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Abstract: This paper proposes a novel detection engine, called the Wavelet-
Recurrence-Clustering (WRC) detection model, to study the network anomaly detec-
tion problem that is widely attractive in Internet security area. The WRC model first
applies the wavelet transform and recurrence analysis to calculate the multi-scale dy-
namic characteristics of network traffic, and then identifies network anomalies through
the clustering algorithm with those dynamic characteristics. The evaluation results on
DARPA 1999 dataset indicate that the WRC detection model can effectively improve
the detection accuracy with a low false alarm rate.
Keywords: network anomaly detection, multi-scale dynamic characteristics, recur-
rence analysis, WRC detection model.

1 Introduction

Currently, Internet suffers from a large number of different hacker attacks and threats fre-
quently. In most cases, the hacking attacks cause anomalous traffic behaviors. Thus, how to
accurately detect network anomalies by analyzing traffic behaviors becomes attractive in recent
years. The basic idea of anomaly detection approaches is building the behavior profile of normal
traffic and then identifying the observation of traffic as anomalous when it deviates from the nor-
mal profile. These methods can be basically categorized into the following two aspects. The first
common approach to detection network anomalies is to establish normal traffic profiles with time
series analysis, and then to identify the statistical observation of traffic as normal or anomaly,
based on the deviation between the observation and the prediction value. Some traditional time
series analysis for detecting anomalies, such as exponential smoothing and the auto-regressive
process, were utilized in [1], [2]. These time series methods all require traffic series to be station-
ary. However, many prior studies indicated that traffic series are actually non-stationary and
showed some nonlinear dynamic characteristics, such as self-similar, long range dependence and
recurrence [3], [4]. Thus, statistical detection approaches by the use of traditional time series
analysis may not be effective any more.

The other conventional approach for detecting network anomalies is built upon the machine
learning theory. Based on statistical observations of traffic, such as the average packet size, the
flow duration and the flow size, we can design and train effective classifiers to identify malicious
traffic behaviors [5]- [7]. While these approaches do have a fast detection speed, they still have
some problems, so that they are unreliable and may have high false alarm rates. For example,
traffic statistical behaviors of the training dataset could be dissimilar to that of the testing
dataset [8]. Also, traffic statistical observations have certain randomness and may vary along
with network scales and application environments.

As the application of the two types of approaches above are both limited to some special
scenarios, how to build new detection models especially with novel analysis tools is to effectively
detect network anomalies with high detection accuracy and low false alarm rate, is definitely
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of interest to researchers and engineers working in this area. Before trying to propose a new
detection model, let us look into the network traffic again to see if there is any new essential
element that can be a hammer onto the nail. As a matter of fact, there are two important
properties of the network traffic – the multi-scale property and the recurrence property. Since
our work is motivated by these two properties, let us have a brief review on them.

1) Multi-scale property: the network traffic has different statistical behaviors at different
time scales, i.e. during long time intervals observations show stable and periodic changes, while
during short time intervals they are random and fluctuate sharply. Moreover, the prior study
in [9] also indicated that different types of network attacks exist in different time scales. Thus,
the multi-scale property of the network traffic is essentially important and should raise attention.

2) Recurrence property: the network traffic system is a complex dynamic system that
exhibits some nonlinear and intrinsic features, such as recurrence. Recurrence is a fundamental
property of dynamic systems, which indicates intrinsic evolution regularities of traffic states.
Compared with statistical observations of traffic, recurrence patterns of traffic states are inherent
and uninfluenced by network scales and application environments.

In this paper, we propose a novel model, called the Wavelet-Recurrence-Clustering (WRC)
detection model, to detect network anomalies. To address the first property, we apply the
wavelet transform to analyze the network traffic at different time scales respectively, to build the
accurate traffic profile and highlight local and random variations of traffic behaviors. To address
the second property, we calculate the dynamic characteristics of the network traffic at different
frequencies, to reveal non-stationary transition patterns caused by anomalous events, based on
the recurrence analysis. Our WRC detection model incorporates both these two properties.

The main contributions of this paper are summarized as follows. (1) a nonlinear analysis
method to calculate the multi-scale dynamic characteristics of network traffic by employing the
wavelet transform and the recurrence analysis; (2) a detection model for identifying network
anomalies based on dynamic characteristics; (3) evaluations and comparisons of the WRC de-
tection model with traditional detection methods on DARPA 1999 dataset.

The rest of this paper is organized as follows. Section 2 overviews the WRC detection model.
In Section 3, the implementation of the WRC model is illustrated in detail. Section 4 shows
experiments to evaluate the performance of the WRC model. Section 5 concludes our work.

2 WRC detection model

As shown in Fig. 1, our WRC detection model consists of two components, i.e., the dynamic
characteristic extraction module and the anomaly identification module. In this section, we
illustrate each module in detail.

Figure 1: The Framework of WRC detection model
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2.1 Dynamic characteristic extraction module

Based on the recurrence property of network traffic states, we propose a multi-scale recur-
rence characteristic extraction method. First, the wavelet transform is used to decompose and
reconstruct the traffic at different frequencies, and then the recurrence analysis is employed to
calculate the dynamic characteristics of traffic, which can effectively highlight the non-stationary
transition patterns caused by malicious events and improve the performance of network anomaly
detection.

A. Multi-scale analysis

Wavelet transform [10] is a multi-scale analysis method. It has a good time-frequency resolu-
tion, i.e., gets the good frequency resolution at low frequencies and gets the good time resolution
at high frequencies, which can help us to capture the traffic behaviors at different time scales. In
this paper, we adopt the discrete wavelet transform (DWT) to reconstruct the traffic at different
frequencies. DWT is a multi-stage algorithm that decomposes traffic time series into a coarse
approximation and a series of detail information, which are used to reconstruct the traffic, by
employing a scaling function (low pass filters, LP) and a wavelet function (high pass filters, HP).

B. Recurrence analysis

Network traffic system is a dynamic system. The trajectory of traffic state shows recurrence
phenomena in the phase space. Recurrence is a fundamental property of dynamic systems, which
indicates the evolution regularities of the state trajectory, i.e., after a period time, the system
state is identical or similar to the former states and the evolution patterns are repeating. Thus,
based on this inherent property, our WRC detection model calculates the dynamic characteristics
of network traffic to accurately describe traffic behaviors and reveal the non-stationary transition
patterns.
1) Recurrence plot

In order to intuitively explore the recurrence phenomena, WRC detection model employs
recurrence plot (RP) [11] to visualize the recurrence property of traffic states in the high-
dimensional phase space into a two-dimensional plane.

Given a network traffic time series x = {xi}, i = 1, 2, ..., n, the traffic system state can be
expressed as follows:

Xj = [xj , xj+τ , ..., xj+(m+1)τ ] j = 1, 2, ..., N (1)

where m is the embedding dimension and τ is the time delay, N = n− (m−1)τ . After obtaining
traffic system states, we use RP to investigate the recurrence phenomena of traffic states. The
mathematical expression of RP is shown as follows:

Ri,j = Θ(ε− ∥Xi −Xj∥) j = 1, 2, ..., N (2)

where Ri,j is an element of the recurrence matrix, ε is the threshold, Xi is a system state in
the m-dimensional phase space, ∥ · ∥ is a norm, N is the number of states, Θ(·) is the Heaviside
function defined as :

Θ(y) =

{
0 y 6 0

1 y > 0
(3)

RP gives an intuitive description of the recurrence phenomena of traffic states in the phase
space. If the distance between the states Xi and Xj is smaller than ε, then the value of Ri,j

is 1 and there is a black dot at (i, j) in the RP; otherwise, the value of Ri,j is 0 and there is a
white dot at (i, j). Fig. 2 gives an example of RPs for the normal and anomalous traffic series.
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Compared with the normal traffic, the RP of the anomalous traffic exists wide white bands
obviously (non-stationary transition of states), which indicates some malicious events happened.
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Figure 2: The RPs of normal and anomalous traffic series

2) Recurrence quantification analysis
Recurrence quantification analysis (RQA) [12] is employed by our WRC detection model to

quantify the structure textures shown in RP to reveal the evolution patterns of traffic states.
The proper quantification variables studied are as follows.

(1) Recurrence Ratio (RR) is the percentage of recurrence points in the phase space, which
measures the density of recurrence points in RP. If dynamic systems are periodic, the value of
RR will be high.

RR =
1

N2

N∑
i,j=1

Ri,j (4)

where Ri,j is the recurrence point calculated by formula (2).
(2) Determinism (DET) is the ratio of recurrence points that form diagonal line structures

in RP to all recurrence points. It measures the determinism of traffic systems, i.e., it can tell us
how deterministic and predictable the system is. If the traffic system is periodical, the value of
DET will be high. That is because the period system states can form long diagonal lines.

DET =

∑N
l=lmin

lP (l)∑N
i,j=1Ri,j

(5)

where P (l) is the frequency distribution of diagonal line with length l. lmin is the minimal length
of diagonal lines.

(3) Entropy (ENT) is the Shannon entropy of the probability of diagonal line lengths. It
measures the complexity of traffic systems.

ENT = −
N∑

l=lmin

p(l) log2 p(l) (6)

where p(l) = P (l)∑N
l=lmin

P (l)
is the probability of frequency distribution of diagonal line l .

The dynamic characteristic extraction module calculates the above three quantification vari-
ables of network traffic at different frequencies, in order to form the feature vectors to reveal
the inherent traffic behaviors and discover the non-stationary transition caused by anomalous
events.
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2.2 Anomaly identification module

In our WRC detection model, a clustering algorithm, i.e., k-means [13] is employed to identify
normal and anomalous traffic based on the feature vectors obtained from the dynamic charac-
teristic extraction module. Detailed steps of k-means method for identifying anomalies are as
follows.

Step 1: randomly selects k instances from the traffic training dataset to represent the
centroids of k clusters c1, c2, ..., ck;

Step 2: for each instance x in training dataset, calculates its distance to the centroids of all
k clusters, d(ci, x), i = 1, 2, ..., k. If the value of d(cm, x) is smallest, then assigns x into cm;

Step 3: when all instances in the training dataset are assigned, recalculates the centroids of
all k clusters;

Step 4: repeats step 2 and step 3 until the centroids of all k clusters no longer change;
Step 5: for each instance y in the testing dataset, first calculates its distance to the centroids

of all k clusters, d(ci, y), i = 1, 2, ..., k, and then finds the cluster cn with the closest distance;
Step 6: according to the following threshold rule, identifies y as a normal traffic or an

anomalous traffic. {
y = 1 ifP (ω1n|y ∈ cn) > th

y = 0 ifP (ω1n|y ∈ cn) ≤ th
(7)

where, “1” and “0” represent the types of anomalous and normal traffic respectively. ω1n is the
anomalous traffic in cluster cn, P (ω1n|y ∈ cn) is the probability of the anomalous traffic instances
in cn. th is a threshold and its value is 0.5, which means if and only if the majority of the cluster
cn are anomalous traffic, then y is identified as an anomaly.

3 Implementation of WRC detection model

In this section, we first preprocess DARPA 1999 traffic traces to obtain the statistical traffic
time series as the input of WRC detection model, and then describe the implementation process
of WRC in detail.

3.1 Data preprocessing

A. DARPA 1999 dataset

DARPA 1999 intrusion detection dataset [14] has been widely used for evaluating the perfor-
mance of intrusion detection systems. This dataset includes five weeks tcpdump packet traces
collected from two sniffers: “inside sniffer” between the gateway and the simulated air force
network, and “outside sniffer” between the gateway and the simulated Internet. Among the
five weeks, traffic of the first and third weeks are anomaly-free, while traffic of the rest include
anomalous traffic. For each week, packet traces are captured from Monday to Friday, and for
each day, they are collected from 8:00am to 6:00am in the next day. In addition, we find the
traffic volume of each day is very small after 6:00pm, thus we analyze the traffic traces only
during workday from 8:00am to 6:00pm (10 hours).

DARPA 1999 dataset includes five types of attacks, i.e., Denial of Service Attacks (DoS),
User to Root Attacks (U2R), Remote to Local Attacks (R2L), Probes and Data. U2R and Data
only exploit computer system vulnerabilities and do not have bad impact on the performance of
network. Their traffic behaviors cannot be differed from the normal traffic, i.e., they are stealthy
for network. Thus, in our experiments, we do not consider these two types of attacks.
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B. Network traffic series acquistion

We preprocess DARPA 1999 packet traces and obtain the flow-based statistical observations
to form different traffic time series to be analyzed in the WRC detection model. First, the
tcpdump packet traces are converted into flow based on five tuples (source IP, destination IP,
source Port, destination Port, transportation protocol), and then five flow-based statistics listed
in Table 1 are selected to form the traffic time series (the time interval is one minute).

Table 1: Flow-based statistics of network traffic
Statistic Description

S1 flownum The number of flow per minute
S2 avepktnum The average number of packet per flow
S3 avebyte The average byte per flow (average flow size)
S4 avepktsize The average byte per packet (average packet size)
S5 ratio The ratio of flownum to avepktsize

In Table 1, the first four statistics are directly calculated from the flow traffic and give us a
detailed picture about the volume of the traffic. The fifth statistics is the ratio of the number
of flow to the average packet size, which measures the interaction communication behaviors
of traffic. Fig. 3 gives an example of the normal and anomalous traffic time series based on
the S2 statistic. In this paper, the anomalous traffic time series means the traffic series that
contains anomalies. From Fig. 3, we can see that the statistic of avepktnum cannot distinguish
anomalous traffic from normal traffic. Thus, our WRC detection model calculates the dynamic
characteristics of network traffic, which are more sensitive to the small-scale variations and
transitions of traffic than statistical features.
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Figure 3: The normal and anomalous traffic time series (S2: avepktnum)

3.2 Feature vectors extraction for clustering identification

Once the traffic time series have been obtained, WRC detection model analyzes these traffic
series to extract the multi-scale dynamic characteristics to compose the feature vectors of traffic,
which will be used to identify network anomalies.
A. Multi-scale analysis for traffic series

Given a network traffic time series x = {xi}, i = 1, 2, ..., n, we use the daubechies wavelet
to decompose and reconstruct the traffic signals at different frequencies, i.e., low-frequency and
high-frequency, which are expressed as below.

l = {li} i = 1, 2, ..., n (8)
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h = {hi} i = 1, 2, ..., n (9)

B. Recurrence dynamic characteristics extraction
After obtaining the traffic series at different frequencies, we employ the recurrence quantifi-

cation analysis (RQA) method to calculate the dynamic characteristics.
1)Parameter selection for RQA
Time delay τ , embedding dimension m and threshold distance ε are three fundamental pa-

rameters for RQA to extract the recurrence characteristics accurately. In this paper, we use
the mutual information method to select the proper time delay τ and adopt the false nearest
neighbors method to determine the correct embedding dimension m [15]. Fig. 4 and Fig. 5 show
the results of the mutual information and the percentage of false nearest neighbors for traffic
series at different frequencies based on the five statistics, respectively.
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Figure 4: Time delay of network traffic series
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Figure 5: Embedding dimension of network traffic series

From Fig. 4, we can find that for the original traffic and high-frequency traffic, the mutual
information get the first minimum value at time unit 3, while for the low-frequency traffic,
the first minimum value is obtained around time unit 10. From Fig. 5, we can see that the
percentage of false nearest neighbors is down to zero after m = 5. The previous study indicated
that the embedding parameters (including τ and m) has less influence on recurrence analysis [16].
Therefore, we chose τ = 3,m = 5 for recurrence quantification analysis without loss of generality.
In addition, based on the rule of thumb, we set the threshold distance to 10% of the maximum
diameter of phase space [17].

2) Dynamic characteristics calculated using RQA
Based on the traffic time series at different frequencies and the determined parameters, we

employ RQA to calculate the multi-scale dynamic characteristics of network traffic so as to
reveal the inherent traffic behaviors and discover the non-stationary transition patterns caused
by malicious attacks.
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In order to identify traffic anomalies in time, WRC detection model employs RQA method
within a sliding window to analyze traffic series. First, the whole traffic time series is divided
into several subseries by a sliding window, and then the recurrence characteristics (RR, DET
and ENT) introduced in section 2.1.2 are calculated for these subseries. If the size and the shift
of the sliding window are W and Ws, then the start time and the end time of subseries r are
tstart = (r− 1)Ws+1 and tend = (r− 1)Ws+W . In our experiment, we set W to thirty minutes
and Ws to six minutes.

For each subseries r, after calculating its recurrence characteristics (RR, DET and ENT),
we can use a feature vector [fRR, fDET , fENT ] to describe the traffic behaviors in it, which
will be used to identify traffic anomalies by k-means algorithm. Fig. 6 shows the recurrence
characteristics of the normal and anomalous traffic time series based on the S1 statistic.
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Figure 6: The dynamics characteristics of the normal and anomalous traffic series

As shown in Fig. 6, the dynamic characteristics of the anomalous traffic series are distin-
guished from that of the normal traffic series. In Fig. 6-(a) and Fig. 6-(d), the value of RR
significantly increases when malicious events happened in the traffic series. Thus, RR is an ef-
fective feature for detecting anomalies. From Fig. 6-(c) and Fig. 6-(f), we find ENT is another
good discriminator to identify anomalous attacks. The entropy measures the uncertainty of sys-
tems. The larger the ENT is, the more uncertain the system is. In normal traffic series the
daily fluctuations are stable, so the value of ENT is small. On the contrary, in anomalous traffic
series, the fluctuations are unstable and the value of ENT is increasing due to the malicious
events. Therefore, from Fig. 6, we can conclude that the feature vectors that consist of these
three recurrence characteristics can accurately describe the traffic behavior patterns and differ
the anomalous behaviors from the normal.

3.3 Implementation process of WRC

Based on the dynamic feature vectors, this section illustrates the detailed implementation
process of the WRC detection model as follows:

Input: network traffic time series (five statistics) x = {xi}, i = 1, 2, ..., n

Output: normal traffic and anomalous traffic
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Step 1: for a traffic time series x, employs the wavelet transform to reconstruct the low-
frequency traffic series l and the high-frequency traffic series h;

Step 2: based on the sliding window, uses RQA method to calculate the recurrence charac-
teristics of different traffic series l and h, respectively;

l = {F lr} = {[fr,RR, fr,DET , fr,ENT ]} r = 1, 2, ..., Nw (10)

h = {Fhr} = {[fr,RR, fr,DET , fr,ENT ]} r = 1, 2, ..., Nw (11)

where r is the rth subseries, Nw is the number of subseries, Nw = n−W
Ws

+ 1. The traffic series x
can be expressed as follows:

x = {Fr} = {[F lr,Fhr]} (12)

Step 3: for each traffic series (five statistics), repeats step 1 and step 2 and then combines the
dynamic characteristics of the five traffic series together to describe the traffic behavior patterns.
The expression is as follows:

X = {Xr} = {[F 1
r , F

2
r , F

3
r , F

4
r , F

5
r ]} (13)

Step 4: uses k-means algorithm to classify each Xr into different clusters and identify the
anomalous traffic based on the threshold rule.

4 Evaluation of WRC detection model

In this section ,we evaluate the performance of WRC detection model on DARPA 1999 dataset
and compare it with existing detection methods.

4.1 Evaluation metrics

We use the following three criterions to evaluate the performance of the WRC detection
mode.

• Detection accuracy rate (DAR): the ratio of the anomalous traffic that are truly detected
by WRC model in traffic series to all anomalous traffic.

• False negative rate (FNR): the ratio of the anomalous traffic that are missed by WRC
model in traffic series to all anomalous traffic.

• False positive rate (FPR): the ratio of the normal traffic that are incorrectly identified as
anomalies by WRC model in traffic series to all normal traffic.

4.2 Evaluation results

DARPA 1999 dataset includes five weeks traffic. We choose the first three weeks traffic as
the training dataset and the rest as the testing dataset. During the training phase, based on the
dynamic characteristics, traffic are classified into different clusters by our WRC detection model.
The number of clusters is 10. In the testing phase, the traffic of week4 and week5 are identified
as the normal or anomalous traffic based on the threshold rule. Table 2 lists the detection results
of WRC model for week4 and week5. The results show that week4day5 has the highest detection
accuracy, and the average detection accuracy and false alarm rate are 92.62% and 8.91%.

From the evaluation results on DARPA 1999 dataset, we can conclude that based on the
multi-scale dynamic characteristics of network traffic, WRC detection model can accurately
describe the traffic behavior patterns and effectively detect the anomalous traffic in time.
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Table 2: Detection results for week4 and week5
DAR FNR FPR

Week4Day1 91.24% 8.76% 8.68%
Week4Day2 92.08% 7.92% 9.09%
Week4Day3 95.73% 4.27% 7.23%
Week4Day4 90.29% 9.71% 9.69%
Week4Day5 96.84% 3.16% 6.54%
Week5Day1 92.76% 7.24% 9.82%
Week5Day2 91.57% 8.43% 8.39%
Week5Day3 92.68% 7.32% 9.26%
Week5Day4 92.42% 7.58% 9.61%
Week5Day5 90.54% 9.46% 10.83%

Average 92.62% 7.38% 8.91%

4.3 Comparison results

WRC detection model adopts the wavelet transform method for extracting multi-scale char-
acteristics and the k-means algorithm for identifying traffic anomalies. In the previous studies,
these two methods have already been employed to detect anomalies. In order to validate that
our model indeed improves the detection performance, this section compares the WRC detection
model with the existing detection methods.

While, in previous studies, the wavelet transform was usually combined with other methods
to detect network anomalies. In the purpose of indicating the impact of wavelet transform on the
detection performance through a fair comparison, we propose the Recurrence-Clustering (RC*)
detection model that is similar to WRC model except employing the wavelet transform method.
Thus, this section performs comparisons with k-means and RC* detection model. Table 3 shows
the results.

Table 3: Comparison results
DAR FNR FPR

k-means 76.19% 23.81% 25.74%
RC* 83.54% 16.46% 12.91%
WRC 92.62% 7.38% 8.91%

From Table 3, we can see that among these three methods, k-means has the worst detection
performance. That is because k-means uses the statistical observations of network traffic to
detect anomalies, which have certain randomness and may be unreliable to characterize the
traffic behavior patterns, leading to the high false positive rate.

Like WRC, the RC* detection model also employs the dynamic characteristics to describe
the traffic inherent behavior patterns, which are sensitive to the non-stationary transition caused
by anomalies. Thus, compared with k-means, its detection performance is indeed improved,
especially the false positive rate is significantly reduced. However, its detection performance
is still poorer than that of WRC model. That is because WRC model calculates the dynamic
characteristics of network traffic at different time scales based on the wavelet transform, which
can highlight the local and short-timescale variations of traffic behavior caused by anomalies,
resulting in the good detection performance for WRC detection model.
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From Table 3, we can conclude that compared with the traditional statistical detection meth-
ods, WRC model can accurately detect traffic anomalies in time and obviously improve the
detection performance, i.e., it has the high detection accuracy with a low false alarm rate.

5 Conclusions

The statistical observations of network traffic have certain randomness, which may vary along
with network scales or application environments. Thus, it is difficult to accurately describe the
traffic behaviors by adopting traditional statistical detection methods. This paper proposes
a novel network anomaly detection model based on the multi-scale dynamic characteristics of
traffic, i.e., the Wavelet-Recurrence-Clustering (WRC) detection model. The WRC detection
model identifies traffic anomalies based on the inherent dynamic features of the traffic at different
frequencies. Evaluation results on DARPA 1999 dataset show that WRC model has better
detection performance, compared with existing methods. More specifically, based on the multi-
scale recurrence dynamic characteristics, our WRC detection model can accurately describe the
traffic behaviors and timely discover the non-stationary transition caused by malicious events,
which leads to the good detection performance.
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