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Abstract:
Control-theoretic approaches to Active Queue Management (AQM) are typically
based on linearizations of fluid flow models around design conditions. These con-
ditions depend on the Round Trip Time (RTT), and the AQM performance is known
to degrade if RTT values during actual operation depart substantially from design
values. To overcome this difficulty a self-scheduled LPV controller for AQM is con-
sidered in this paper, where the controller is modified in real-time based on RTT.
Simulations show that the self-scheduled LPV controller has good performance for
both constant and time-varying RTTs, and outperforms two other common control-
theoretic approaches to AQM.
Keywords: AQM, congestion control, control theory, fluid model, LPV systems,
self-scheduled controller

1 Introduction

Congestion is one of the most important problems faced in communications networks. Con-
gestion occurs when a link or node is carrying so much data that its quality of service deteriorates.
This results in queueing delay, packet loss or the blocking of new connections, leading to low
throughput and eventually to congestion collapse. On the other hand, links carrying less data
than a certain level are also not desired as this implies that the link capacities are being under-
utilized [1]. Modern networks try to avoid these situations using congestion control techniques,
among which Active Queue Management (AQM) is of particular interest. AQM operates by
dropping or ECN-marking packets before the queue is full, according to a probabilistic rule.
Earlier AQM disciplines such as RED [2] and REM [3] required careful tuning of parameters in
order to provide good performance, while modern AQM disciplines such as ARED [4] and Blue [5]
are self-tuning. With the development of dynamical models such as the fluid flow model in [6],
control theoretic approaches for AQM have gained interest, including PI/PID controllers [7, 8]
and robust H∞ controllers [9–11]. These are based on the linearization of the fluid model, which
produces a transfer function from probability of package mark p to queue length q. One difficulty
is that the transfer function is valid only for a given Round Trip Time (RTT), and a new transfer
function must be obtained for a different RTT. In [12] switching between multiple controllers
designed for different RTTs is considered and it is seen that higher number of controllers results
in improved performance. However, if the number of controllers is too high, the implementation
becomes very difficult and complicated. In addition, since RTT takes values on an interval, de-
signing a controller for each RTT value requires an infinite number of controllers. In this paper a
self-scheduled control design for AQM is considered to overcome these difficulties. The controller
is parameterized in RTT and achieves stability and small tracking error for both fixed RTT as
well as time varying RTT within a prescribed range.

Copyright © 2006-2013 by CCC Publications



Active Queue Management of TCP Flows with Self-scheduled Linear Parameter Varying
Controllers 839

2 Mathematical Model of TCP/AQM

A dynamical model for TCP congestion control was developed in [6] using fluid flow approxi-
mation. The dynamical model represents a bottleneck with multiple TCP flows sharing the link.
The congestion avoidance is modeled as AIMD (additive-increase multiplicative-decrease). The
dynamical model consists of the following nonlinear time-delayed differential equations

Ẇ (t) =
1

θ(t)
− W (t)

2

W (t− θ(t))

θ(t− θ(t))
p(t− θ(t)) (1)

q̇(t) =
N(t)

θ(t)
W (t)− C(t) for q(t) > 0 (2)

where W is the TCP window size, q is the queue length, N is the number of TCP flows, C is the
link capacity, p is the probability of packet mark and θ is the RTT. Let C and N be constants for
simplicity. The nonlinear system (1)-(2) can be linearized around an operating point to generate
a transfer function from p to q. Let δp := p(t)− po and δq := q(t)− qo where qo and po are the
values at the operating point. Then a transfer function from δp to δq can be obtained as [6]

δQ(s)

δP (s)
=

(C3θ3N)e−θs

2N2θ3Cs2 + (2N2Cθ2 + 4N3θ)s+ 4N3
(3)

where θ is regarded as a parameter. One then has a different transfer function for each value of
the RTT in the range [θmin, θmax], where θmin and θmax are the minimum and maximum values
of RTT for the link.

3 Controller Design

The controller must achieve stability of the closed-loop system and the tracking of a desired
queue length, under the presence of constant or time-varying RTT within the specified range.1

A parameter dependent dynamic controller of the following form will be sought

ζ̇ = AK(θ)ζ +BK(θ)e

δp = CK(θ)ζ +DK(θ)e (4)

where ζ is the controller’s internal state and e := δqd − δq is the error between the desired and
the actual queue sizes. A systematic method for the selection of the controller matrices AK , BK ,
CK and DK in (4) was derived in [13]. For this purpose the system to be controlled, i.e. (3),
must be transformed into affine-parameter dependent form. Approximating the time delay e−θs

in (3) with a second order Pade approximation

e−θs ≈ 12−6 θ s+θ2s2

12+6 θ s+θ2s2
(5)

and transforming into state space form yields

ẋ =AP (θ)x+BP (θ)δp (6)
δq =CP (θ)x (7)

1Under ideal operation, RTT will be small for small queue size. However no such assumption will be made
here, since unexpected changes in link conditions (e.g. increased propagation delay) can create longer RTTs even
at smaller queue lengths. Thus, the controller is expected to be prepared for any RTT at any queue size (within
the limits allowed).
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where

AP (θ) =


0 1 0 0

0 0 1 0

0 0 0 1

−a3 −a2 −a1 −a0

 , (8)

BP (θ) =
[
0 0 0 1

]T
, (9)

CP (θ) =
[
b2 b1 b0 0

]
(10)

and

a0 =7θ−1 + 2N
C θ−2, a1 =

14N
C θ−3 + 18θ−2,

a2 =12θ−3 + 36N
C θ−4, a3 =

24N
C θ−5,

b0 =
C2

2N , b1 =
−3C2

N θ−1, b2 =
6C2

N θ−2 .

Letting Θ := θ−1, and performing a series expansion around point Θ = Θo, one can write AP ,
BP , CP in terms of Θ as

AP (Θ) = AP0 +AP1Θ+O(Θ2) (11)

BP (Θ) = BP0 +BP1Θ+O(Θ2) (12)

CP (Θ) = CP0 + CP1Θ+O(Θ2) (13)

where AP0 has the same structure as in (8) but with

a0 =
−2NΘo

2

C , a1 =
−28NΘo

3

C − 18Θo
2,

a2 =
−108NΘo

4

C − 24Θo
3, a3 =

−96NΘo
5

C ,

AP1 has the same structure as in (8) but with

a0 =
4NΘo

C + 7, a1 =
42NΘo

2

C + 36Θo,

a2 =
144NΘo

3

C + 36Θo
2, a3 =

120NΘo
4

C ,

BP0 is equal to BP in (9), BP1 is zero, CP0 has the same structure as in (10) but with

b0 =
C2

2N , b1 = 0, b2 =
−6C2Θo

2

N

and CP1 has the same structure as in (10) but with

b0 =0, b1 =
−3C2

N , b2 =
12C2Θo

N .

Approximating AP , BP and CP with the constant and linear terms in (11)-(13) produces an
affine parameter dependent state space system (in Θ) as desired. Self-scheduled controller design
methods [13] can then be used to design the parameter dependent controller in (4) to meet the
desired control objectives. The performance objective is to have a fast and well-damped response
over the entire range of parameter values for step-like references. The control law is also required
to achieve robustness by avoiding high-gain feedback at high-frequencies. This will prevent the
excitation of high frequency modes and nonlinearities that were unmodeled or neglected.

Consider the feedback control structure depicted in Figure 1. The control problem described
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Figure 1: Feedback control structure for AQM

above can be formulated as the minimization of the L2-induced norm of the operator mapping
the signal δqd to signals e and δp. The former map is the called the sensitivity function and
denoted by S, and the latter map is denoted by KS. Following standard H∞ design procedure,
the performance objective and robustness objectives are specified through weighting filters W1(s)
and W2(s), where W1(s) = 1/s for good tracking of step-like references, and W2(s) is a third
order high pass Butterworth filter. This yields to an H∞ optimization problem where the goal
is to find a stabilizing controller K for which the inequality∥∥∥∥∥

[
W1(s)S(s)

W2(s)K(s)S(s)

]∥∥∥∥∥
∞

≤ γ (14)

can be satisfied with γ in R+ as small as possible. Let Acl, Bcl, Ccl and Dcl be the state-space
matrices corresponsing to the one-input two-output system defined by the transfer function
matrix [W1S, W2KS]

T . An LPV controller satisfying (14) can be synthesized and implemented
as follows [13]

1. Find a matrix Xcl > 0, and controller matrices AKi, BKi, CKi, DKi so that Acl(Θi)
TXcl +XclAcl(Θi) XclBcl(Θi) CT

cl(Θi)

BT
cl(Θi)Xcl −γI DT

cl(Θi)

Ccl(Θi) Dcl(Θi) −γI


is negative-definite for i = 1, 2, where Θ1 = θ−1

min and Θ2 = θ−1
max.

2. For a given value of Θ = θ−1, compute the matrices AK(Θ), BK(Θ), CK(Θ) and DK(Θ)
defining the LPV controller as[

AK(Θ) BK(Θ)

CK(Θ) DK(Θ)

]
=

2∑
i=1

αi(Θ)

[
AKi BKi

CKi DKi

]

where (α1, α2) is a convex decomposition of Θ such that Θ = α1Θ1+α2Θ2 and α1+α2 = 1.

4 Simulation Results

The performance of the closed-loop system with the LPV controller is tested using MAT-
LAB/Simulink and discrete event simulations.2 The number of TCP flows is taken to beN = 150,
the link capacity C = 500 packets/sec, the desired queue size qo = 150 packets, and the buffer

2The results from both were consistent so only those from the former are shown for better presentation and
to save space.
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Figure 2: Simulation results for AQM based on PID (top), switching H∞ (middle) and LPV
controllers (bottom), for 15 fixed values of RTT.

size qmax = 200 packets. The RTT is assumed to take values between 0.3 secs and 0.7 secs.
The controller design as outlined in Section 3 is carried out with the help of MATLAB Robust
Control Toolbox.

Figure 2 shows the simulation results for 15 fixed values of RTT, linearly equally spaced
between 0.3 and 0.7. Two other common control-theoretic approaches to AQM design are also
implemented for comparison: a PID controller, and a switched H∞ controller. After subsequent
trials, the best results that could be obtained with the PID controller were those based on
a linearization around RTT = 0.6. The switched H∞ controller is based on two operating
points RTT1 and RTT2, the best results for which were obtained when RTT1 = 0.4320 and
RTT2 = 0.6080. The simulations illustrate that all controllers eventually succeed in achieving
and maintaining the desired queue size of 150 packets. However, the LPV controller response is
faster, with less overshoot and better damping over the entire parameter range.

The controllers were also tested for the case when RTT is time varying. The PID controller
and the switched controller did not produce a stable closed-loop so these responses are not shown.
The result for the LPV controller is shown in Figure 3. The top subfigure shows the variation in
RTT versus time, which is a sinusoid with increasing frequency taking values between 0.3 and
0.7.3 The bottom subfigure shows the response of the closed-loop system. It can be observed
that the LPV controller produces a stable closed-loop and is capable of maintaining the queue
size very close to the desired value, even when RTT is time varying.

3Different cases for the variation of RTT were also tested with successful results, including square, triangle and
sawtooth waveforms, as well as the case where RTT varies randomly according to various probability densities.
However, only one case is shown in the paper to save space.



Active Queue Management of TCP Flows with Self-scheduled Linear Parameter Varying
Controllers 843

0 20 40 60 80 100

0.4

0.5

0.6

0.7

R
T

T
 (

se
cs

)

0 20 40 60 80 100
0

50

100

150

200

Time (secs)

Q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Figure 3: Simulation results for AQM based on LPV, for a time-varying RTT.

5 Conclusions

In this paper self-scheduled LPV control design was implemented for AQM. The controller
design is based on a fluid flow approximation of TCP congestion control and utilizes RTT as
the scheduling parameter. Simulations "were carried out to evaluate the closed-loop system in
its ability to keep the queue length at a desired level. Two other control-theoretic approaches
to AQM, namely PID control and switching H∞ control, were also implemented for comparison.
When RTT is constant, it was seen that the LPV controller outperforms the other two, producing
a faster and better damped response with lesser overshoot over the entire parameter range. When
RTT is time varying, the LPV controller is still capable of maintaining the desired queue size,
whereas the PID and switching controllers do not produce a stable closed-loop.
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