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Abstract

Multiobjective combinatorial optimization is an essential approach for handling trade-offs in
complex control and communications systems, when multiple conflicting objectives (performance,
cost, reliability) must be counterbalanced. Many well known combinatorial problems can be easier
solved by customizing a general approach, namely by employing problem specific algorithms in key
points of the general framework. In this paper we adapt the general framework PESA (2020) from
continual to the discrete case taking advantage of the particular shapes of both decision and criterion
space of combinatorial problems, and replace the exact optimization algorithms with new developed
heuristics. The results is an anytime heuristics approach that progressively dissecting the Pareto
front and deriving approximated non-dominated points. To test the performances of the approach
we customized the algorithms and carried out experiments on multiple criteria multidimensional
0/1 Knapsack problems recalled from the literature. The comparative numerical results reported in
the paper support the conclusion that the novel approach has the ability to generate good first-level
approximations to the Pareto fronts of the addressed problems in reasonable time.

Keywords: Multiple objective combinatorial optimization, knapsack problem, heuristics

1 Introduction
Combinatorial optimization (CO) problems, also known as discrete optimization problems, in-

volving multiple objectives are widely studied in the recent literature. Providing efficiently solutions
to such problems brings a fundamental support to artificial intelligence, since many of its key tasks
require searching, planning, decision-making, and reasoning over discrete structures.

Most of CO problems, including for instance the classical ones like traveling salesman problem,
knapsack problem, graph coloring, set covering, scheduling problems, assignment and matching prob-
lems, network flow problems can be formulated as integer linear programs (ILP) or mixed-integer
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linear programs (MILP). However, generally, the mathematical models of combinatorial problems are
often hard to solve especially for large-size instances. In this paper we introduce a general anytime
heuristics to solve large-scale multiple objective (MO) mixed-integer programming (MIP) problems.

Anytime algorithms are the algorithms that monotonic improves the quality of the provided so-
lution with respect to the allocated runtime. Heuristics is any solution approach that uses practical
experience or intuition to derive approximate solutions to a clearly formulated problem (combinato-
rial and/or based on mathematical models). Even though heuristics cannot assure that it reaches an
optimal solution, it derives good solutions and in reasonable time to complex and large-scale prob-
lems. Due to this quality, heuristics are widely used in many important areas where soft computing
can be applied. Particularly, in this paper, we report results obtained for multiple criteria (MC),
multidimensional (MD) 0/1 knapsack problems (KP).

MO-MIP problems cannot be easily solved mainly because of the shape of their Pareto fronts that
generally contain a great number of unsupported non-dominated points; and their non-continual de-
cision spaces. Recently, PESA [23] was introduce to generate a pattern efficient set of non-dominated
vectors to many-objective optimization problems. Embedding the specific characteristics of CO prob-
lems within the PESA framework, we succeeded to solve small size multiple objectives mixed integer
programming problems. However, for large-scale problems approximate algorithms are desired, since
any integer constraint on the decision variables complicates a lot the procedure of inspecting the
optimality of each improved solution.

The novelty brought by our approach is in the special ways of exploiting the particularity of discrete
Pareto front of integer problems, and in developing heuristics that can solve large scale combinatorial
optimization problems. Based on the mathematical model, we firstly propose a matheuristics that,
combined with the progressive dissection framework, is able to generate the entire Pareto front of
MC-MD-KP problems for small-sized instances, providing a 0th-order approximation containing well
distributed non-dominated vectors on the Pareto front. Secondly, we propose a greedy randomized
adaptive search procedure (GRASP) based on a constructive heuristics, customized to solve multiple
objective knapsack problems, and providing 1-level approximation to the true Pareto front of the
addressed problems. For large-scale instances, both the matheuristics and constructive heuristics
provide a good 1st-level approximation to the Pareto front.

Our solution approach is essentially based on the Targeted Directional Model (TDM) introduced
in [23] to solve multiple objective continual problems. The original TDM model was formulated with
the help of a hypothetical bound defined as a convex combination of certain already generated non-
dominated vectors. In this study, we advance two different ways to chose the hypothetical bounds: (i)
as non-dominated vectors obtained by PESA applied to the integer relaxation of the original problem;
and (ii) as the nadir point of a set of certain already generated (approximated) non-dominated points.

Our paper is structured as follows: a short literature review is presented in Section 2; Section 3
provides basic notation and terminology, and formalizes the addressed problem; Section 4 describes
our solution approach, while Section 5 reports some numerical results. The final conclusion and some
directions for further researches are included in Section 6.

2 Brief literature review
Multiple objective optimization is an essential tool for handling the trade-offs in complex control

and communications systems, especially when multiple conflicting objectives (performance, cost, reli-
ability) must be counterbalanced. Many real-life problems were addressed and solved using multiple
objective models. Kaur et al. [15] proposed solutions to hydrothermal, pumped hydro, and solar gen-
erators’ non-convex, highly constrained, and non-linear power generation scheduling problem. They
handled the conflictiong objectives by using the non-interactive approach, and exploiting a specific
penalty method. One approach to handle bi-objective optimization is based on fractional program-
ming models that aggregate the two conflicting objectives in a single function, and optimize their
ratio. The wide survey provided in [22] well emphasized the importance of fractional programming
under uncertainty, and its valuable effects on making decisions.

Combinatorial problems on graphs have a wide range of applicability nowadays. For example,
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recently, Montoya et al. [17] introduced a mathematical optimization model to solve the routing
problem of different services in an IoT network. The authors considered different levels of priority of
services, aiming to reduce the energy consumption.

Multiple objective combinatorial optimization (MOCO) problems are widely studied in the recent
literature from both theoretical and practical points of view. The basic reference to MOCO problems
was provided by Ehrgott et al. [12] who surveyed the exact methods. [24] surveyed the field based on
social keywords and journal maps, [10] that proposed an anytime algorithm to solve MOCO problems,
and [2] that developed a decomposition-based coevolutionary multiobjective local search for MOCO
problems.

Recently, Nagy et al. [18] addressed a suppliers selection problem providing emergency responses
by applying robust optimization models. They employed multiple criteria decision making tools to
deal with uncertainty and risk, and cope with computational issues. Wand and Xu [25] built a multiple
objective location decision making model for emergency shelters by giving higher priority to subjective
evaluation of residents. Dusadeerungsikul and Nof [11] proposed a collaborative control protocol with
artificial intelligence for medical student work scheduling aiming to optimize clinical training schedule.

Kaliszewski and Miroforidis [14] solved large-scale instances of multiple objective optimization
problems using mixed integer programming solvers, and discussed the quality of the obtained Pareto
fronts. Charkhgarda et al. [5] focused on a smaller class of multiple objective optimization problems,
and proposed a novel approach to solve hard bi-objective knapsack problems using deep reinforcement
learning.

Wang et al. [26] defined the reliability level between two points in a network from two points of
view: minimal edge cut and path, respectively, and proved their equivalence. As a consequence, they
were able to propose a multiple objective optimization model whose first goal was to minimize the
total service distance, while the second one was to maximize the network reliability level.

Pardalos et al. [20] contributed to the field with their monograph on non-convex multiple objective
optimization. Cai et al. [3] introduced a new diversity indicator based on reference vectors that showed
to be easy to use to estimate the performance of an optimizer applied to many-objective optimization
problems. To estimate the quality of our numerical results we used the coverage gap and inverted
generational distance metrics introduced in [6] and [4], respectively. Strengths and weaknesses of
various performance indicators were been systematized in [1].

Deb and Miettinen [9] provided a review of nadir point estimation procedures based on evolutionary
approaches, and discussed the dimension-reduction issue.

Ozpeynirci and Koksalan [19] introduced an exact algorithm for finding extreme supported non-
dominated points to multiple objective mixed integer programming problems. We carried out ex-
periments on benchmarks introduced in [19] and [13]. A scatter search method based on surrogate
relaxation to bi-criterion knapsack problems was proposed by Silva et al. in [7]. Our illustrative
example is recalled from [7]. A reduction dynamic programming algorithm for the bi-objective integer
knapsack problem was presented by Rong and Figueira in [21].

3 Preliminaries
The general model of a MO optimization problem is given by

max
x∈X

(fk (x))k=1,p , (1)

where p ≥ 2 is the number of objectives, X ⊆ Rn is the feasible set of the decision variables x ∈ Rn, and
fk : X → R, k = 1, p are the objective functions that all have to be maximized. Within combinatorial
problems the some of the decision variables are integer.

The main concept used in defining solutions to MO optimization problems is the concept of domi-
nance. Let F : X → Rp be defined by F (x) = (f1 (x) , f2 (x) , . . . , fp (x)). The image of the feasible set
in Rp defined by F (X) represents the criterion space. A feasible solution x′ ∈ X is said to dominate
x′′ ∈ X if and only if fk (x′) ≥ fk (x′′) for all k = 1, p. In addition, x′ ∈ X strictly dominates x′′ ∈ X
if and only if x′ dominates x′′ and fk (x′) > fk (x′′) for at least one index k = 1, p.
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A feasible solution is called Pareto optimal or Pareto efficient if there is no feasible solution that
strictly dominates it. Whenever x′ dominates x′′ with respect to function F , we can use notation
F (x′) ≥ F (x′′).

A vector y from the criterion space is called non-dominated if it is the image of a Pareto optimal
solution, i.e. there is an Pareto efficient x ∈ X such that F (x) = y. The set of all non-dominated
points of an MO optimization problem represents the Pareto front of the given problem.

The pattern efficient framework PESA was introduced in [23] to provide a good approximation
to the Pareto front of continuous MO optimization problems. Algorithm 1 contains its adapted
description to the current notation and terminology.

Algorithm 1 PESA framework, adapted from [23]
Require: An instance of (1): p, X, fk : X → R, k = 1, p, and the number of iterations nrit.

1: Obtain marginal solutions and their corresponding images in the criterion space y1, y2, . . . , yp.

2: Define αk =
(
αk

s

)
s=1,p

, αk
s =

{
1, s = k,

0 s ̸= k.

3: Normalize the objective functions and obtain fk, k = 1, p.
4: Initialize the set of non-dominated vectors E ←

{
y1, y2, . . . , yp

}
.

5: Compute the hyper-volume H
(
y1, y2, . . . , yp

)
.

6: Define problem P =
[
H
(
y1, y2, . . . , yp

)
, y1, y2, . . . , yp, α1, α2, . . . , αp

]
related to marginal solution,

using the hyper-volume H, non-dominated vectors yk, and coefficient vectors αk, k = 1, p.
7: Initialize the list of problems L← {P}.
8: for q = 1, nrit do
9: Identify P ∗ in L that has the greatest hyper-volume.

10: Compute y∗ and α∗ based on information provided in P ∗.
11: Solve (2) with y0 = y∗, α0 = α∗, derive

(
xeff , λ

)
as its optimal solution, and construct

ynew = F
(
xeff

)
. Update E ← E ∪ {ynew}.

12: Insert p new problems in L with respect to P 0 and ynew. Update L← L \
{
P 0}.

13: end for
Ensure: The set E of generated non-dominated vectors.

The general TDM model, recalled in Step 11 of Algorithm 1, was presented in detail in [23]. In
what follows we use its simplified form:

max
{ p∑

k=1
α0

kfk (x) + p0λ|x ∈ X, fk (x) ≥ λy0
k, k = 1, p, λ ≥ 0

}
, (2)

where y0 =
(
y0

1, y0
2, . . . , y0

p

)
is the hypothetical bound that is aimed through optimization using the

penalty term p0λ in the objective function; and α0 =
(
α0

1, α0
2, . . . , α0

p

)
is the coefficient vector used to

aggregate the original objective functions.
Model (2) relays on parameter p0 ≥ 0 that can be tuned in accordance to the specificity of

each approached instance. We empirically concluded that TDM model applied to MO-MIP problems
performs properly even though only parameter p0 is kept active.

3.1 Problem formulation

Particular models can be obtained from (1) by imposing various special conditions on variables,
feasible sets, and/or objective functions. Within MO-MIP problems each variable is either integer or
continual. The MO-MIP problem that we address in this paper is then modeled by

max fk (x) k = 1, p,
s.t. x ∈ X,

xs ∈ Z, s ∈ S,
(3)
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where S is the set of indexes that correspond to integer variables, S ⊂ {1, 2, . . . , n}.
In the sequel, we will refer to the Pareto front of Problem (3) by true Pareto front, and to the

Pareto front of the integer relaxation of Problem (3) by continual Pareto front.
In Section 4 we propose a general approach to solve Problem (3), but also formulate a customized

variant that solve multiple criteria knapsack problems, whose mathematical model is a particular form
of (3), having linear objective functions, linear “less or equal”-type constraints, both with strictly
positive coefficients and binary variables, i.e.

fk(x) =
n∑

j=1
ckjxj , ckj > 0, k = 1, p, j = 1, n,

X =

(x1, x2, ..., xn) ∈ {0, 1}n |
n∑

j=1
aijxj ≤ bi, aij > 0, i = 1, m, j = 1, n

 .

(4)

Within our experiments we use the following indicators to evaluate the quality of the solutions:

1. The coverage gap (CG) indicator was introduced in [4]. Given the discrete Pareto front P ∗ and
the subset A of P ∗, the value

αA (z) = min
y∈A

(
max
i=1,p

(zi − yi)
)

(5)

represents a measure of how well the vector z is covered by A. Next, the vector z∗ having the
worst coverage is determined

z∗ = arg max
z∈P

(αA (z)) , (6)

and then, the coverage gap of A is the value CG(A, P ∗) = αA (z∗) .

2. The inverted generational distance (IGD) metric was introduced in [6], and it calculates the
average distance from the given points on the reference Pareto front (P ∗) to discrete Pareto
front approximation, A, i.e.

IGD(A, P ∗) =
∑

v∈P ∗d(v, A)
|P ∗|

, (7)

where d(v, A) is the minimal distance (in Euclidean sense) between v and points in A. More
details can be found in [8].

3. The hypervolume (HV) indicator measures the hypervolume (area, in the bi-objective case;
volume in the three-objective case) of the objective space that is dominated by the generated
approximated front A with respect to a reference point.

Note that the first two indicators demand a reference set P ∗ that is a subset of the Pareto front,
while the third one can be evaluated with respect to an arbitrary fixed reference point.

4 Solution algorithm
Our approach conveniently combines a progressive dissection framework able to provide well dis-

persed hypothetical bounds for specific mathematical models, and novel heuristics able to efficiently
solve the given optimization models within a reasonable time.

4.1 The criterion set dissection framework

Aiming to solve general MO-MIP problems (3), we exploit the specific shape of the Pareto front
retrieved by the integer components of its non-dominated vectors, and conveniently change the manner
of choosing the hypothetical bounds to be used in the integer form of the classic TDM model [23].

PESA [23] was proposed to handle continual MO optimization problems. Our first idea is to
employ PESA to solve the integer relaxation of Problem (3), and use each obtained non-dominated
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point of the continual Pareto front as hypothetical bound y0 in the integer TDM model related to
the original MO-MIP problem. In other words, we now use PESA to generate well-spread enhanced
hypothetical bounds, that are close to the true Pareto front of the MO-MIP problem. Let us denote
by C-TDM the optimization model that involves such constructed hypothetical bounds.

Alternatively to setting continual hypothetical bounds, given a set of already derived (approxi-
mated) non-dominated points to the original MO-MIP problem, we may identify the “lowest” vector
that can be defined using their components (in the manner of nadir point), and choose it as hypothet-
ical bound y0 in our second N-TDM model. Namely, given the non-dominated vectors y1, y2, . . . , yh,
the components of y0 are defined as

y0
k = min

{
yq

k|q = 1, h
}

, k = 1, p.

Figure 1 illustrates the two ways of choosing the hypothetical bounds for the particular case p = 2.
On the left, the hypothetical bound y0 is a point on the continual Pareto front (black line) that is
targeted from the origin; and by solving C-TDM model, it derives the closest point of the true Pareto
front ynew. On the right, given the non-dominated points A and B on the true Pareto front, the
nadir-like hypothetical bound y0 has the first component of A, and the second component of B; and
together with the origin defines a direction, and relative to it, derives the closest non-dominated point
ynew on the true Pareto front.

Figure 1: Targeted hypothetical bounds y0, and corresponding non-dominated points ynew on true
Pareto front of Problem (3) (continual bound, on the left; nadir-like bound, on the right)

In the next section, we propose a matheuristics, and a GRASP based on constructive heuristics
to solve single objective C- and N-TDM models within Algorithm 1. As it will be concluded from
the results of the experiments, models C-TDM and N-TDM used within the progressive dissection
framework beneficially complement each other: continual hypothetical bounds are close to the true
Pareto front, thus reducing the solver’s runtime; while nadir-like hypothetical bounds assure that non
of the given non-dominated points can be reached by the optimal solution to N-TDM model.

4.2 Heuristics approaches to C- and N-TDM optimization models

Algorithm 1 combined with any of C- or N-TDM optimization models, and interlinked with any
MIP solver can derive the zero-level approximations to the true Pareto front of MO-MIP problem
(3). However, MIP solvers are generally based on heuristics that easily can find a feasible – close to
optimal – solution, and then spends time to prove that the provided solution is optimal. Practically,
such solvers provide exact optimal solution given that their integer-tolerance parameter is set to 0.

Small size instances of MIP problems can be solved to optimality in real-time, but this is not
the case for large-size ones. Increasing the integer-tolerance parameter of MIP solvers from 0 to a
predefined value makes the exact algorithm to be a matheuristics, since it is an approximate algo-
rithm based on relaxed mathematical models. Within our experiments, we denote a such obtained
matheuristics either by Math-C or Math-N, depending on which optimization model it uses.
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Our next goal is to formulate a greedy constructive heuristics to solve a specific class of MIP
problems. Knapsack problems are the most approachable MIP problems. Even though they are
linear integer problems, that does not necessarily make them easy to be solved. Since our original
problem is a multiple objective one, we focus on solving the TDM model associated to a multiple
criteria, multidimensional 0/1 knapsack problem. Using the notation given in (4), the particular form
of Model (2) which corresponds to the above mentioned multiple criteria problem is

max ∑n
j=1wjxj + p0λ

s.t. x ∈ X
fk (x) ≥ λy0

k, k = 1, p,
λ ≥ 0,

(8)

obtained by rewriting
p∑

k=1

αk

n∑
j=1

ckjxj

 as
n∑

j=1

(
xj

p∑
k=1

ckjαk

)
, and denoting

p∑
k=1

ckjαk by wj .

We propose Algorithm 2 to construct, in a greedy manner, a feasible solution to Problem (8).

Algorithm 2 Greedy constructive heuristics
Require: An instance of Problem (8).

1: Compute the vector v =
(

min
i=1,m

(
wj

aij

))
j=1,n

.

2: Order the components of vector v in the decreasing order, denoting by σ the corresponding per-
mutation of the indexes.

3: Identify the index s such that
s∑

j=1
aiσ(j) ≤ bi for each i = 1, m, and

s+1∑
j=1

aiσ(j) > bi for at least one

i = 1, m.
4: Allocate value 1 to all variables xσ(j), j = 1, s, and value 0 to xσ(j), j = s + 1, n, thus obtaining a

solution x =
(
xσ−1(l)

)
l=1,n

that fulfills the first set of constraints.
Ensure: The permutation σ, feasible solution x and its corresponding vector (fk (x))k=1,p from the

criterion set of Problem (1).

Aiming to obtain a feasible solution and increase the value of the objective function of Problem
(8), we adopt GRASP principles, and extend Algorithm 2 with following randomization step: given x
and its corresponding permutation σ, for each t ∈ 1, n such that

σ (t) ∈ [max {1, s− 10} , min {n, s + 10}]

we replace the value of xt by a random value from {0, 1}. Then, we include the new obtained x′ in the

set of restricted candidate list if and only if it fulfills the first group of constraints, i.e.
s∑

j=1
aijx′

j ≤ bi

for each i = 1, m. We apply this randomization #it times. For each x′ from the restricted candidate
list, we compute λ

′ as described in Step 5. From the such obtained set of pairs
(
x′, λ

′), we choose the

final solution
(
x∗, λ

∗) that yields the greatest value of the single objective function
n∑

j=1
wjx∗

j + p0λ
∗.

Algorithm 3 describes the enhanced GRASP heuristics.
We interlink Algorithms 1 and 3, and obtain Grasp-C and Grasp-N heuristics variants of our

general approach, depending on the manner of choosing the hypothetical bounds in the formulation
of Model (8).
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Algorithm 3 GRASP variant of the greedy constructive heuristics
Require: An instance of Problem (8).

1: Employ Algorithm 2, and derive the feasible solution x and its corresponding permutation σ.

2: Initialize A =
{(

x, min
{

fk (x)
y0

k

|k = 1, p

})}
.

3: for h = 1, #it do
4: Set x′ = x.
5: For each t ∈ 1, n such that σ (t) ∈ [max {1, s− 10} , min {n, s + 10}]: xt = rand{0, 1}.

6: if
s∑

j=1
aijxj ≤ bi for each i = 1, m then

7: Update A = A
⋃{(

x, min
{

fk (x)
y0

k

|k = 1, p

})}
.

8: end if
9: end for

10: for each
(
x, λ

)
∈ A do

11: Compute
(
x∗, λ

∗) = arg max
(x,λ)∈A

{∑p
k=1αkfk (x) + p0λ

}
, and the corresponding ND

y∗ = (f1 (x∗) , f2 (x∗) , ..., fp (x∗)) to Problem (8).
12: end for
Ensure: The non-dominated vector y∗ corresponding to the hypothetical bound y0.

4.3 Illustrative example

We consider Problem (9) of a bi-objective MD-KP with 4 constraints and 10 items (recalled from
[7]) to illustrate the main differences between the proposed variants of our solution algorithm.

max x1 + 87x2 + 28x3 + 32x4 + 38x5 + 9x6 + 8x7 + 6x8 + 92x9 + 78x10,
max 4x1 + 21x2 + 68x3 + 17x4 + 43x5 + 48x6 + 85x7 + 30x8 + 37x9 + 33x10,
s.t.

70x1 + 85x2 + 72x3 + 31x4 + 17x5 + 33x6 + 47x7 + 25x8 + 83x9 + 28x10 ≤ 246,
49x1 + 15x2 + 88x3 + 29x4 + 78x5 + 98x6 + 50x7 + 89x8 + 83x9 + 3x10 ≤ 291,

15x1 + 15x2 + 51x3 + 3x4 + 60x5 + x6 + 78x7 + 66x8 + 78x9 + 71x10 ≤ 219,
56x1 + 21x2 + 69x3 + 60x4 + 96x5 + 65x6 + 100x7 + 25x8 + 68x9 + 30x10 ≤ 295,

xi ∈ {0, 1} , i = 1, 10.

(9)

Both the true Pareto front and its approximations obtained by applying the above procedures are
depicted in Figure 2.

We provide below detailed explanations:

• the true Pareto front of MO-MD-KP problem, is the set of non-dominated points represented
by red circles in Figure 2), namely {M, V, S, Q, W, P, N};

• the continual Pareto front (the blue line in Figure 2) is the Pareto front of the integer relaxation
of Problem (9). Several points on the continual Pareto front were used as hypothetical bounds
in the Math-C variant of the algorithm;

• the constructive heuristics Grasp-C provided the approximate Pareto front consisting in the set
of points {M, V, S, W, P, N, U, T}. It failed to reach the non-dominated vector Q and generated
U and T that are dominated by {M, V } and {W, P}, respectively;

• the matheuristics Math-C, with the tolerance set to 2%, provided the approximate Pareto front
containing {M, V, S, W, P, N, Q}. It succeeded to cover entire exact Pareto front, and generated
also the point R that is dominated by W .

Several steps of Math-N running on Problem (9) can be traced in Figure 2 as follows.
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Figure 2: Approximations of the true Pareto front derived to Problem (9)

• M and N are the extreme non-dominated points, and they define the first gap [MN ]. Taking
their minimum component-wise values the hypothetical bound A is obtained. Solving the cor-
responding TDM model the non-dominated point P is generated, and the new two gaps [MP ]
and [PN ] will be further aimed;

• M and P form a greater gap than N and P , thus [MP ] will be adressed first: M and P define
the hypothetical bound B that derives the approximate non-dominated point R. Gap [MP ] is
removed and two new gaps [MR] and [RP ] are created;

• on the gap [MR] the hypothetical bound is D, and the generated non-dominated point is Q.
Note that the non-dominated vector R helped defining gaps and generating new non-dominated
vectors;

• [PN ] has smaller length, than [MR] and greater than [RP ], so next P and N define the hy-
pothetical bound E, construct the TDM model with empty feasible set, derive no solution and
declare the gap [PN ] covered, thus do not define any additional sub-gap;

• [RP ] is the smallest gap, it creates the hypothetical bound C, and generates a new non-dominated
point W .

5 Experiments and discussions
We carried out our experiments solving 2- and 3-objective KP problems. The 3-objective problems

involve multiple constraints that makes them multidimensional. We report in Section 5.1 the results
obtained for small-size instances with known Pareto front. Such instances are convenient for analyzing
performances using indicators that demand a reference Pareto front. Within our numerical results,
we report the values of coverage gap (CG), inverted generational distance (IGD).

In Section 5.2 we summarize our results obtained large-scale instances with unknown Pareto fronts.
For each of these instances, we report statistically relevant results, i.e. results obtained by multiple
runs with variable seeds; and evaluate the heuristics performances using the HV indicator that makes
use of an arbitrary reference point instead of an entire reference Pareto front.
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Table 1: Summary of the run times needed to derive the entire Pareto front to 1.A 2KP instances
[13]. Tolerance was set to 1e− 7.

Instances 2KP50-11 2KP50-50 2KP50-92 2KP100-50
(tightness ratio) (0.11) (0.50) (0.92) (0.50)
Math-N’s runtime (s) 1.5598 2.3458 0.0553 12.8020
Math-C’s runtime (s) 1.5620 3.1002 2.7507 59.4820

Table 2: IGD vs CG values for various runs with different number of iterations, for Instance 2KP50-50,
and tolerance set to 1e− 7.

Math-C Math-N
#it #NDs IGD CG Time (s) #it #NDs IGD CG Time (s)
8 8 18.4153 0.0138 0.1541 6 8 20.4150 0.0207 0.0998
32 27 3.1162 0.0028 0.4099 27 27 3.1798 0.0067 0.6067
100 39 0.9906 0.0028 0.9181 45 39 1.1479 0.0021 1.0473
300 50 0.0608 0.0005 2.4536 80 50 0.0608 0.0014 1.9778
395 51 0 0 3.1002 90 51 0 0 2.2213

One group of experiments were carried out on instances form Sets 1.A and 1.B downloaded from
[27], and having two objectives (p = 2), one constraint only (k = 1), and several tightness ratio (r).
See also [13] where the instances were firstly introduced.

The second group of experiments, having three-objective functions were carried out on instances
form the benchmark described in [19].

5.1 Results related to small-size instances

5.1.1 Two objectives KP instances

Table 1 summarizes the results obtained for Set 1.A instances on which we run our variants Math-
C and Math-N. Incipient results obtained by Math-C were presented in [16]. For each instance, both
matheuristics succeeded to derive the entire true Pareto front in short time.

The values of the diversity metrics, IGD and CG, for various runs with different number of iterations
for Instance 2KP50-50 are reported in Table 2. Values IGD = 0 and CG = 0 obtained after 395
iterations prove that all points on the true Pareto front were obtained.

Analyzing the values reported in Table 2, several conclusions can be we drawn:

• less iterations are needed in Math-N, and consequently less time, to reach the same number of
generated non-dominated vectors;

• based on the IGD metric values, the quality of the generated approximations to the true Pareto
front is better when using Math-C than Math-N;

• based on the CG metric values, the qualities of the generated approximations to the true Pareto
front by using Math-C and Math-N, respectively are not comparable, since the dispersion of
the first 39 non-dominated vectors obtained by running Math-N vs Math-C while the first 50
obtained by Math-C are better dispersed than those generated by Math-N.

5.1.2 Three objectives KP instances

This second group of experiments were carried out on several MOKP instances with three objectives
(p = 3), and three constraints (k = 3) with known Pareto front addressed in [19]. Five instances with
n = 25 were solved using the variant Math-C2N3, and their summarized results are reported in Table
3. The acronym Math-C2N3 stands for matheuristics variant that uses continual hypothetical bounds
when solving the pair of bi-objective problems (C2) and nadir-like hypothetical bounds when involving
three-objective functions in optimization (N3).

Detailed results related to Instance 5 and tolerance 1e− 7 are shown in Figure 3. On the left, the
dependency of the performance metric IGD is graphed with respect to the multp parameter. A greater
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Table 3: Summary of the results obtained using Math-C2N3 (with various integer tolerances) to solve
p = 3, n = 25 [19] instances.

Instance Tolerance 1e− 7 Tolerance 1e− 3 Tolerance 1e− 1
#NDs IGD Time (s) #NDs IGD Time (s) #NDs IGD Time (s)

1 175 1.620 12.46 175 1.629 12.35 175 1.629 12.49
2 167 0.298 14.85 166 0.478 12.08 166 0.478 11.94
3 64 3.850 4.13 59 6.097 2.08 59 6.097 2.09
4 143 2.880 27.43 134 3.974 6.28 134 3.973 6.26
5 465 0.097 134.85 386 2.041 50.94 386 2.041 51.18

Table 4: Comparative results: Grasp-C2C3 and “gamultiobj” for p = 3, n = 25 [19].
“gamultiobj” Graps-C2C3

pop=100, maxit=10000, tol.=1e-4 maxit2=20, maxit3=10, randit=50, length=5
Inst. |PF | #NDs Time(s) IGD HV #NDs Time(s) IGD HV

1 182 70 19.2 140.7 9.811e+6 65.1 0.48 32.0 3.648e+07
2 168 70 18.3 120.7 5.039e+6 56.5 0.48 41.3 1.499e+07
3 76 70 18.8 108.3 5.366e+6 44.8 0.50 38.6 1.161e+07
4 163 70 17.3 213.2 3.856e+5 45.1 0.48 39.2 1.156e+07
5 470 1 15.6 310.4 0 46.0 0.48 39.3 1.146e+07

number of non-dominated vectors means a better, smaller IGD value when the generated vectors are
well spread on the PF. The graph in the middle illustrates how the number of non-dominated vectors
generated in a fixed number of iterations varies with respect to the multp parameter. Note that the
number of generated non-dominated points has an abrupt increase from 0 to 20, and then stabilizes
around 465. On the right, one can see the dependency of the values of the IGD metric with respect
to the runtime.

Figure 3: The number of generated non-dominated vectors (on the left) and the IGD values (in the
middle) with respect to the multp values; and the IGD diversity metric values versus time (on the
right) for Instance 5 (p = 3, n = 25, [19])

On the same set of instances we run Grasp-C2C3, that used continual hypothetical bounds in
all optimization models, and compared its performances with the general function “gamultiobj” from
matlab. Table 4 reports the comparative results.

The value 0 for the hypervolume obtained by “gamultiobj” (reported in Table 4) shows that the
only point generated is dominated by the reference point defined based on the reference Pareto front
recalled from the literature.

The characteristic of the next group of instances is n = 50. Table 5 summarizes the results obtained
by Math-C2N3, Grasp-C2C3, and “gamultiobj”. The number of iterations imposed to our heuristics
was set to provide relevant comparative results, namely the performance metrics that correspond to
approximations of about 65-70 non-dominated points. For all five instances “gamultiobj” run the
longest, and derived low-quality approximations to the true PFs. Grasp-C2C3 has the best running
times for all instances providing more than three times better IGD values than “gamultiobj”.
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Table 5: Comparative results: Grasp-C2C3, Math-C2N3, and “gamultiobj” for p = 3, n = 50 [19].
“gamultiobj” Grasp-C2C3 Math-C2N3

pop=100, maxit=10000 maxit2=20, maxit3=10, maxit2=35, maxit3=30,
tolerance 1e− 4, randit=50, length= 5 tolerance 1e− 7

Inst |PF |
1 784
2 912
3 519
4 280
5 356

#NDs Time(s) IGD
70 18.93 380.5
70 17.98 395.1
70 18.06 505.2
70 18.24 242.2
70 23.11 463.0

#NDs Time(s) IGD
66.2 0.56 87.68
58.8 0.56 79.69
62 0.57 82.22

57.7 0.57 78.97
58.9 0.57 162.26

#NDs Time(s) IGD
72 4.62 51.37
85 3.99 46.61
72 3.62 45.09
60 3.91 29.21
82 4.78 71.11

Table 6: Average values obtained by running Grasp-C2C3 10 times for Instance 1 (p = 3, n = 50,
[19]), with fixed parameters maxit3 = 100, randit = 500, length = 5, and various values for maxit2.

Metrics maxit2
20 50 100 150

#NDs mean 5.64E+01 1.02E+02 1.48E+02 1.83E+02
var. coef. 2.39E-02 2.66E-02 2.38E-02 3.58E-02

Time (s) mean 3.98E+01 4.06E+01 4.14E+01 4.29E+01
var. coef. 3.05E-02 5.73E-02 8.04E-02 1.13E-01

IGD mean 8.72E+01 8.29E+01 7.70E+01 7.57E+01
var. coef. 2.58E-02 2.96E-02 4.18E-02 5.52E-02

HV mean 6.93E+07 7.23E+07 7.50E+07 7.57E+07
var. coef. 1.76E-02 1.02E-02 1.01E-02 1.49E-02

Finally, Math-C2N3 provided the best IGD values for all instances, but it needed about 8 times
more time than Math-C2N3. A better tuning of parameter p might improve the runtime of Math-
C2N3. In the same way, a small increase of the runtime of Grasp-C2C3 may yield significant better
values for IGD metric values.

Tabels 6, 7 and 8 provide detailed results obtained for Instance 1 (p = 3, n = 50, benchmark [19]).
We set the parameter length to value 5 for this group of experiments, and sequentially varied one of
the other three parameters maxit2 (number of iterations used in bi-objective optimizations), maxit3
(number of iterations used in three-objective optimizations), and randit (number of random iterations
for each hypothetical bound, separately) while keeping the other two fixed.

Varying the number of random iterations when keeping all other parameters fixed, no variance
within the number of generated points was expected. However, analyzing the values reported in Table
8 it is interesting to notice that the average number of derived points is negatively correlated with the
values of randit. The explanation is that, by increasing the value of randit, different maxit2 and/or
maxit3 iterations derive the same points, belonging to the Pareto front, and consequently providing
a better quality of the generated approximation.

Figure 4 shows the approximations obtained for two different runs of Math-C2N3 and Grasp-C2C3
on Instance 1 (p = 3, n = 50, benchmark [19]), together with the true Pareto front recalled from the

Table 7: Average values obtained by running Grasp-C2C3 10 times for Instance 1 (p = 3, n = 50,
[19]), with fixed parameters maxit2 = 20, randit = 500, length = 5, and various values for maxit3.

Metrics maxit3
10 20 50 100

#NDs mean 57.3 56.9 58.5 56.4
var. coef. 2.86E-02 3.04E-02 3.25E-02 2.39E-02

Time (s) mean 4.49 8.11 19.6 39.8
var. coef. 1.88E-02 1.56E-03 4.76E-03 3.05E-02

IGD mean 85.1 86 83.9 87.2
var. coef. 3.12E-02 4.44E-02 3.79E-02 2.58E-02

HV mean 7.01E+07 6.99E+07 7.05E+07 6.93E+07
var. coef. 1.54E-02 2.19E-02 1.71E-02 1.76E-02
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Table 8: Average values obtained by running Grasp-C2C3 10 times for Instance 1 (p = 3, n = 50,
[19]), with fixed parameters maxit2 = 20, maxit3 = 10, length = 5, and various values for randit.

Metrics randit
10 50 100 500

#NDs mean 68.7 67.5 63.2 57.3
var. coef. 2.06E-02 2.44E-02 1.95E-02 2.8558e-02

Time (s) mean 0.43 0.74 1.14 4.49
var. coef. 8.09E-03 3.96E-03 3.32E-03 1.8787e-02

IGD mean 92.6 86.5 86.4 85.1
var. coef. 5.70E-02 3.95E-02 2.68E-02 3.1208e-02

HV mean 6.22E+07 6.77E+07 6.80E+07 7.0089e+07
var. coef. 4.14E-02 2.01E-02 1.70E-02 1.5361e-02

literature. In this way, the quality improvements of the approximation with respect to the number of
iterations can be visualized.

Figure 4: Instance 1, p = 3, n = 50, [19]. The red NDs (58 on the left, 514 on the right) were generated
by Math-C2N3. The green approximated NDs (66 on both sides) were generated by Grasp-C2C3.

5.2 Results for large-scale instances

The numerical results obtained by running the heuristics on instances recalled from the literature
are summarized in Table 9. Matheuristics Math-N and Math-C were run one time on each instance,
since they do not relay on any randomization. Heuristics Grasp-N and Grasp-C were run ten times to
assure statistical relevance to the results, and Table 9 reports the mean values and the coefficients of
variance obtained for each performance metric. All runs contained 100 iterations within the progressive
dissection framework. The GRASP variants used additional 100 random iterations to improve each
constructed solution.

Several conclusions can be drawn from the results reported in Table 9:
• there are no big differences between the quality of approximations generated by the four variants

of our solution approach, and different performance metrics establish different ranks for the four
variants;

• comparing the runtimes, Math-N2 obtained the best quality results in three out of four cases,
while Math-C2 derived the best quality in the other case;

• comparing the HV metric values, Math-C2 provided the best quality results for all solved in-
stances;
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Table 9: Results of heuristics on large-scale instances. The best values obtained are shown in bold.
Heuristics Metrics 2KP500-411 2KP500-1B 2KP450-1B 2KP400-1B

Math-N2
#ND 98 97 96 100

Time (s) 9.7913 8.1772 6.7736 6.0942
HV 1.1546e+7 2.0669e+7 1.7689e+7 1.2982e+7

Math-C2
#ND 101 100 101 72

Time (s) 8.1193 36.567 6.961 23.383
HV 1.1562e+7 2.0717e+7 1.7717e+7 1.2983e+7

Grasp-N2

#ND 89 98 101 101
0.01790 0.00108 0.00475 0.01247

Time (s) 55.938 53.689 48.705 43.555
0.01485 0.00810 0.01253 0.01016

HV 1.1521e+7 2.0495e+7 1.7471e+7 1.2655e+7
0.00102 0.00127 0.00133 0.00314

Grasp-C2

#ND 78 94 94 76
0.02815 0 0.00773 0.03338

Time (s) 55.873 80.029 107.24 57.34
0.00855 0.00425 1.1535 0.00431

HV 1.1482e+7 2.0482e+7 1.7414e+7 1.2817e+7
0.00130 0.0011765 0.00099 0.00098

• generally, Grasp-N2 outperforms Grasp-C2 considering both runtime and HV metric values;

• even though Grasp-N2 succeeded to derive more approximated non-dominated points than all
other variants for one out of four instances, the quality of the approximation does not overcome
the quality obtained by matheuristics.

In what follows we provide some detailed results generated by our approach for Instance 2KP500-411.
Figure 5 clearly illustrates the good dispersion of the generated non-dominated points obtained after
10, 20 and 100 iterations, respectively. In addition, the non-dominated vectors of the continual Pareto
front are also reported to show the closeness of continual hypothetical bounds to the true Pareto front.

Figure 5: True Pareto front versus continual Pareto front, and approximations obtained for different
number of iterations for Instance 2KP500-411

6 Conclusion and further researches
In this study we theoretically addressed the general multiple objective combinatorial optimization

problem, and carried out experiments on multicriteria knapsack problems with two and three objective
functions. Being able to handle trade-offs among multiple conflicting objectives, as performance, cost,
and/or reliability, the multiobjective combinatorial optimization spread its applicability in the field of
complex control and communications systems.

We adapted the general framework PESA proposed in 2020 to solve continual problems to the
combinatorial case taking advantage of the particular shapes of both decision and criterion space of
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discrete problems, and replacing the exact optimization algorithms with new developed heuristics.
The main result is an anytime heuristics approach that is progressively dissecting the criterion set to
derive approximated non-dominated points.

Based on an optimization model formulated with the help of a hypothetical bound, our approach
advanced two different ways to chose the hypothetical bounds: (i) as non-dominated vectors obtained
by PESA applied to the integer relaxation of the original problem; and (ii) as the nadir point of a set
of certain already generated (approximated) non-dominated points. We also developed heuristics that
can solve large scale combinatorial optimization problems. Following the mathematical model, we
firstly proposed a matheuristics that, combined with a progressive dissection framework, was able to
generate the entire Pareto front for small-size instances. Secondly, we proposed a greedy randomized
adaptive search procedure based on a constructive heuristics, customized to solve multiple objective
knapsack problems.

The comparative numerical results reported in the paper support the conclusion that the new
introduced approach generated good first-level approximations to the Pareto fronts of the addressed
problems in reasonable time. Our approach was tested so far only on knapsack problems. This
limitation can be overcome by developing customized variants of heuristics applicable to other classes
of combinatorial problems, but keeping the same dissection framework.

In our future researches we will carry out more experiments, especially on instances with more
than three objective functions, aiming to incorporate more specialized indicators able to evaluate
the quality of generated Pareto front approximations of many-objective combinatorial optimization
problems. We will also investigate the behavior of our matheuristics when solving mixed integer
non-linear programming problems.

Another direction for further researches is to adapt our findings to solve multicriteria optimization
problems under uncertainty. Using fractional programming to aggregate the objective functions of a
bi-objective optimization problem is also of interest in our next researches.
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