Use of Reconfigurable IM Regions to Suppress Propagation and Polarization Dependent Losses in a MMI Switch
Keywords:
Selfimages in MMI waveguides, Reconfigurable IM regions, I.L. and E.L., CT levelsAbstract
With this work, use of reconfigurable index modulated (IM) regions to accelerate the performance of a multimode interference (MMI) based photonic switch is presented. Appropriate dimension for such regions are defined to suppress the transition losses and to optimize the area coverage. It has been noticed that by reconfiguring the IM regions, perfect switching for test wavelengths of 1.3μ m and 1.55μ m with low insertion loss (I.L.) levels, ≤ 1.2dB and excess loss (E.L.) levels, ≤ 0.17dB can be achieved with vacillation of extremely low polarization dependent losses (PDLs), which are ≤ 0.15dB. For either case of input test wavelengths, generated crosstalk (CT) levels are found better than -21.8dB for TE and -20.2dB for TM polarization state.
References
S. Kumai, T. Ishikawa, A. Okazaki, K. Utaka, et al., High-speed optical switching of InAl- GaAs/InAlAs multimode interference photonic switch with partial index-modulation region (MIPS-P), IEICE Electron. Express, 2(23):578-582, 2005. http://dx.doi.org/10.1587/elex.2.578
Z. Jin, G. Peng, Designing optical switches based on silica MMI devices, Progress in Electromagnetic Research Symposium, Hangzhou, China, pp. 58-61, August 22-26, 2005.
X. Wu, L. Liu, Y. Zhang, et al., Low electric power drived thermo-optic MMI-switches with tapered heating electrodes, Optics Communications, 258: 135-143, 2006. http://dx.doi.org/10.1016/j.optcom.2005.07.070
X.Q. Sun, C.M. Chen, et al., A MMI polymer-silica hybrid waveguide 2×2 thermo-optic switch, Optica Applicata, vol. xl, no. 3, 2010.
L. Cahill, The modeling of MMI devices, Proc. ICTON, ieeexplorer, vol. 2, pp. 138-141, Nottingham, U.K., June, 2006.
P. P. Sahu, A tapered structure for compact MMI-coupler, IEEE Photon. Technol. Lett., 20(8):638-640, April 15th, 2008. http://dx.doi.org/10.1109/LPT.2008.918906
K. Solehmainen, M. Kapulainen, M. Harjanne, T. Aalto, Adiabatic and MMI-couplers on SOI, IEEE Photon. Technol. Lett., 18(21), Nov. 1st, 2006.
A. M. Al hetar, A. S. M. Supaat, A. B. Mohammad, I. Yulianti, MMI photonic switches, Optical Engineering, 47(11), 112001, Nov., 2008.
A. M. Al-Hetar, A. B. Mohammad et al., MI-MZI polymer thermo-optic switch with a high refractive index contrast, Journal of Lightwave Technology, 29(2):171-178, January 15th, 2011. http://dx.doi.org/10.1109/JLT.2010.2098473
L. B. Soldano, E. C. M. Pennings, Optical multimode interference devices based on selfimaging: Principles and applications, Journal of Lightwave Tech., 13(4):615-627, 1995. http://dx.doi.org/10.1109/50.372474
R. Ulrich, Image formation by phase coincidences in optical waveguides, Opt. Comm., 13:259-264, 1975. http://dx.doi.org/10.1016/0030-4018(75)90095-4
S. Nagai, G. Morishima, H. Inayoshi, K. Utaka, Multimode Interference Photonic Switches (MIPS), Journal of Lightwave Technology, 20(4):675-681, April, 2002. http://dx.doi.org/10.1109/50.996588
Z. Jin, G. Peng, Designing optical switches based on silica MMI devices, Proc. of progress in Electromagnetic Research Symposium, Hangzhou, China, pp. 58-61, August 22-26, 2005.
F. Wang, J. Yang, L. Chen, X. Jiang, M. Wang, Optical switch based on MMI-coupler, IEEE Photon. Technol. Lett., 18 (2):421-423, 2006. http://dx.doi.org/10.1109/LPT.2005.863201
D. A. M. Arrioja, N. Bickel, P. Likamwa, Robust 2×2 MMI optical switch, Optical and Quantum Electronics, 38:557-566, 2006.
Published
Issue
Section
License
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.