GLM Analysis for fMRI using Connex Array

Authors

  • Andrei Å¢ugui Politehnica University of BucureÅŸti Romania, 061071 BucureÅŸti, Splaiul Independenţei, 313

Keywords:

Connex Array, Functional magnetic resonance imaging, Image reconstruction, Parallel algorithms, Parallel processing

Abstract

In the last decades, magnetic resonance imaging gained lot of popularity, and also functional magnetic resonance imaging (fMRI), due to the fact that MRI is a harmless and efficient technique for human cerebral activity studies; fMRI aims to determine and to locate different brain activities when the subject is doing a predetermined task. In addition, using fMRI analysis, nowadays we can make prediction on several diseases. This paper’s purpose is to describe the General Linear Model for fMRI statistical analysis algorithm, for a 64 x 64 x 22 voxels dataset on a revolutionary parallel computing machine, Connex Array. We make a  comparison to other computing machines used in the same purpose, in terms of algorithm time execution (statistical analysis speed). We will show that by taking advantage on its specific parallel computation each step in GLM analysis, Connex Array is able to answer successfully to computational challenge launched by fMRI computation: the
speed-up.

References

Tong, S.; Alessio, A.M. (2010); Noise properties in PSF—based fully—3D PET image reconstruction: an experimental evaluation, Physics in Medicine and Biology, 55: 1453—1473. http://dx.doi.org/10.1088/0031-9155/55/5/013

Chen, C.M.; Lee, S.Y. (1990); A parallel implementation of 3—D CT Image reconstruction on hypercube multiprocessor, IEEE Transactions on Nuclear Science, 37(3): 1333-1346. http://dx.doi.org/10.1109/23.57385

Nishimoto, S.; Vu, A.T.; Naselaris, Th.; Benjamini, Y.; Yu, B.; Gallant, J.L. (2011); Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies, Current Biology 21, 1641—1646.

Holland, D.; Liu, J.; Song, C.; Mazerolle, X. et al. (2013); Compressed sensing reconstruction improves sensitivity of variable density spiral fMRI, Magnetic Resonance in Medicine, 70.

Lindquist, M.A. (2008); The Statistical Analysis of fMRI Data, Statistical Science, 23(4): 439—464. http://dx.doi.org/10.1214/09-STS282

Cohen, M.S. (2001); Real—Time Functional Magnetic Resonance Imaging, Methods, 25(2): 201—220. http://dx.doi.org/10.1006/meth.2001.1235

Bernstein, M.A.; King, K.F.; Zhou, X.J. (2004); Handbook of MRI Pulse Sequences, Elsevier Academic Press.

http://v04.pymvpa.org/examples.html

Maliţa, M.; Åžtefan, Gh. M. (2010); Many-processors & KLEENE's model, UPB Scientific Bulletin Series C, 72.

Ştefan, Gh. M. (2010); Integral Parallel Architecture In System—On—Chip Designs, The 6th International Workshop on Unique Chips and Systems, Atlanta, USA, 23—26. http://www.arh.pub.ro/gstefan/2010ucas.pdf

Mîţu, B. (2008); C Language Extension for Parallel Processing. http://arh.pub.ro/gstefan/VectorC.ppt

Cooley, J.W.; Tuckey, J.W. (1965); An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Computation, JSTOR Mathematic of Computation, 19(90):297-309.

Å¢ugui, A. (2012); FFT Parallel Implementation for MRI Image Reconstruction, U.P.B. Scientific Bulletin Series C, 74: 229-244.

Eklund, A.; Anderson, M.; Knutsson, H. (2012); fMRI Analysis on the GPU Possibilities and Challenges, Computer Methods and Programs in Biomedicine, 145—161. http://dx.doi.org/10.1016/j.cmpb.2011.07.007

Ţugui, A. (2013); Fixed—point real time MRI reconstruction using Connex Array, Proceedings of the Romanian Academy Series A, 14(3): 255—258. http://www.acad.ro/sectii2002/proceedings/doc2013-3/11-Tugui.pdf

Eklund, A.; Andresson, M.; Knutsson, H. (2010); Phase based volume registration using CUDA, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Dallas, USA, 658—661.

Calfa, A.M.; Ştefan, Gh. M. (2010); Matrix Computation on Connex Parallel Architecture, ICES 2010 —The International Conference on Signals and Electronic Systems, Gliwice, Poland, 375—378.

Friman, O.; Borga, M.; Lundberg, P.; Knutsson, H. (2004); Detection and detrending in fMRI data analysis, NeuroImage, 22(2): 645—655. http://dx.doi.org/10.1016/j.neuroimage.2004.01.033

Tanabe, J.; Miller, D.; Tregellas, J.; Freedman, R.; Meyer, F.G. (2002); Comparison of Detrending Methods for Optimal fMRI Preprocessing, NeuroImage, 15(4): 902—907. http://dx.doi.org/10.1006/nimg.2002.1053

Poldrack, R.H.; Mumford, J.A. (2011); Handbook of Functional MRI Data Analysis, Cambridge University Press, New York, USA.

Published

2014-12-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.