Group Decision Making with Incomplete Interval-valued Fuzzy Preference Relations Based on the Minimum Operator
Keywords:
fuzzy preference relation, interval-valued fuzzy preference relation, incomplete interval-valued fuzzy preference relation, min-consistency, group decision making.Abstract
This paper presents a new method to estimate the unknown values in incomplete interval-valued fuzzy preference relations (IVFPRs). The method is based on the min-consistency and is used to develop the algorithm for group decision making (GDM) dealing with incomplete IVFPRs.References
S. Alonso, F. Chiclana, F. Herrera, E. Herrera-Viedma, J. Alcala-Fdez, C. Porcel (2008); A Consistency-based Procedure to Estimate Missing Pairwise Preference Values, International Journal of Intelligent Systems, 23 (1): 155-175.
F. Chiclana, F. Herrera, E. Herrera-Viedma (2001); Multiperson Decision Making Based on Multiplicative Preference Relations, European J. of Operational Research, 129: 372 385. http://dx.doi.org/10.1016/S0377-2217(99)00197-6
F. Chiclana, E. Herrera-Viedma, S. Alonso, F. Herrera; A Note on the Estimation of Missing Pairwise Preference Values: A U-consistency Based Method, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 16: 19-32. http://dx.doi.org/10.1142/S0218488508005467
C. Cornelis, G.Deschrijver, E. Kerre (2004);
Implication in Intuitionistic Fuzzy and Interval-valued Fuzzy Set Theory: Construction, Classification and Application, International Journal of Approximate Reasoning, 35(1): 55-95.
M. Fedrizzi, G. Silvio (2007); Incomplete Pairwise Comparison and Consistency Optimization, European J. of Operational Research, 183: 303-313. http://dx.doi.org/10.1016/j.ejor.2006.09.065
J. Fodor, M. Roubens (1994); Fuzzy Preference Modelling and Multicriteria Decision Support, Dordrecht: Kluwer Academic Publishers.
F. Herrera, L. MartÃze, P. J. Sánchez (2005); Managing Non-homogeneous Information in Group Decision Making, European Journal of Operational Research, 166: 115-132. http://dx.doi.org/10.1016/j.ejor.2003.11.031
Y. Jiang (2007); An Approach to Group Decision Making Based on Interval Fuzzy Preference Relations, Journal of Systems Science and Systems Engineering, 16(1): 113-120. http://dx.doi.org/10.1007/s11518-006-5026-2
E. P. Klement, R. Mesiar, E. Pap (2000); Triangular Norms, Kluwer Academic, Dordrecht.
H. S. Lee, M. T. Chou, H. H. Fang, W. K. Tseng, C. H. Yeh; Estimating Missing Values in Incomplete Additive Fuzzy Preference Relations. In B. Apolloni (Ed.), KES 2007/WIRN 2007, LNAI 4693 : 1307-1314. http://dx.doi.org/10.1007/978-3-540-74827-4_163
L. W. Lee (2012); Group Decision Making with Incomplete Fuzzy Preference Relations Based on the Additive Consistency and the Order Consistency, Expert Systems with Applications, 39: 11666- 11676. http://dx.doi.org/10.1016/j.eswa.2012.04.043
R. E. Moore (1979); Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathematics, 2. http://dx.doi.org/10.1137/1.9781611970906
S. Orlovsky (1978); Decision-making with a Fuzzy Preference Relation, Fuzzy Sets and Systems, 1: 155 167. http://dx.doi.org/10.1016/0165-0114(78)90001-5
T. L. Saaty; The Analytic Hierarchy Process. McGraw-Hill, New York, (1980).
T. Tanino (1984); Fuzzy Preference Orderings in Group Decision Making, Fuzzy Sets and Systems, 12 (2): 117-131. http://dx.doi.org/10.1016/0165-0114(84)90032-0
T. Tanino (1988); Fuzzy Preference Relations in Group Decision Making, in Non-Conventional Preference Relations in Decision Making, eds. J. Kacprzyk and M. Roubens (Springer-Verlag, 1988): 54-71. http://dx.doi.org/10.1007/978-3-642-51711-2_4
Y. M. Wang, Z. P. Fan (2007); Fuzzy Preference Relations: Aggregation and Weight Determination, Computers & Industrial Engineering, 53: 163-172. http://dx.doi.org/10.1016/j.cie.2007.05.001
Z. S. Xu (2004); On Compatibility of Interval Fuzzy Preference Relations, Fuzzy Optimization and Decision Making, 3: 217-225. http://dx.doi.org/10.1023/B:FODM.0000036864.33950.1b
Z. S. Xu (2004); Goal Programming Models for Obtaining the Priority Vector of Incomplete Fuzzy Preference Relation, International J. of Approximate Reasoning, 36 (3): 261-270. http://dx.doi.org/10.1016/j.ijar.2003.10.011
Z. S. Xu, J. Chen (2008); Some Methods for Deriving the Priority Weights from Interval Fuzzy Preference Relations, European J. of Operational Research, 184: 266-280. http://dx.doi.org/10.1016/j.ejor.2006.11.011
Z. S. Xu, Q. L. Da (2002); The Uncertain OWA Operator, International Journal of Intelligent Systems, 17: 569-575. http://dx.doi.org/10.1002/int.10038
Y. J. Xu, Q. L. Da, H. M. Wang (2010); A Note on Group Decision-making Procedure Based on Incomplete Reciprocal Relations, Soft Computing, 15 (7): 1289-1300. http://dx.doi.org/10.1007/s00500-010-0662-3
Y. Xu, K. W. Li, H. Wang (2014); Incomplete Interval Fuzzy Preference Relations and their Applications, Computers & Industrial Engineering, 67: 93-103. http://dx.doi.org/10.1016/j.cie.2013.10.010
Y. J. Xu, R. Patnayakuni, H. M. Wang (2013);
Logarithmic Least Squares Method to Priority for Group Decision Making with Incomplete Fuzzy Preference Relations, Applied Mathematical Modelling, 37 (4): 2139-2152. http://dx.doi.org/10.1016/j.apm.2012.05.010
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.