Fuzzy Control Design for a Class of Nonlinear Network Control System: Helicopter Case Study

Authors

  • P. Quiñones-Reyes Instituto Tecnológico de Jiquilpan Carr. Nac., S/N Km. 202, CP 59510, Jiquilpan, Michoací¡n, México.
  • J. Ortega-Arjona Universidad Nacional Autónoma de México Apdo. Postal 20-726, Admón. 20, Del. A. Obregón, México D. F., CP. 01000
  • E. Méndez-Monroy Universidad Nacional Autónoma de México Apdo. Postal 20-726, Admón. 20, Del. A. Obregón, México D. F., CP. 01000
  • H. Bení­tez-Pérez Universidad Nacional Autónoma de México Apdo. Postal 20-726, Admón. 20, Del. A. Obregón, México D. F., CP. 01000.
  • A. Durí¡n-Chavesti Universidad Nacional Autónoma de México Apdo. Postal 20-726, Admón. 20, Del. A. Obregón, México D. F., CP. 01000

Keywords:

fuzzy control, networked control systems

Abstract

This paper presents a fuzzy control approach to a helicopter MIMO nonlinear system, implemented on a Networked Control System, as case study. For this, a hardware-in-the-Loop implementation is developed using several multi-channel A/D Cards, integrated to a computer network system. Variant time delays are considered over Ethernet and CANBUS networks. Fuzzy logic is used to deal with the complexity of the integrated computer network as well as with the dynamics of the system. Two fuzzy logic control systems are coupled for both signals of the helicopter case study: yaw and pitch. Both these tend to concentrate around desired references, considering variant time delays.

References

J. Abonyi, Fuzzy Model Identification for Control, BirkhÄżËuser, 2003 http://dx.doi.org/10.1007/978-1-4612-0027-7

L. Almeida, P. Pedreiras and J. A.-Fonseca, The FTT-CAN Protocol: Why and How, IEEE ransactions on Industrial Electronics, 49(6):1189-1201, 2002

H. Benítez-Pérez and F. García-Nocetti, Switching Fuzzy Logic Control for a Reconfigurable ystem Considering Communication Time Delays, Proceedings, CDROM, European Control onference, ECC 03 September, 2003

H. Benítez-Pérez and F. García-Nocetti, Reconfigurable Distributed Control, Springer Verlag, 005

H. Benítez-Pérez, Real-Time Distributed Control A Diverse Approach for Nonlinear Problem, onlinear Analysis: Hybrid Systems and Applications, doi:10.1016/j.nahs.2006.06.004, ol 2/2 pp 474-490, Junio 2008 http://dx.doi.org/10.1016/j.nahs.2006.06.004

H. Benítez-Pérez, J. S.-Gonzalez, F. C.-Flores and F. García-Nocetti, Fault Classification for Class of Time Variable Systems by using a group of three ART2 Networks, International ournal Control and Intelligent Systems, DOI: 10.2316/Journal.201.2008.1.201-1820, Vol 36, o. 1, 2008 http://dx.doi.org/10.2316/Journal.201.2008.1.201-1820

M. Blanke, M. Kinnaert, J. Lunze and M. Staroswiecki, Diagnosis and Fault Tolerant Control, pringer, 2003

A. Cervin, D. Henriksson, B. Lincoln, J. Eker and K. Arzén, How Does Control Timing ffect Performance?, IEEE Control Systems Magazine, Vol. 23, pp. 16-30, 2003 http://dx.doi.org/10.1109/MCS.2003.1200240

T. Frank, K. F.-Kraiss and T. Kuhlen, Comparative Analysis of Fuzzy ART and ART-2A etwork Clustering Performance, IEEE Transactions on Neural Networks, Vol. 9, No. 3, ay 1998

D. Hanselman and B. littlefield, Mastering MATLAB, Prentice Hall, 2002

R. I.-Zamanabadi and M. Blanke, A Ship Propulsion System as a Benchmark for Fault- olerant Control, Control Engineering Practice, Vol. 7, pp. 227-239, 1999 http://dx.doi.org/10.1016/S0967-0661(98)00149-X

J. Jiang, and Q. Zhao, Reconfigurable Control Based on Imprecise Fault Identification, roocedings of the American Control Conference, IEEE, pp. 114-118, San Diego, June, 1999

F. Lian, J. Moyne and D. Tilbury, Network Design Consideration for Distributed Control ystems, IEEE Transactions on Control Systems Technology, Vol. 10, No. 2, pp. 297-307, arch 2002

L. Liu, Real-time Systems, Wiley, 2002

Menendez L. de C. A. and H. Benítez-Pérez, Node Availability for Distributed Systems onsidering processor and RAM utilization Based upon a Local Optimization Procedure, NT J COMPUT COMMUN, ISSN 1841-9836, 5(3):336-350, 2010

J. Nilsson, Real-Time Control with Delays, PhD. Thesis, Department of Automatic Control, und Institute of Technology, Sweden, 1998.

H. Thompson, Wireless and Internet Communications Technologies for monitoring and Control, ontrol Engineering Practice, vol. 12, pp. 781-791, 2004

D. Driankov, H. Hellendoorn and M. Reinfrank, An Introduction to Fuzzy Logic Control, pringer-Verlag, 1994

L. Zhang, Y. Shi, T. Chen and B. Huang, A New Method for Stabilization of Networked ontrol Systems with Random Delays, American Control Conference, pp. 633-637, 2005

D. Kim, D. Choi and P. Mohapatra, Real-Time Scheduling method for Networked Discrete ontrol Systems, Control Engineering Practice, Vol 17, pp: 564-570, 2009 http://dx.doi.org/10.1016/j.conengprac.2008.10.006

http://www.quanser.com/english/html/solutions/s_soln_software_wincon.html

Zmaranda D., Gabor G., Popescu D.E., Vancea C., Vancea F., Using Fixed Priority Preemptive cheduling in Real-Time Systems, INT J COMPUT COMMUN, ISSN 1841-9836, (1):187-195, 2011

Dai L., Chang Y., Shen Z.,An Optimal Task Scheduling Algorithm in Wireless Sensor Networks, NT J COMPUT COMMUN, ISSN 1841-9836, 6(1):101-112, 2011

Negoita C.V., Remembering the Beginnings, INT J COMPUT COMMUN, ISSN 1841-9836, (3):458-461, 2011

Nyirenda C.N., Dong F., Hirota K., Distance Based Triggering and Dynamic Sampling Rate stimation for Fuzzy Systems in Communication Networks, INT J COMPUT COMMUN, SSN 1841-9836, 6(3):462-472, 2011

Published

2014-09-20

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.