun Bayrak, Classification of imaginary movements in ECoG with a hybrid approach based on multi-dimensional Hilbert-SVM solution, Journal of Neuroscience Methods, 178(1): 214-218, 2009 http://dx.doi.org/10.1016/j.jneumeth.2008.11.011
W. A. Chaovalitwongse, P. M. Pardalos, On the time series support vector machine using dynamic time warping kernel for brain activity classification, Cybernetics and Systems Analysis, 44(1): 125-138, 2008 http://dx.doi.org/10.1007/s10559-008-0012-y
Andreas Trřllund Boy, Ulrik Qvist Kristiansen, Martin Billinger, Omar Feix do Nascimento, Dario Farina, Identification of movement-related cortical potentials with optimized spatial filtering and principal component analysis, Biomedical Signal Processing and Control, 3(4): 300-304, 2008 http://dx.doi.org/10.1016/j.bspc.2008.05.001
Gholamreza Salimi-Khorshidi, Ali Motie Nasrabadi, Mohammadreza Hashemi Golpayegani, Fusion of classic P300 detection methods' inferences in a framework of fuzzy labels, Artificial Intelligence in Medicine, 44(3): 247-259, 2008 http://dx.doi.org/10.1016/j.artmed.2008.06.002
Vito Logar, Igor Å krjanc, Aleš BeliÄ, Simon Brežan, Blaž Koritnik, Janez Zidar, Identification of the phase code in an EEG during gripping-force tasks: A possible alternative approach to the development of the brain-computer interfaces, Artificial Intelligence in Medicine, 44(1): 41-49, 2008 http://dx.doi.org/10.1016/j.artmed.2008.06.003
Dzitac S., Felea I., Dzitac I., Vesselenyi T., (2008), An Application of Neuro-Fuzzy Modelling to Prediction of some Incidence in an Electrical Energy Distribution Center, International Journal of Computers, Communications and Control, ISSN 1841-9836, 3(S):287-292, 2008
Coyle D, Prasad G, McGinnity T.M., Faster self-organizing fuzzy neural network training and a hyperparameter analysis for a brain-computer interface, IEEE Trans Syst Man Cybern B Cybern., 39(6):1458-71, 2009 http://dx.doi.org/10.1109/TSMCB.2009.2018469
Palaniappan R., Paramesran R., Nishida S., Saiwaki N., A new brain-computer interface design using fuzzy ARTMAP, IEEE Transactions on neural systems and rehabilitation engineering, ISSN 1534-4320, 10(3): 140-148, 2002
Bang-hua Y., Guo-zheng Y., Ting W., Rong-guo Y., Subject-based feature extraction using fuzzy wavelet packet in brain-computer interfaces, Signal Processing, 87(7): 1569-1574, 2007 http://dx.doi.org/10.1016/j.sigpro.2006.12.018
Vesselenyi T., Dzitac I., Dzitac S., Hora C., Porumb C., Preliminary Issues On Brain- Machine Contextual Communication Structure Development, Soft Computing Applications, 2009. SOFA '09. 3rd International Workshop on, ISBN 978-1-4244-5054-1, pp.37-42, IEEE Xplore DOI 10.1109/SOFA.2009.5254882, 2009
Darvishi, S.; Al-Ani, A. Brain-Computer Interface Analysis using Continuous Wavelet Transform and Adaptive Neuro-Fuzzy Classifier, Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 3220 - 3223.
Pfurtscheller, G.: EEG event-related desynchronization (ERD) and event-related synchronization (ERS), In E. Niedermeyer, F.H. Lopes da Silva (eds.) Electroencephalography: basic principles, clinical applications and related fields, 4th edition, Williams and Wilkins, Baltimore, MD, 958-967, 1999
Zadeh L. A., The Role of Fuzzy Logic in Modeling, Identification and Control, Modeling, Identification and Control, 15(3):191-203, 1994 http://dx.doi.org/10.4173/mic.1994.3.9
Zadeh L. A., Fuzzy Logic and the Calculus of Fuzzy If-Then Rules, Proceedings of SYNAPSE'91, Tokyo, Japan, 1991
Zadeh L. A., Toward extended fuzzy logic-A first step, Fuzzy Sets and Systems, 160: 3175- 3181, 2009 http://dx.doi.org/10.1016/j.fss.2009.04.009
***, MATLAB, User Guide, MathWorks, 2008
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.