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Abstract

The increasing availability of high-resolution metering data has positioned deep learning as
a powerful tool for energy theft detection; however, most existing approaches rely on black-box
models that lack interpretability and require large, labeled datasets, limiting their applicability in
regulated and safety-critical environments. This paper proposes an interpretable deep learn-ing
approach for energy theft detection based on Kolmogorov—Arnold Net-works (KAN), explicitly de-
signed to combine non-linear modeling capability with feature-level transparency. The novelty of
the proposed method lies in embedding explainability directly into the learning architecture, rather
than relying on post hoc explanation techniques. By representing the detection function as a com-
position of learnable univariate spline functions, the KAN-based model enables direct visualization
and quantitative interpretation of each input feature’s contribution to the detection outcome. This
property al-lows energy theft detection to be formulated as a transparent decision-support process,
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suitable for operational deployment and regulatory auditing. The proposed approach integrates
engineered consumption features with KAN-based inference and supports deployment within a
distributed edge in-telligence architecture, enabling low-latency detection and privacy-aware pro-
cessing. Experimental evaluation on representative low-voltage network data demonstrates that
the proposed approach achieves competitive detection accuracy while significantly improving inter-
pretability and robustness under prosumer-induced variability. The results confirm that inherently
interpreta-ble deep learning models represent a viable and effective alternative to con-ventional
black-box techniques for energy theft detection.

Keywords: Interpretable Deep Learning, Energy Theft Detection, Kolmogorov—Arnold Net-
works.

1 Introduction

1.1 Context and Motivation

The rapid digitalization of energy systems has transformed electrical distribution networks into
large-scale cyber—physical systems characterized by pervasive sensing, bidirectional information ex-
change, and increasingly autonomous decision-making processes. Within this context, artificial intelli-
gence (AI) has emerged as a key technological enabler for monitoring, control, and anomaly detection
in complex and highly dynamic environments. Deep learning (DL) techniques have demonstrated
remarkable capabilities in modeling non-linear relationships and extracting high-level representations
from large volumes of data generated by smart meters, sensors, and communication infrastructures.
However, despite their strong predictive performance, the practical deployment of deep learning models
in operational power systems remains constrained by fundamental challenges related to interpretabil-
ity, data quality, and architectural scalability.

One of the most critical application domains where these challenges converge is the detection of
non-technical losses (NTLs), with electricity theft representing the dominant component. NTLs arise
from a wide range of illicit activities, including meter tampering, bypassing, illegal connections, and
unregistered withdrawals, and they directly affect both the technical efficiency and the economic sus-
tainability of distribution networks. According to Depuru et al. [1], such losses may account for up to
30% of total distributed energy in developing regions, affecting both technical performance and finan-
cial stability. From a system-level perspective, persistent NTLs distort feeder energy balances, degrade
voltage quality, increase thermal loading, and reduce the effective hosting capacity for distributed en-
ergy resources. From an economic standpoint, they erode utility revenues, limit reinvestment capacity,
and introduce tariff distortions that disproportionately penalize compliant consumers. Non-technical
losses (NTL), particularly electricity theft, represent one of the most persistent challenges in modern
distribution systems.

Although the magnitude of NTLs varies significantly across regions, their impact remains sub-
stantial even in highly regulated and technologically advanced power systems. In low-voltage (LV)
distribution networks, where consumption behavior is heterogeneous and increasingly influenced by
distributed generation, storage systems, and flexible loads, the identification of anomalous patterns
becomes particularly challenging. The growing penetration of photovoltaic (PV) systems, electric vehi-
cles (EVs), and prosumer-oriented energy services has fundamentally altered load profiles, introducing
bidirectional power flows, strong temporal variability, and non-stationary consumption patterns. In
such environments, legitimate behavioral variability can closely resemble classical theft signatures,
blurring the boundary between normal operation and fraudulent activity. Even in European net-
works, NTL typically range between 5% and 8% of total energy, especially in low-voltage feeders with
mixed consumer behavior [2]. These losses undermine investment capacity and create tariff distortions
that penalize compliant consumers [3].

Within the broader Al landscape, deep learning has gained particular attention due to its abil-
ity to model high-dimensional data and uncover latent structures in large datasets. Convolutional
neural networks, recurrent architectures, and hybrid temporal models have been successfully applied
to a wide range of anomaly detection tasks, including network intrusion detection, industrial fault
diagnosis, and financial fraud identification. In the context of energy systems, deep learning models
have demonstrated strong performance in load forecasting, demand classification, and consumption
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pattern recognition. Nevertheless, their application to NTL detection introduces specific constraints
that distinguish this domain from conventional pattern recognition problems. Traditional detection
through field inspections and manual audits is costly and reactive [4]. The widespread deployment
of smart meters has generated large volumes of consumption data, creating opportunities for auto-
mated, data-driven detection [5]. However, the diversification of load patterns caused by distributed
generation, electric-vehicle charging, and prosumer participation complicates the distinction between
legitimate variation and fraud [6]. Europe-an regulatory bodies now encourage the digitalisation of
energy systems [7] and promote Al-assisted supervision to improve transparency and efficiency [8].

First, NTL detection is inherently a high-stakes decision-making task, where false positives may
lead to unjustified inspections, customer disputes, and reputational damage, while false negatives al-
low fraudulent behavior to persist. Second, con-firmed theft cases typically represent only a small
fraction of the available data, resulting in severe class imbalance and limited availability of labeled
samples. Third, regulatory frameworks governing energy systems impose strict requirements on trans-
parency, auditability, and fairness, which are difficult to reconcile with opaque black-box models. As a
result, purely data-driven deep learning approaches, despite their accuracy, often face resistance from
operators and regulators due to their lack of explainability.

The issue of interpretability has therefore emerged as a central challenge in the application of Al
to energy theft detection. Explainable Artificial Intelligence (XAI) techniques have been proposed to
bridge the gap between predictive performance and human understanding, offering post hoc explana-
tions of model outputs through feature importance analysis, local surrogate models, or gradient-based
visualization methods. While such techniques provide valuable insights, they are typically applied
after model training and remain external to the learning process itself. Consequently, explanations
may be qualitative, computationally expensive, or inconsistent across operating conditions, limiting
their usefulness in real-time monitoring and regulatory auditing.

These limitations have motivated increasing interest in inherently interpretable deep learning mod-
els, in which transparency is embedded directly into the mathematical structure of the learning algo-
rithm. From an Al perspective, such models aim to preserve the expressive power of deep learning
while enabling explicit interpretation of feature contributions and decision pathways. Among the
emerging approaches in this area, Kolmogorov—Arnold Networks (KAN) have attracted attention as
a promising alternative to conventional multilayer perceptrons. Grounded in the Kolmogorov—Arnold
superposition theorem, KAN architectures approximate multi-variate functions as compositions of
learnable univariate spline functions, allowing each input variable to be associated with an explicit,
visualizable contribution to the model output.

In the context of energy theft detection, this property offers a significant conceptual advantage.
Instead of treating consumption features as opaque inputs to a black-box classifier, KAN-based models
enable a transparent mapping between engineered indicators and anomaly scores. This facilitates di-
rect validation of Al decisions against physical reasoning, such as assessing whether a detected anomaly
arises from feeder-level energy imbalance, abnormal temporal recurrence, or peer-group inconsistency.
As a result, KANs provide a natural bridge between classical engineering knowledge and modern deep
learning, aligning Al-driven detection with operational and regulatory requirements.

Beyond model interpretability, architectural considerations play a crucial role in the deployment
of Al-based detection systems. Centralized processing architectures, in which all data are transmit-
ted to a remote cloud for analysis, face scalability, latency, and privacy challenges, particularly in
LV networks. The continuous trans-mission of high-resolution metering data places significant strain
on communication infrastructures and raises concerns regarding data protection and customer trust.
Moreover, centralized inference may introduce unacceptable delays in detection, limiting the ability
to respond promptly to persistent irregularities. To address these challenges, recent research has in-
creasingly explored edge intelligence as a deployment paradigm for Al in cyber—physical systems. By
executing lightweight inference and feature extraction tasks closer to the data source, edge-based archi-
tectures enable low-latency, context-aware decision-making while reducing communication overhead.
From an Al and control perspective, this distributed intelligence paradigm aligns with the require-
ments of real-time monitoring, resilience, and scalability. In the specific case of NTL detection, edge
deployment allows legitimate variability to be evaluated within its local electrical context, reducing
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false alarms and enhancing detection robustness.

1.2 Literature Review

Initial investigations into non-technical loss (NTL) detection were predominantly grounded in
deterministic, rule-based methodologies derived from classical power-engineering practice. These ap-
proaches relied on directly observable electrical quantities, including phase imbalance, voltage—current
deviations, and inconsistencies between measured and expected energy consumption [1], [4]. Their
widespread adoption was largely due to their simplicity, transparency, and straightforward integra-
tion into supervisory control and monitoring systems. Typically, fixed thresholds, such as deviations
exceeding 10-15% of a customer’s historical consumption pro-file, were employed to trigger alarms or
inspection procedures. Despite their interpretability, deterministic techniques exhibit inherent rigidity.
Once predefined, threshold values remain static and cannot adapt to contextual variability such as
seasonal consumption patterns, meteorological influences, or differences between urban and rural load
behaviour. Consequently, these methods often generate excessive false alarms while failing to detect
subtle or gradually evolving fraudulent activities [3], [6].

The deployment of advanced metering infrastructure and the resulting growth in high-resolution
consumption data prompted a paradigm shift toward data-driven methodologies. Machine-learning
(ML) techniques were introduced to model complex, non-linear relationships among multiple con-
sumption features that deterministic rules could not capture. Early ML applications in this domain
included logistic regression and decision-tree-based classifiers, which demonstrated moderate yet con-
sistent improvements in detection accuracy relative to purely rule-based base-lines [9]. Subsequently,
ensemble methods such as Random Forests, Gradient Boosting, and related techniques gained promi-
nence due to their robustness against noisy, incomplete, or partially labelled datasets [10]. These
models reduced overfitting and enabled probabilistic scoring of suspicious cases, thereby supporting
more effective prioritisation of field inspections.

A further methodological advancement involved the hybridisation of deterministic and statistical
paradigms. Rather than replacing engineering indicators, hybrid approaches incorporated them as
structured inputs to learning algorithms. Empirical studies, including those by Cai et al. [10] and
Taha et al. [11], demonstrated that combining threshold-based indicators with Random Forest classi-
fiers led to detection accuracy gains exceeding 10%, alongside a notable reduction in false positives.
These findings underscored the complementary nature of deterministic and ML-based approaches:
while engineering indicators ensure physical interpretability, data-driven models provide adaptability
and non-linear modelling capability. Additional algorithms have also been explored to enhance clas-
sification performance. Support Vector Machines (SVMs) [12] offered strong theoretical guarantees
in high-dimensional feature spaces, whereas Principal Component Analysis (PCA)-based anomaly
detection methods [13] facilitated dimensionality reduction and the extraction of latent consump-
tion patterns. However, both approaches require careful parameter tuning and relatively balanced
datasets—conditions that are seldom satisfied in real-world distribution system operator (DSO) envi-
ronments, where con-firmed theft cases typically represent less than 5% of the total data. Although
cost-sensitive learning and resampling techniques have been proposed to mitigate class imbalance,
these strategies increase computational complexity without fundamental-ly addressing the issue of
model interpretability.

The advent of deep-learning (DL) models marked a substantial technological leap in NTL de-
tection research. Architectures such as convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) enabled automatic extraction of hierarchical and temporal features directly from
raw consumption data, achieving state-of-the-art results in controlled benchmark studies [14], [15].
Nevertheless, despite their superior predictive capabilities, DL models face two critical limitations
in practical deployment: their reliance on large volumes of labelled data, which are rarely available
to DSOs, and their inherently opaque decision-making mechanisms, which hinder explainability and
regulatory acceptance [16]. These challenges have driven increasing interest in Explainable Artificial
Intelligence (XAI) as a complementary layer to advanced learning models. XAI techniques aim to
elucidate model predictions by quantifying the contribution of individual features or inputs. Com-
prehensive surveys by Adadi and Berrada [17] and Mersha et al. [18] emphasize that interpretability
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Table 1: Overview of the main literature contributions in NTL detection

Ref. Main approach Key idea / methodology Strengths Limitations Relevance to current
study
(1], [4] Deterministic, rule-based |Fixed thresholds on phase | Simple, transparent, | Static, non-adaptive, | Baseline engineering in-
imbalance, voltage/current | easy to deploy in |high false-alarm rate | dicators used as inter-
deviation, energy mismatch | SCADA pretable features
(3], [6] Deterministic analysis Analysis of contextual vari- | Highlights practical | Cannot  self-adapt, | Motivates transition to
ability (seasonal, load diver- | limits of static rules |poor fraud sensitiv- | adaptive models
sity) ity
9] Classical ML (Logistic Re- | Supervised classification us- | Improved accuracy | Limited non- | First step toward data-
gression, Decision Trees) |ing handcrafted features over  deterministic | linearity handling driven NTL detection
rules
[10] Ensemble ML (Random | Bagging/boosting for im- | Better detection | Less  interpretable, | Core reference for hy-
Forest, Gradient Boost- | proved robustness rate, handles non-|model complexity brid deterministic-ML
ing) linearities models
[11] Hybrid deterministic-ML | Threshold-based indicators | +10% accuracy, | Still partially heuris- | Direct conceptual pre-
as ML input features fewer false positives | tic cursor of proposed ap-
proach
[12] Support Vector Machines | High-dimensional = margin- | Good generalization | Poor interpretability, | Illustrates limits of
(SVM) based classification with limited data class imbalance purely statistical mod-
els
[13] PCA-based anomaly de- | Dimensionality reduction for | Efficient, highlights | PCA projections | Motivates need for ex-
tection detection without labels hidden patterns hard to interpret plainable dimensional-
ity handling
[14], [15] |Deep Learning (CNN, |Automatic feature learning |High accuracy, cap- |Black-box be- | Performance bench-
RNN) from consumption sequences | tures complex pat- |haviour, data- | mark, not deployment-
terns hungry ready
[16] DL interpretability cri- | Analysis of explainability re- | Raises awareness of | No concrete solution | Justifies XAI integra-
tique quirements in energy sys- |trust and compliance tion
tems issues
s xplainable sur- | Feature attribution an mproves trust an ost post oc, | Positions explainabili
17], [18 Explainable AT (XAI F ibuti d|I trust d | Mostly hy Positi lainability
veys model transparency validation qualitative as a requirement
[19] LIME Local surrogate models for | Model-agnostic ex- | Local inconsistency, | Illustrates limits of post
explanation planations extra computation hoc XAI
(20], [22] | Grad-CAM Visual explanation (CNNs) | Quantitative feature | Emerging  technol- | Theoretical foundation

/ spline-based interpretable
networks

contribution

ogy, limited adoption

for proposed model

has become a strategic requirement for high-stakes applications such as energy theft detection. Meth-
ods including feature-importance analysis, Local Interpretable Model-Agnostic Explanations (LIME)
[19], and gradient-based class activation mapping (Grad-CAM) [20] provide post hoc visual or nu-
merical insights into model behaviour. In energy analytics, such explanations enable operators to
assess whether anomalous consumption patterns reflect fraudulent behavior or legitimate operational
scenarios. However, most XAl techniques are applied after model training, remain largely qualitative,
and introduce additional computational over-head, occasionally yielding inconsistent explanations.
Consequently, recent research has increasingly focused on developing learning models that are

inherently interpretable by design.

Hybrid deterministic-Al approaches exemplify this trend by

embedding physically meaningful indicators directly into adaptive learning structures, thereby pre-
serving transparency while enhancing detection performance [10], [11]. Within this context, Kol-
mogorov—Arnold Networks (KAN) [21] represent a particularly promising development. Inspired by
the Kolmogorov—Arnold superposition theorem, KANs differ fundamentally from conventional multi-
layer perceptrons that rely on fixed non-linear activation functions such as ReLU or sigmoid. Instead,
KANs employ learnable univariate spline functions along network connections, with each spline ex-
plicitly modelling the contribution of a single input variable to the overall output. This structural
property enables direct visualization and quantitative interpretation of feature influence after train-
ing. CNNs proved effective in identifying spatially correlated anomalies across consumer groups,
while RNNs captured temporal dependencies and repetitive fraud patterns [22]. Moreover, due to
their compact functional representation, KANs exhibit superior data efficiency, achieving competitive
or improved accuracy with fewer parameters and reduced training data requirements compared to
conventional deep-learning architectures. Table 1 highlights the progressive shift from determinis-
tic, rule-based NTL detection toward hybrid and inherently interpretable Al models, underlining the
increasing importance of transparency, regulatory compliance, and data efficiency.
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1.3 Paper Structure and Main Contribution

In the context of non-technical loss detection, these characteristics are particularly valuable. Dis-
tribution system operators seldom have access to large, reliably la-belled datasets of confirmed theft
cases. The capability of KAN to achieve effective generalisation under limited data availability, while
preserving robustness and interpretability, positions it as a highly suitable solution for practical de-
ployment. More-over, since each spline function is associated with a distinct, physically measurable
indicator (energy deviation, load factor, or voltage imbalance) its graphical representation can be di-
rectly linked to established engineering intuition. By structurally combining KAN with deterministic
indicators, the proposed approach effectively reconciles traditional engineering diagnostics with adap-
tive, data-driven learning. From a broader perspective, the evolution from deterministic detection
methods through machine learning, deep learning, and explainable Al naturally converges toward the
adoption of KAN as an interpretable and data-efficient alternative.

Through the integration of physically grounded indicators, adaptive learning capability, and math-
ematically transparent model structure, the proposed hybrid deterministic-AI-KAN approach repre-
sents a new stage in data-centric energy theft detection. Beyond improving detection performance,
it enhances trust, transparency, and regulatory compliance, key attributes aligned with the European
vision of intelligent, competitive, and ethically grounded energy systems. Despite the remarkable per-
formance of deep-learning models reported in the literature, their limited interpretability and high data
requirements significantly con-strain their practical adoption in non-technical loss detection. Deter-
ministic approaches, although transparent, lack adaptability, while classical machine-learning models
only partially address non-linear consumption behaviour.

This paper introduces a fundamentally different approach, based on an inherently interpretable
neural architecture, namely the Kolmogorov—Arnold Network (KAN), which should not be confused
with conventional deep-learning models. Instead of fixed activation functions and opaque feature
representations, the proposed method employs learnable univariate spline functions that explicitly
model the contribution of each physically meaningful input indicator.

The main contribution of the proposed approach consists of:

(i) Introduction of an inherently interpretable neural model for NTL detection. The paper intro-
duces Kolmogorov—Arnold Networks (KAN) as a novel neural architecture for non-technical
loss detection, in which interpretability is embedded directly into the model structure through
learnable univariate spline functions, rather than added post hoc.

(ii) Structural embedding of power-engineering indicators into the learning process. Physically mean-
ingful deterministic indicators (e.g., phase imbalance, energy mismatch) are not merely used as
input features but are explicitly integrated into the mathematical structure of the KAN, allowing
direct and quantitative attribution of each indicator to the final decision.

(iii) Clear conceptual and methodological separation from conventional deep learning. Although neu-
ral in nature, the proposed approach is fundamentally different from deep-learning models
(CNNs, RNNs, MLPs), as it avoids opaque latent representations and fixed activation func-
tions, ensuring transparency and regulatory explainability, as highlighted in Fig. 1.

(iv) Enhanced data efficiency under realistic DSO constraints. The compact spline-based represen-
tation of KAN enables effective learning with limited and highly imbalanced datasets, which
are typical in real-world distribution networks, reducing dependency on large-labelled datasets
required by deep-learning approaches.

(v) Simultaneous achievement of accuracy, explainability, and auditability. The proposed hybrid
KAN-based model aligns detection performance with interpretability and auditability, enabling
DSOs to trace, justify, and validate each detection decision, thus supporting practical deployment
in regulatory-sensitive environments.

This paper introduces a hybrid deterministic-AI methodology that combines physically inter-
pretable indicators with a KAN-based adaptive classification model. The proposed approach main-
tains the transparency inherent to engineering-based diagnostics while improving responsiveness to
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(a) Classical Machine Learning (b) Deep Learning (c) Proposed KAN Hybrid Model (This Work)
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Figure 1: Conceptual comparison between classical machine-learning models, deep-learning architec-
tures, and the proposed KAN-based hybrid approach for non-technical loss detection

non-linear variations in load behaviour. By explicitly embedding explainable indicators into an inter-
pretable learning structure, the method contributes to the development of data-centric and transparent
power systems, in line with European strategic objectives [7], [8], [21].

The remainder of the paper is organised as follows. Section 2 details the mathematical formulation
of the deterministic indicators and the architecture of the KAN-based classifier. Section 3 describes
the dataset, preprocessing steps, and validation methodology. Section 4 presents and discusses the
experimental results, including a comparative assessment against conventional machine-learning tech-
niques. Finally, Section 5 concludes the paper and outlines directions for future work, with a particular
focus on large-scale deployment within distribution system operator platforms.

2 KAN-Based Hybrid Methodology

2.1 Non-Technical Losses Detection Approach

The proposed methodology combines deterministic energy-balance indicators with adaptive es-
timation capabilities provided by Kolmogorov—Arnold Networks (KAN), resulting in a hybrid de-
tection architecture tailored to low-voltage distribution networks. The approach is intended for
deployment at the distribution system operator (DSO) level, where energy measurements, billing
records, and feeder-level balances are continuously monitored to detect non-technical losses (NTLs).
Each consumer ¢ connected to feeder f is represented by a time-dependent consumption vector
P, = [P(1), Pi(2), ..., Pi(T)], where T denotes the number of measurement intervals within the
analysed time horizon (for example, 30-minute sampling intervals over a one-month period). This
representation captures the temporal evolution of individual consumption patterns and forms the ba-
sis for both deterministic analysis and data-driven modelling. The proposed detection methodology
is organised into seven sequential stages. First, raw measurement and billing data are acquired and
pre-processed to ensure consistency and quality. Second, deterministic energy-balance indicators are
computed at feeder and consumer levels. Third, a structured set of features is derived, including de-
viation indices, peer-group comparisons, and feeder imbalance metrics. Fourth, KAN is employed to
estimate the expected consumption behaviour under normal operating conditions. Fifth, a KAN-based
classifier is trained to infer the probability of fraudulent behaviour. Sixth, deterministic and data-
driven outputs are combined through a hybrid scoring mechanism and evaluated against predefined
thresholds. Finally, consumers are ranked according to a hybrid risk index, enabling the prioritisation
of inspection and field verification activities.
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2.2 Energy Balance Estimation Based on Deterministic Indicators

The analysis starts from the formulation of the energy balance at feeder level, as:
E}neas _ E}ech + E}ccomrn + E?illed (1)
where

o« E}°* [MWh] - total energy measured at the feeder head.

. E}ECh [MWh] — estimated technical losses.

o ppo [MWh] — commercial or NTL (fraud, unregistered customers).
. E}Z“led [MWHh] — total energy billed to end users.

The deterministic evaluation of technical losses E}ECh is derived from load-flow-based calculations
and is given by:

B 2
I At
Etech: R b 2)
f b; *"1000 2)

where B denotes the number of line segments composing the feeder, Ry is the resistance of segment
b [Q], I [A] represents the average current flowing through the segment, and At is the duration of the
time interval, typically one hour.

Based on the estimated technical losses, commercial (non-technical) losses are obtained as the
residual term of the feeder energy balance:

E;omm _ E}neas _ E]tcech o E?illed (3)

A feeder is selected for further investigation when the ratio between commercial losses and total
measured energy exceeds a predefined threshold, (E}C’mm / Epes > Tf), where the loss factor 7y is

typically set in the range of 1.5-3%, depending on the characteristics and operating conditions of the
distribution network.

2.3 Deterministic Indicator Estimation

For each consumer i, a set of three deterministic indicators is computed to characterise deviations
from expected consumption behaviour.

e Deviation index, computed as:

0 = ——%— (4)

where P; represents the expected load estimated from historical consumption profiles. This indi-
cator quantifies the relative deviation between the measured and expected consumption levels.

e Peer-group discrepancy, evaluated using the following expression:

1
Di:m Z ‘Pz‘—Pj’ (5)
FEN (@)
where N (i) denotes the set of consumers belonging to the same peer group, defined according to
similar contracted power, tariff category, and consumption profile. This indicator captures deviations
relative to statistically comparable consumers.

e Feeder imbalance, expressed as:
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Epes — 5, PAt

Zf = E}neas ( 6)

which reflects the degree of imbalance between the energy measured at feeder level and the aggre-
gated consumption of connected consumers.

The resulting deterministic indicators provide physically interpretable descriptors of abnormal
consumption behaviour and are subsequently used as structured inputs to the proposed adaptive
KAN model, which refines the expected values and assigns anomaly probabilities.

2.4 Kolmogorov—Arnold Network (KAN) Formulation

In contrast to conventional neural networks that rely on fixed non-linear activation functions,
Kolmogorov—Arnold Networks (KAN) employ learnable univariate spline functions to represent non-
linear relationships. This design is grounded in the Kolmogorov—Arnold superposition theorem, which
states that any continuous multivariate function can be decomposed into a finite sum of compositions
of univariate functions:

2n+1

flz1, 20, mp) = Z 4 Zd’pq(xp) (7)
q=1 p=1

where ®, and v, are univariate functions learned during the training process. This theoretical
result provides the mathematical foundation for constructing neural models with explicit and inter-
pretable functional components.

In the proposed approach, KAN is employed to approximate the expected consumption behaviour
of each consumer. Specifically, the estimated load is obtained as:

P, = Fran(Xi;0) (8)

where X; denotes the input feature vector associated with consumer ¢, and 6 represents the set of
trainable parameters of the forecasting KAN module.

In addition to load estimation, a second KAN-based module is used for classification, producing
the probability of fraudulent behavior:

pi = 0 (Gran (0, Di, z5;6')) 9)

where o is the logistic sigmoid function, # and @’ are trainable parameters, and Fgxan and Ggan
are two KAN modules (forecaster and classifier).

The training procedure aims to jointly optimise forecasting accuracy and classification performance
by minimising a composite loss function defined as:

L=M) (]Di - 151)2 + 2> [=yiln(pi) — (1 = ;) In(1 — py)] (10)

1 (2

where y; € {0,1} denotes the ground-truth theft label for consumer i, and \; and A9 are weighting
coefficients that balance the contributions of the forecasting and classification objectives.

2.5 Methodology Validation and Performance

The final decision score is obtained by combining deterministic thresholds with probabilistic out-
puts generated by the KAN-based classifier as:

0; D;
Fihyb:al ! —+ o ! + a3z + aqp; (11)

5max Dmax

where oy are calibrated weights (3> ap = 1). The normalization terms dpax and Dy ensure
comparability between indicators with different numerical ranges. Based on the resulting hybrid
score, consumers are classified into three risk categories:
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Normal if Fihyb < 0.4,
Anomaly if 04 < Fl-hyb < 0.7, (12)
Confirmed theft if F}¥" > 0.7.

The validation of the proposed hybrid deterministic-KAN model is carried out using a structured
set of statistical and engineering performance indicators, designed to assess both classification accuracy
and operational effectiveness. The evaluation relies on the confusion matrix computed over the entire
test dataset, from which the numbers of true positives (7},), true negatives (7},), false positives (F}),
and false negatives (F),) are derived. The primary performance metrics are defined as follows:

T, + T,

A, = 13
T, + T+ Fp + Fy (13)
Tp
1
P= /0 S(Rr,) dRp, (15)

where accuracy (A.) represents the overall proportion of correctly classified instances, sensitivity
(S5), also referred to as the true positive rate, quantifies the model’s ability to correctly identify actual
theft cases, and P denotes the global discrimination capability of the classifier, reflecting its perfor-
mance over varying false-positive rates. The experimental results indicate that the proposed hybrid
deterministic KAN model achieves high classification accuracy while preserving full interpretability
through spline-based visualisation of the learned univariate functions. In comparison with classical
deterministic approaches, the method reduces the false-positive rate by approximately 58%, leading to
more efficient allocation of Distribution System Operator (DSO) inspection resources. The combina-
tion of statistical robustness and engineering interpretability confirms the suitability of the proposed
approach for deployment in real distribution network monitoring environments, in alignment with
European objectives for data-driven, transparent, and trustworthy grid management.

3 Case Study Background

The validation of the proposed methodology was performed using real operational data obtained
from a European distribution system operator serving a mixed urban—rural area. The analysed net-
work comprises three medium-voltage (MV) feeders supplying 21 low-voltage (LV) substations and a
total of 1,285 end consumers, including residential, small commercial, and industrial users. All data
were aggregated and anonymised in accordance with GDPR requirements and internal confidentiality
regulations.

The observation period spans from January 2021 to December 2023, with time-stamped measure-
ments collected at 15-minute intervals from smart meters and feeder-level monitoring points. Overall,
the dataset includes more than 80 million individual consumption records. In addition to energy
measurements, complementary technical information was available, such as feeder loading profiles,
phase cur-rents, transformer rated capacities, and power-factor indicators. A reference baseline was
established using the deterministic methodology developed in the earlier analysis [23], in which feeder-
level energy balances were computed to identify losses and consumption inconsistencies. While this
approach offered a clear and physically interpretable assessment, its static nature limited its ability
to cope with high variability introduced by prosumer generation and pronounced seasonal effects.

The present study extends the deterministic foundation by integrating an adaptive deep learning
component, which enables the dynamic adjustment of detection thresholds in response to observed
variability in consumption patterns. Prior to feature extraction, all raw data underwent a consistent
preprocessing pipeline, comprising the following steps:

e Synchronization and filtering. Measurement series were resampled to a common temporal
resolution (At = 15 min) and filtered using a second-order Butterworth low-pass filter to suppress
high-frequency noise originating from transient switching events.
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o Outlier treatment. For each consumer i, any observation x;(t) falling outside the 0.5th-99.5th
percentile range of the corresponding historical distribution was replaced with a local median
value.

e Handling of missing data. Data gaps shorter than four hours were filled through linear
interpolation, whereas longer interruptions were flagged and excluded from the training dataset.

o Normalization. Energy and current measurements were scaled to the interval [0,1] using
feeder-specific min—max normalization.

e Feature construction. Deterministic indicators defined in Section 2.3 were computed for
each consumer, including deviation indices, anomaly persistence metrics, and feeder imbalance
allocation. These features were further augmented with contextual attributes such as phase load
ratio, time-of-day indicators, and day-type classification (weekday, weekend, or holiday).

The labelled dataset used for model training comprised 312 confirmed theft cases and 4,600 normal
consumption profiles, as identified from field inspection reports collected over the period 2021-2023.
Given the pronounced class imbalance inherent to this dataset, a stratified random splitting strategy
was employed to ensure that the proportion of theft and non-theft instances was consistently preserved
across the training and validation subsets:

o Training: 60% of labelled records.
e Validation: 20%.
o Testing: 20%.

To ensure classification stability, each data batch preserved the original theft-to-normal ratio of
approximately ~ 1 : 15. The Kolmogorov—Arnold Network (KAN) was trained using a regularized
cross-entropy loss function, with a spline smoothing parameter set to Agpline = 103 and a hidden layer
size of H = 32 nodes.

For baseline comparison, several reference models were evaluated under identical data conditions:

o a deterministic threshold-based model, as described in [23];
o logistic regression;

o random forest (RF);

o the proposed KAN-based classifier.

All models were implemented in MATLAB R2024b, employing cubic B-spline fitting for spline-
based components. The computational experiments were executed on an Intel Core i7 desktop system
operating at 3.4 GHz with 32 GB of RAM.

4 Results and Discussion

The analysed dataset comprised 1,285 consumers connected to three representative low-voltage
feeders serving an urban and suburban area operated by a north-eastern Romanian distribution system
operator. Based on inspection records and measurement campaigns conducted between 2019 and 2023,
consumers were classified into three distinct categories:

o Type A: Residential prosumers (approximately 920 users) characterised by small rooftop pho-
tovoltaic installations and daily electricity demand typically ranging between 2 and 8 kWh/day.

o Type B: Small commercial consumers (approximately 290 users), exhibiting irregular daytime
consumption patterns and frequent inactivity during weekends.
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o Type C: Industrial low-voltage users (approximately 75 users), with consistent base loads ex-
ceeding 10 kW and predominantly balanced three-phase operation.

Manual field audits combined with feeder-level energy-balance reconciliation identified 312 con-
firmed theft cases, representing 24.3% of all detected anomalies, along with approximately 740 anomaly-
prone consumption profiles. The latter category included consumers whose consumption patterns
deviated from expected behaviour without conclusive evidence of fraudulent activity. The remaining
consumers were classified as exhibiting normal behaviour, consistent with estimated technical loss
levels.

Figure 2 illustrates the temporal evolution of total measured, billed, and unbilled energy over
the 2019-2023 period. The results indicate a gradual reduction in technical losses, primarily at-
tributable to infrastructure modernisation and systematic metering upgrades, with losses decreasing
from 8.7% to 7.2%. In contrast, commercial losses associated with electricity theft and metering
irregularities remained relatively stable, fluctuating between 2.1% and 2.4% of the total distributed
energy. While aggregate statistics suggest limited variation in commercial losses over time, feeder-
level analysis reveals significant localised fluctuations. Several feeders exhibited monthly commercial
loss peaks exceeding 10%, highlighting concentrated irregularities that are not visible in aggregated
indicators. These findings motivated further investigation using the proposed hybrid detection model,
which enables refined spatial and temporal discrimination of non-technical loss patterns.
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Figure 2: Annual evolution of measured, billed, and unbilled energy (2019-2023).

The deterministic model originally developed by the authors in [21] was first applied to this dataset
to establish the base scenario. Indicators such as deviation index d;, peer discrepancy D; xr, and feeder
imbalance z; were computed for all consumers. Figure 3 presents a heat map of the deviation index
for the entire population during 2023.

Consumers exhibiting consistently high deviation values (6; > 0.3) were found to be predominantly
concentrated on Feeder 2 and Feeder 3, in agreement with earlier findings from on-site inspections.
Nevertheless, the deterministic, threshold-based methodology proved sensitive to seasonal variability.
Residential prosumers tended to display apparent energy deficits during summer periods, as on-site
photovoltaic generation partially compensated measured consumption, leading to negative deviation
values. Likewise, small commercial consumers with irregular operating schedules frequently triggered
false alarms due to highly variable and non-repetitive load patterns. Therefore, while the deterministic
model successfully detected 228 of the 312 confirmed theft cases—corresponding to a recall rate of
73%—it also produced a false-positive rate of 14.8%, with misclassifications occurring primarily among
prosumer households.

The hybrid detection approach was subsequently applied using the same set of deterministic in-
dicators as model inputs. The Kolmogorov—Arnold Network (KAN) was configured with 32 hidden



https://doi.org/10.15837 /ijccc.2026.1.7409 13

Deviation Index by Feeder (Normalised)

0.45
Feeder 1 -
0.40
0.35
Feeder 2 I 0.30
-0.20
Feeder 3
-0.15

Month

1
o
N
(9)]
Normalised deviation index

Figure 3: Heat map of deviation index 9; by feeder, comparing deterministic vs. hybrid outputs.

units, each implementing cubic B-spline transformations with four knots per input variable. The KAN
output p; was interpreted as the posterior probability of theft or abnormal consumption, and the final
hybrid score Fihyb combined the deterministic component Fidet and p; with A = 0.35, empirically de-
termined for optimal validation of performance P. The model was trained on data from the 2021-2022
period and evaluated on the 2023 dataset. Under these conditions, the KAN-based module achieved
an overall accuracy of 93.8%, a sensitivity of 88.5%, and a false-positive rate of 6.2%. In addition
to these aggregate performance indicators, the proposed approach provided interpretable outcomes
through spline-based mappings of input features, enabling direct analysis of how individual indicators
contributed to the final detection decision.

Figure 4a illustrates the spline-based mapping associated with the deviation index d;. The learned
function exhibits an approximately linear increase for values up to J; ~ 0.6, followed by a clear satu-
ration region. This behaviour indicates that once deviations exceed roughly 60% of the expected load,
additional increases contribute marginally to the detection outcome, as the likelihood of fraudulent
activity is already very high.
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Figure 4: Spline visualizations for indicators.

Figure4b presents the spline-based response associated with the peer-discrepancy indicator D; ar,
which exhibits a characteristic S-shaped profile. Minor discrepancies are effectively tolerated, reflecting
the natural diversity of consumption behaviour within peer groups, whereas the estimated probability
increases sharply once D; »r > 0.25 and gradually reaches a plateau around D; or = 0.5. A particularly
insightful behaviour is observed for the feeder imbalance indicator z;, shown in Fig. 4c. The corre-
sponding spline function is markedly asymmetric, with a steep increase for positive imbalance values,
indicative of downstream energy deficits, and a much milder response for negative imbalance. This
asymmetry is physically consistent: energy deficits are more likely to signal unbilled consumption,
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whereas apparent oversupply is often attributable to metering artefacts or misalignment in reactive
power flows.

The key advantage of these interpretable spline responses lies in their direct applicability for op-
erational practice. Each learned curve effectively represents an “engineering rule” inferred from data,
thereby converting the model from a black-box predictor into a transparent diagnostic tool that can
be readily interpreted and communicated to field engineers. To assess spatial detection performance,
the identified customers were projected onto the geographical topology of the distribution feeders.
Using the deterministic approach, 228 theft cases were correctly detected; however, 157 customers
with normal behaviour were erroneously flagged as suspicious. In contrast, the KAN-based hybrid
model identified 284 of the 312 confirmed theft cases, corresponding to a detection rate of 91%, while
reducing the number of false alarms to 67. This represents a 58% improvement in inspection efficiency.
Notably, in feeders characterised by a high penetration of prosumers, the hybrid methodology effec-
tively differentiated between legitimate photovoltaic self-consumption and unauthorised connections
by learning distinct diurnal consumption patterns. For instance, on Feeder 3—where approximately
35% of customers were equipped with rooftop PV systems—the deterministic threshold-based method
generated 54 false alarms. After applying the KAN-based adaptation, this number was reduced to
only 11, demonstrating the model’s ability to accommodate prosumer-driven variability without com-
promising detection accuracy.

Furthermore, the hybrid model produced a continuous fraud likelihood index, enabling prioritiza-
tion rather than binary classification. Consumers with Fihyb > (.8 were considered “critical”, those
with 0.5 < Fihyb < 0.8 “probable”, and those with Fl-hyb < 0.5 “normal”. Inspection data confirmed
that over 92% of “critical” cases corresponded to real thefts, validating the proposed scoring ap-
proach. The hybrid model further uncovered seasonal and behavioural patterns that remained largely
undetected when using the deterministic detection approach alone.

Seasonal behaviour. Theft probability exhibited clear peaks during winter months, coinciding
with electric heating loads. Fig. 5 shows the monthly average Fl-hyb for 2023 across all feeders: an
increase of approximately 0.15 between November and February suggests opportunistic manipulation
during high-demand periods.
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Figure 5: Monthly average hybrid score per feeder.

Hybrid detection scores exhibit a clear seasonal dependence, increasing during the cold season
(December—February), when electric heating leads to higher energy demand and, implicitly, stronger
incentives for illicit consumption. Among the analysed feeders, Feeder 3—characterised by a heteroge-
neous mix of commercial and residential loads—shows the highest variability and the largest average
hybrid score (approximately 0.55). In contrast, Feeder 1 displays a more stable behaviour, consistent
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with lower levels of irregularity in predominantly residential consumption patterns. These observa-
tions confirm that the hybrid approach effectively captures seasonal and behavioural dynamics of NTL
activity, surpassing the capabilities of static, threshold-based methods. Further insight is provided
by analysing the latent representations generated by the KAN model. By projecting the hidden-layer
embeddings into a two-dimensional space using t-distributed stochastic neighbour embedding (t-SNE),
consumers naturally separate into three distinct groups: normal users, anomaly-prone profiles, and
confirmed theft cases.

Fig. 6 illustrates this 2D projection, where each point corresponds to an individual customer—Ilight
grey indicating normal behaviour, grey denoting anomaly-prone profiles, and black representing con-
firmed theft. The resulting scatter plot reveals a well-defined geometric structure. Normal consumers
form a compact central cluster, anomaly-prone profiles populate an intermediate transition region,
and confirmed theft cases concentrate in a dense and clearly separable area. Such separation is rarely
achieved by conventional machine-learning classifiers and highlights the discriminative strength of the
features learned by the KAN. This structured clustering demonstrates that the proposed model not
only estimates theft probability with high accuracy but also learns an underlying manifold that faith-
fully reflects intrinsic consumption behaviour patterns. The pronounced separation between normal
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Figure 6: Monthly evolution of hybrid score and 2D embedding of KAN output clusters.

and theft clusters indicates that the hybrid model effectively captures physically meaningful features,
in contrast to black-box classifiers whose latent representations often remain diffuse and overlapping.
This structured behaviour has direct operational relevance, as it enables inspection planning to be
focused on feeders and time periods exhibiting elevated hybrid scores, thereby improving the alloca-
tion of field resources. In other words, the results demonstrate that the integration of KAN into the
detection process leads to a 12% increase in the area under the curve (AUC) while simultaneously
reducing false alarms by 58%, confirming both the technical and practical advantages of the proposed
hybrid approach.

Beyond loss detection, the proposed hybrid deterministic-AI-KAN approach provides actionable
insights that can support targeted energy-efficiency measures in non-residential buildings. The identi-
fication of persistent consumption anomalies and feeder-level imbalances enables distribution operators
and facility managers to prioritise retrofit actions, demand-side management, and monitoring strate-
gies, in line with recent evidence on energy efficiency improvements in non-residential buildings in
Romania [24].
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5 Conclusions and Future Work

This paper introduced a hybrid deterministic-KAN methodology for the detection of non-technical
losses (NTL) in low-voltage distribution networks, extending earlier deterministic approaches based
on feeder-level energy balances and threshold-based indicators. By integrating Kolmogorov—Arnold
Networks (KAN) into the detection process, the proposed method successfully combines engineer-
ing interpretability with data-driven adaptability, enabling a transparent, scalable, and operationally
relevant solution for distribution system operators.

The case study, encompassing more than 1,200 consumers supplied by three feeders over the period
2019-2023, provided a realistic validation framework representative of practical distribution network
conditions. The historical analysis of feeder energy balances revealed a gradual reduction in technical
losses, while commercial losses remained relatively stable in the range of 2.0-2.4%, indicating the
persistent presence of non-technical loss components. Furthermore, the deviation heat-map analysis
highlighted clear spatial and temporal clustering of anomalies, with specific feeders and time intervals
exhibiting elevated irregularities.

Compared with the deterministic baseline model presented in [23], the proposed KAN-based hybrid
approach demonstrated a substantial performance improvement. On the test dataset, the classifier
achieved an accuracy of 93.8% and a sensitivity of 88.5%, while reducing the false-positive rate by
approximately 58%, corresponding to an overall performance gain of 12%.

Beyond quantitative metrics, the method offers a high degree of interpretability: the univariate
spline responses learned by the KAN exhibit monotonic and physically meaningful relationships be-
tween indicator values and fraud probability, closely aligning with established engineering intuition.
As a result, the proposed model moves beyond black-box prediction and functions as a transparent
analytical tool that can be audited and justified in regulatory contexts.

The analysis of hybrid detection scores further revealed that NTL activity is strongly influenced
by consumption context, with higher incidence during winter months and reduced activity during
periods of low demand. In addition, the t-SNE visualisation of KAN outputs showed clear separation
between normal consumers, anomaly-prone profiles, and confirmed theft cases, indicating that the
learned representations capture genuine consumption behaviour rather than artefacts of overfitting.

From an operational standpoint, the hybrid methodology supports risk-based inspection planning.
Feeders or consumers exhibiting hybrid scores above 0.8 can be prioritised for field verification, leading
to an estimated annual cost saving exceeding €12,000 within the pilot area, with significant scalability
potential across the operator’s service territory. Consequently, the proposed approach enhances not
only detection accuracy but also decision efficiency and financial effectiveness.

Future work will focus on three main directions. First, real-time deployment and adaptive retrain-
ing will be pursued through integration of the KAN-based model into the operator’s digital monitoring
platform, enabling continuous learning from new metering data and early detection of emerging losses.
Second, extended functional modelling will be investigated by generalising the KAN architecture to-
ward multi-output configurations capable of simultaneously identifying multiple anomaly types, such
as theft, metering faults, or tampering. Third, cross-country validation and interoperability will be
addressed through collaboration with other distribution system operators, allowing assessment of ro-
bustness across different grid topologies, climatic conditions, and socio-economic environments. In
conclusion, the proposed hybrid deterministic-KAN approach constitutes a scientifically sound and
operationally mature solution for non-technical loss detection in modern electricity distribution net-
works.
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