INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL

Online ISSN 1841-9844, ISSN-L 1841-9836, Volume: 20, Issue: 6, Month: December, Year: 2025

Article Number: 7240, https://doi.org/10.15837/ijccc.2025.6.7240

Prioritising Strategies to Improve Girls' Access to Quality Education: A Hybrid Hyperbolic Fuzzy MCDM Framework with Human and AI Expertise

A. Yadav, R. Krishankumar, KS. Ravichandran, V. Zemlickienė, Z. Turskis*

Abhishek Yadav

Department of Mathematics, Amrita School of Physical Sciences Amrita Vishwa Vidyapeetham, Coimbatore, India cb.sc.i5das20002@cb.students.amrita.edu

Raghunathan Krishankumar

IT Systems and Analytics Area IIM Bodh Gaya, Bihar, India raghunathan.k@iimbg.ac.in

Kattur Soundarapandian Ravichandran

Faculty of Civil Engineering, Institute of Sustainable Construction Laboratory of Smart Building Systems, Vilnius Gediminas Technical University, Vilnius, Lithuania ravi-chandran.kattur-soundarapandian@vilniustech.lt

Vaida Zemlickienė

Institute of Sustainable Construction Vilnius Gediminas Technical University, Vilnius, Lithuania vaida.zemlickiene@vilniustech.lt

Zenonas Turskis*

Faculty of Civil Engineering, The Institute of Sustainable Construction Vilnius Gediminas Technical University, Vilnius, Lithuania *Corresponding author: zenonas.turskis@vilniustech.lt

Abstract

Access to quality education for girls is one of the key targets of the United Nations' Sustainable Development Goals. This study has two major goals. First, this study proposes a hybrid decision framework that integrates hyperbolic fuzzy sets, multi-attitudinal variance, soft cluster rectangle, and integrated simple weighted sum product methods to prioritise strategies that improve access to quality education for girls. Second, this study explores the use of generative AI expertise in a multi-criteria decision-making framework that traditionally uses only human experts. The findings reveal "Effectiveness" to be the most important criterion when assessing the strategies and "Health and Hygiene Interventions" to be the most prioritised strategy. The findings also show a divergence of opinions between the AI experts and human experts in the extremes and alignment of opinions in the non-extremes. The study serves as a foundation for future research on integrating generative AI into decision-making frameworks while also providing policymakers with a structured approach to prioritising strategies for improving girls' education.

Keywords: Girls' Education, Soft Cluster Rectangle, Hyperbolic Fuzzy Sets, Generative AI, Hybrid Decision Framework.

1 Introduction

economic progress. Despite significant strides made in improving access to quality education for girls, deep-seated gender inequality persists, particularly in regions where societal, economic, and cultural barriers hinder girls' access to quality education. These inequalities are most evident in developing and low-income countries, where poverty, restrictive gender norms, and inadequate infrastructure create significant obstacles for female students. The urgency to bridge this educational gap is highlighted by global initiatives such as the United Nations' "Sustainable Development Goals (SDG)," placing a strong emphasis on achieving gender equality in education. Specifically, SDG 4 aims to ensure inclusive and equitable quality education for all, and SDG 5 aims to empower women and girls [39]. Efforts to improve access to quality education for girls have led to the development of a variety of intervention strategies, each targeting different aspects of the barriers that girls face with respect to educational access. However, understanding, evaluating, and prioritising these strategies remain a critical challenge. The limited resources and time-bound nature of the SDGs necessitate the development of efficient decision-making systems that prioritise the strategies to improve access to quality education for girls. These systems would help the policymakers understand and prioritise strategies based on different contexts. Given the diverse and multidimensional nature of barriers to girls' education, "Multi-Criteria Decision Making (MCDM)" methods emerge as valuable tools for prioritising the strategies to improve educational access for girls. The MCDM methods offer structured approaches to assess, compare, and prioritise educational strategies based on multiple, often conflicting criteria. However, the traditional MCDM approaches face limitations when dealing with uncertainty, imprecise data, and subjective judgements—all of which are inherent in social policy decisions. Human experts such as educators, policymakers, and social workers bring valuable domain-specific knowledge and experience. However, their inputs may be prone to cognitive fatigue, response bias, and individual subjectivity. These may get amplified when using traditional data collection methodology such as the classical Likert scales due to it's rigidity, and to address these, interpreting the data using fuzzy logic has been proposed as a viable solution [8]. Prasad and Pandey [31] discuss the idea of "Wisdom of Generative Artificial Intelligence Crowd" to overcome limitations posed by "Wisdom of Crowd". Similarly, drawing from Licklider's vision of "man-computer symbiosis", Filip [18] discusses how "Artificial Intelligence (AI)" can augment human intellect and enable new styles of work. Building on these insights, this study hypothesizes that AI-based experts, specifically large language models that were trained on extensive datasets, can be employed alongside human experts in MCDM processes. By integrating large language models based evaluations with human judgment, this hybrid approach aims to provide a more robust and scalable framework for prioritising strategies that improve access to quality education for girls.

Education is recognised as an important determinant of sustainable development, social equity, and

The research questions this study aims to address are:

- (RQ1) What are the strategies that improve access to quality education for women?
- (RQ2) What is the priority of these strategies when evaluated against various assessment criteria?
- (RQ3) Can generative AI be used as experts in MCDM-based decision frameworks alongside human experts?

In brief, this study has the following components:

- Identification of strategies: Strategies that can improve access to quality education for girls are identified through a comprehensive literature review.
- Data collection: Ratings of strategies on various criteria and the importance of the criteria are collected using a questionnaire from human experts and AI experts. The data is interpreted using "Hyperbolic Fuzzy Set (HYFS)" to effectively model uncertainty [13].
- Weight estimation of experts: Weight values of the experts are estimated using the multiattitudinal variance method.

- Weight estimation of criterion: Weight values of the criterion are estimated using the "Soft Cluster Rectangle (SCR)" method [45].
- Strategies prioritisation: The ranks of the strategies are computed using the "Integrated Simple Weighted Sum Product Method (WISP)" method [36].

Ultimately, this study aims to support policymakers, educators, and development organisations in prioritising effective, inclusive, and sustainable interventions for promoting girls' education. Thus, the study contributes to the broader goal of achieving educational equity and gender equality on a global scale.

2 Literature review

In this section, a literature review of various strategies for improving access to quality education for girls and MCDM methods for education and gender equality was performed.

2.1 Studies on strategies to improve access to quality education for girls

In this section, some relevant literature that discusses strategies, policy interventions, and approaches to improve access to quality education for girls has been reviewed. Researchers working in the field of policy and gender have considered various barriers to quality education faced by girls. The strategies have been categorized into six distinct groups, each targeting a specific barrier to girls attaining quality education. The descriptions and studies supporting the strategies are given in Table 1.

2.2 Studies on MCDM for access to education and gender equality

Wang et al., [40] studied factors affecting "women's participation in engineering education" using a fuzzy "Decision Making Trial and Evaluation Laboratory (DEMATEL)" [19] approach. Adhikari et al., [1] studied the factors affecting the empowerment of women in India, using an "Analytic Hierarchy Process (AHP)" [34] and "Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)" [21] approach. Similarly, Yıldırım and Köroğlu, [43] used a fuzzy AHP-TOPSIS approach to evaluate social indicators of women's empowerment. Huang et al., [20] developed a fuzzy TOPSIS framework to evaluate strategies that improve e-teaching adoption in Indian educational organisations. Adhikari et al., [2] evaluated "women's empowerment in different states of India" using an entropy and "Vise Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR)" [44] approach. Ayçin et al., [5] applied MCDM methods such as "Method based on the Removal Effects of Criteria (MEREC)" [22] and "Measurement of Alternatives and Ranking according to COmpromise Solution (MACROS)" [37] approaches to evaluate women's human development level across different countries. From these studies it can be noted that a variety of MCDM approaches have been used in the literature in the context of education and gender. However, usage of MCDM approaches, particularly to evaluate strategies that improve access to education for women remains limited. A notable limitation across these studies is the lack of consideration towards expert weights. Generative AI's potential to provide inputs to MCDM approaches has not been explored in the literature. Table 2 summarises the characteristics of the MCDM approaches used in the discussed studies.

3 Methodology

In this section, the methodologies and decision frameworks adapted to evaluate the strategies to improve access to quality education for girls while simultaneously considering multiple criteria and experts have been described.

Table 1: Strategies that improve access to quality education for girls

	ble 1: Strategies that improve access to quality education for girls	
Strategy	Description	Source
Financial Interven-	To target the economic barriers faced by poor families in providing education to their	[32], [15],
tions	female children, policymakers have developed multitudes of strategies. These strategies	[4], [11],
	address the direct and indirect costs of schooling, as well as the opportunity costs families	[27], [16]
	incur when sending girls to school instead of engaging in household labor or income-	
	generating activities. The strategies that address the economic barriers can be further	
	classified into three subgroups: conditional monetary incentives, unconditional monetary	
	incentives, and subsidies. Conditional monetary incentives involve the students or the	
	families receiving financial payments contingent on specific behaviors such as regular	
	school attendance, and academic performance.	[
Accessibility and	Improving physical accessibility and infrastructure targets the physical and safety bar-	[23], [17],
Infrastructure In-	riers that prevent girls from attending and staying in school. The strategy focuses on	[29], [9],
terventions	creating physical environments and providing solutions through interventions that en-	[28], [25]
	sure the safety, comfort, and accessibility of educational facilities making it easier for	
	girls to participate fully in the learning process. These include: providing transport	
	facilities, bringing schools physically closer to marginalized communities, and improving	
	local facilities	[20] [40]
Communal Advo-	Community advocacy and cultural change targets the societal norms and practices that	[26], [10],
cacy and Cultural	hinder girls' access to education. Engaging communities through awareness campaigns,	[3]
Interventions	local leadership involvement, and grassroots movements can challenge and transform	
	discriminatory attitudes towards girls' education. These include campaigns like "Beti	
	Bachao Beto Padhao" in India, and "Campaign for Female Education" in Ghana. The	
	studies show that while many of these programs may not yield significant results in the	
	short term, they play a crucial role in laying the groundwork for long-term change in	
The sheet Oriented	girls' education.	[1.4] [1.6]
Teacher-Oriented	Teacher-oriented interventions play a crucial role in improving girls' access to education	[14], [16],
Interventions	by addressing barriers related to gender representation and pedagogical practices. These	[24]
	strategies involve not only the recruitment and training of teachers but also enhancing the support system for educators to foster an inclusive and supportive learning environment	
	for girls.	
Health and Hygiene	Health and hygiene interventions address the barriers posed by inadequate sanitation fa-	[42], [35]
Interventions	cilities, menstrual health management, and poor overall health, which disproportionately	[42], [50]
Interventions	affect girls' education. These interventions aim to create a supportive environment where	
	girls can attend school consistently without being hindered by health-related challenges.	
	Studies highlight the role of health and hygiene interventions in improving educational	
	outcomes for girls particularly those in under-served and marginalized communities,	
	where the associated barriers are most pronounced.	
Technology-Driven	Technology-driven interventions aim to leverage digital tools and platforms to address	[33], [30],
Interventions	barriers to related to limited infrastructure or teacher availability and focus on reducing	[47]
11101 (011010110	gender disparities in access to educational technology. Various studies highlight the	[*']
	impact of e-learning platforms, mobile applications, and digital resources in improving	
	access to education for girls.	

Table 2: Summary of studies on MCDM for education and gender equality

Table 2. Summary of studies on MCDM for education and gender equality						
Source	Fuzzy used	MCDM ap-	Pair-wise	Criteria	Expert weights	Generative AI
		proaches used	comparison	weights consid-	considered	expertise used
			avoided	ered		
[40]	Interval type	DEMATEL	X	NA	X	X
	2 trapezoidal					
	fuzzy					
[1]	None	AHP-TOPSIS	X	√	X	X
[43]	Triangular	AHP-TOPSIS	X	√	X	X
	fuzzy					
[20]	Triangular	TOPSIS	✓	X	X	X
	fuzzy					
[2]	Generalized	Entropy-	√	√	X	X
	triangular	VIKOR				
	intuitionistic					
	fuzzy					
[5]	None	MEREC-	√	√	X	X
		MACROS				

3.1 Preliminaries

HYFS was first introduced by Dutta and Borah [13] to address the limitation faced by traditional fuzzy sets, such as q-rung ortho pair fuzzy sets, by using a product-based constraint rather than a sumbased constraint. The product-based constraint and the operators proposed by Dutta and Borah [13] have been hypothesised to provide more flexible and accurate modelling of uncertainties in real-world scenarios. Researchers have adapted the HYFS for various applications, such as Banik and Dutta [7] have used the HYFS-based framework in determining crime zones in a city. The basic concepts and formulations regarding the HYFS are discussed below.

Definition 1 [13]. A HYFS H_X for a reference set X, is given by

$$H_X = \{x, \mu_h(x), \nu_h(x) \mid \forall x \in X\}$$

$$\tag{1}$$

$$\mu_h(x), \nu_h(x) \in [0, 1]$$
 (2)

$$0 \le \mu_h(x) \cdot \nu_h(x) \le 1 \tag{3}$$

where, $\mu_h(x)$ and $\nu_h(x)$ are the degrees of membership and non-membership for a given element $x \in R$ to the HYFS H_X respectively.

Definition 2 [13]. For a HYFS H_X , the indeterminateness $\varphi(H_x)$ is given by

$$\varphi(H_x) = 1 - \mu_h(x) \cdot v_h(x), \forall x \in X \tag{4}$$

Definition 3 [12],[13]. The basic unary and binary operations for two HYFS H_X , and H_Y for the reference sets X, and Y are given by:

Score:
$$S(H_X) = 2\mu_h(x) - \mu_h(x) \cdot \nu_h(x), \ \forall x \in X$$
 (5)

Power:
$$H_X^{\gamma} = (\mu_h(x)^{\gamma}, 1 - (1 - \nu_h(x))^{\gamma}), \ x \in X, \ \gamma > 0$$
 (6)

Scalar multiplication:
$$\gamma \cdot H_X = (1 - (1 - \mu_h(x))^{\gamma}, \nu_h(x)^{\gamma}), \ x \in X, \gamma > 0$$
 (7)

Complement:
$$H_X^c = (1 - \nu_h(x), 1 - \mu_h(x)), x \in X$$
 (8)

Addition:
$$H_X + H_Y = (\mu_h(x) + \mu_h(y) - \mu_h(x) \cdot \mu_h(y), \nu_h(x) \cdot \nu_h(y)), \ x \in X, y \in Y$$
 (9)

Multiplication:
$$H_X \times H_Y = (\mu_h(x) \cdot \mu_h(y), \nu_h(x) + \nu_h(y) - \nu_h(x) \cdot \nu_h(y)), \ x \in X, y \in Y$$
 (10)

the equations (5)-(10) will aid in the development of the methodology.

3.2 Estimation of expert weight using multi-attitudinal variance

This section proposes a set of procedures that uses a multi-attitudinal variance method to assign weights to experts. Expert weight estimation is important for any real-world decision problem involving human participants because cognitive fatigue and response bias can impact the inputs given by human participants sampled using convenience sampling. This proposed multi-attitudinal variance method has the following assumptions.

Hypothesis 1. Higher variance in expert-given input suggests a broader range of evaluations and usage of the full range of the response scale rather than defaulting to a particular opinion, thus a sign of lower response bias.

Hypothesis 2. Lower variance in expert-given input suggests consistency and focused evaluations rather than providing random responses, thus a sign of lower cognitive fatigue.

When considering hypothesis 1 alone, experts with higher variance should be given higher importance. When considering hypothesis 2 alone, experts with lower variance should be given higher importance. In the multi-attitudinal variance method for expert weight estimation, both hypotheses are considered equally.

The steps for the estimation of expert weight using the multi-attitudinal variance method are as follows:

Step 1: For each expert e, a decision matrix $X^{(e)} = \left[x_{ij}^{(e)}\right]_{m \times n}$ is to be constructed, such that

 $x_{ij}^{(e)}$ is the value given by that particular expert for the i^{th} alternative on the j^{th} criterion. Where $i=1,2,3,\ldots,m,\,j=1,2,3,\ldots,n,$ and $e=1,2,3,\ldots,k.$

Step 2: The decision matrix $X^{(e)}$ is flattened to a 1-dimensional vector of size $1 \times m \cdot n$.

Step 3: The variance value of the flattened decision vector $X^{(e)}$ is computed.

$$var^{(e)} = \frac{1}{m \cdot n} \sum_{i,j=1}^{m \cdot n} \left(x_{ij}^{(e)} - \bar{x}^{(e)} \right)^2$$
(11)

where, $\operatorname{var}^{(e)}$ is the variance $x_{ij}^{(e)}$ is a value from the flattened decision vector $X^{(e)}$, and $\bar{x}^{(e)} = \frac{1}{m \cdot n} \sum_{ij=1}^{m \cdot n} x_{ij}^{(e)}$ is the mean of the flattened decision vector $X^{(e)}$.

Step 4: The variance values are aggregated into the vector $V = \left[\operatorname{var}^{(e)} \right]_{1 \times k}$

Step 5: The variance vector V is normalised $W = \left[we^{(e)}\right]_{1 \times k}$ using equation (12).

$$we^{(e)} = \frac{\operatorname{var}^{(e)}}{\sum_{e} \operatorname{var}^{(e)}} \tag{12}$$

The normalised variances $we^{(e)}$ capture hypothesis 1.

Step 6: To capture hypothesis 2, the inverse of W, denoted as $W^{-1} = \left[iwe^{(e)}\right]_{1 \times k}$, is calculated as:

$$iwe^{(e)} = \frac{1 - we^{(e)}}{\sum_{e} (1 - we^{(e)})}$$
(13)

Step 7: The hypothesis 1 values $we^{(e)}$ and hypothesis 2 values $iwe^{(e)}$ are aggregated to estimate the final expert weight.

$$wk^{(e)} = \alpha \cdot we^{(e)} + (1 - \alpha) \cdot iwe^{(e)}$$
(14)

where $wk^{(e)}$ is the estimated expert weight that considers both hypotheses and α is a parameter set to 0.5.

3.3 Estimation of criteria weights using the soft cluster-rectangle method

In this section, an SCR method for weighting criteria is presented. Criterion weighting is an important procedure in any real-world decision problem. As humans often think in terms of the relative importance of entities, assigning weights to these helps capture the preferences and priorities of the decision-makers. The SCR method proposed by Zakeri et al., [45] is a very efficient criterion weighting method as it avoids using pairwise comparisons used by most traditional methods like DEMATEL and AHP. In this method, the decision-makers assign membership values of each criterion to three clusters: "Vital", "Mediocre", and "Immaterial". These cluster membership values are then used to calculate the weights for the criterion. The steps adapted from the SCR method for this study are as follows:

Step 1: For each expert e, a decision matrix $X^{(e)} = \left[x_{ij}^{(e)}\right]_{3\times n}$ is to be constructed, where $x_{ij}^{(e)}$ represents the membership value given by that particular expert for the j^{th} criterion in the i^{th} cluster. The clusters are defined as: α is the "Vital" cluster, β is the "Mediocre" cluster, γ is the "Immaterial" cluster. The membership values satisfy the condition $L \leq x_{ij}^{(e)} \leq H$, where H = 0.9 represents the highest possible membership, L = 0.1 is the lowest possible membership, and M = 0.5 represents a neutral membership.

Step 2: The decision matrices $X^{(e)}$ are aggregated to form $X = [x_{ij}]_{3 \times n}$ using the "simple geometric weighted mean," with expert weights $w^{(e)}$ obtained in the previous section:

$$x_{ij} = \prod_{e} \left(x_{ij}^{(e)} \right)^{wk^{(e)}} \tag{15}$$

Step 3: The aggregated decision matrix $X = [x_{ij}]_{3\times n}$ is converted to a fuzzy representation matrix $\mathcal{N} = [\mu_{ij}]_{3\times n}$. The μ_{ij} is a fuzzy representation of x_{ij} in the form of $(l_{ij}, \tau_{ij}, u_{ij})$, where l_{ij} is the lower

boundary, τ_{ij} is the centre, and u_{ij} is the upper boundary of the membership. The conversion of x_{ij} to μ_{ij} is performed using the following conditions:

If
$$x_{ij} \in [M, H]$$
 and $x_{ij} \ge \frac{M+H}{2}$, $\mu_{ij} = \left(x_{ij}, x_{ij}, \frac{H+x_{ij}}{2}\right)$ (16)

If
$$x_{ij} = H$$
, $\mu_{ij} = \left(\frac{3H + M}{4}, H, H\right)$ (17)

If
$$x_{ij} = M$$
, $\mu_{ij} = \left((M - L) - \frac{M^3}{3H}, M, \frac{3HL + M^2}{M} \right)$ (18)

If
$$x_{ij} = L$$
, $\mu_{ij} = (L, L, L)$ (19)

If
$$x_{ij} < M$$
, $\mu_{ij} = \left(\frac{x_{ij}(x_{ij} + L + 2M)}{2}, x_{ij}, x_{ij}\right)$ (20)

If
$$x_{ij} > M$$
 and $x_{ij} < \frac{M+H}{2}$, $\mu_{ij} = \left(\frac{3x_{ij} + M}{4}, x_{ij}, x_{ij}\right)$ (21)

Step 4: The weights $\omega_{\alpha}, \omega_{\beta}, \omega_{\gamma}$ for each cluster are to be set in such a way that the weights reflect the importance of members of the clusters. If a cluster is assigned higher weights, then it would mean that the members of the cluster are of higher importance. It is also to be noted that $0 \le \omega_i \le 1$, and $\sum_i \omega_i = 1$.

Step 5: The cumulative soft cluster rectangle area ε_j for each criterion j is calculated using the following equation:

$$\varepsilon_{j} = 2\left(\omega_{\alpha}^{2}l_{\alpha j}\tau_{\alpha j} + \omega_{\alpha}^{2}l_{\alpha j}u_{\alpha j} + \omega_{\alpha}^{2}\tau_{\alpha j}u_{\alpha j} + \omega_{\beta}^{2}l_{\beta j}\tau_{\beta j} + \omega_{\beta}^{2}l_{\beta j}u_{\beta j} + \omega_{\beta}^{2}\tau_{\beta j}u_{\beta j} + \omega_{\gamma}^{2}l_{\gamma j}\tau_{\gamma j} + \omega_{\gamma}^{2}l_{\gamma j}u_{\gamma j} + \omega_{\gamma}^{2}\tau_{\gamma j}u_{\gamma j}\right)$$

$$(22)$$

Step 6: The cumulative soft cluster rectangle areas ε_j are normalized to determine the weight of each criterion j:

$$wc_j = \frac{\varepsilon_j}{\sum_j \varepsilon_j} \tag{23}$$

where wc_i represents the weight of criterion j.

3.4 Estimation of ranks for the strategies using the integrated simple weighted sum product method.

In the section, the WISP method for ranking alternatives is presented. Ranking of alternatives, particularly in real-world decision problems, requires consideration of various criteria, the importance of those criteria, and multiple ways of interpreting how the criteria are combined. The WISP method proposed by Stanujkic et al., [36] is an MCDM ranking method that integrates four different weighted sum and weighted product-based models. The WISP approach has also been adapted for various real-world case studies, such as the study by Ulutaş et al., [38] which used WISP for a sustainable supplier selection problem. The steps adapted from the WISP method for this study are as follows: Step 1: For each expert e, a decision matrix $A^{(e)} = \begin{bmatrix} a_{ij}^{(e)} \end{bmatrix}_{m \times n}$ is to be constructed, where $a_{ij}^{(e)}$ represents the value given by the particular expert e for the ith alternative on the jth criterion. Here, $i = 1, 2, 3, \ldots, m, j = 1, 2, 3, \ldots, n$, and $e = 1, 2, 3, \ldots, k$. It should be noted that each criterion j can belong to either a "benefit" or "cost" type.

Step 2: The decision matrices $A^{(e)} = \left[a_{ij}^{(e)}\right]_{m \times n}$ are to be normalised to $X^{(e)} = \left[x_{ij}^{(e)}\right]_{m \times n}$ using the following equation:

$$x_{ij}^{(e)} = \frac{a_{ij}^{(e)}}{\max_{i} a_{ij}^{(e)}} \tag{24}$$

Step 3: Four different models adapted from WISP are computed for each i^{th} alternative from each expert e:

$$wsd_i^{(e)} = \left(\sum_{j \in \text{benefit}} x_{ij}^{(e)} \cdot wc_j\right) - \left(\sum_{j \in \text{cost}} x_{ij}^{(e)} \cdot wc_j\right)$$
(25)

$$wpd_i^{(e)} = \left(\prod_{j \in \text{benefit}} \left(x_{ij}^{(e)}\right)^{wc_j}\right) - \left(\prod_{j \in \text{cost}} \left(x_{ij}^{(e)}\right)^{wc_j}\right)$$
(26)

$$wsr_i^{(e)} = \frac{\sum_{j \in \text{benefit}} x_{ij}^{(e)} \cdot wc_j}{\sum_{j \in \text{cost}} x_{ij}^{(e)} \cdot wc_j}$$

$$(27)$$

$$wpr_i^{(e)} = \frac{\prod_{j \in \text{benefit}} \left(x_{ij}^{(e)}\right)^{wc_j}}{\prod_{j \in \text{cost}} \left(x_{ij}^{(e)}\right)^{wc_j}}$$

$$(28)$$

Step 4: The values from the four models are to be normalized using the normalization equations (29)-(32) that were adapted from Zavadskas et al., [46].

$$\overline{wsd}_{i}^{(e)} = \frac{1 + wsd_{i}^{(e)}}{1 + \max_{i} (wsd^{(e)})}$$
(29)

$$\overline{wpd}_{i}^{(e)} = \frac{1 + wpd_{i}^{(e)}}{1 + \max_{i} (wpd^{(e)})}$$
(30)

$$\overline{wsr_i^{(e)}} = \frac{1 + wsr_i^{(e)}}{1 + \max_i (wsr^{(e)})}$$
(31)

$$\overline{wpr_i^{(e)}} = \frac{1 + wpr_i^{(e)}}{1 + \max_i (wpr^{(e)})}$$
(32)

Step 5: The overall weights of the alternative i given by expert e is to be computed by finding the mean of the four normalized model values:

$$ws_i^{(e)} = \frac{1}{4} \left(\overline{wsd}_i^{(e)} + \overline{wpd}_i^{(e)} + \overline{wsr}_i^{(e)} + \overline{wpr}_i^{(e)} \right)$$

$$(33)$$

where $ws_i^{(e)}$ is the weight of the alternative i given by expert e, these are to be used to assign ranks with respect to the expert e such that the alternative i with the highest $ws_i^{(e)}$ is given rank 1, and the one with the lowest $ws_i^{(e)}$ is given rank m.

Step 6.1: Applying steps 1-5 for decision matrices of each expert e, k vectors of dimensions $1 \times m$ are obtained. The final rankings are obtained using a rank fusion procedure that takes into consideration the expert weights.

Step 6.2: Let the outputs of applying steps 1-5 for each expert e be aggregated into a single matrix $R = \left[r_i^{(e)}\right]_{k \times m}$, where the $r_i^{(e)}$ represents the rank assigned to the the alternative i using the decision matrix of expert e.

Step 6.3: Aggregated rank values for each alternative i are obtained using equation (34).

$$ar_i = \sum_{e=1}^k r_i^{(e)} * wk^{(e)}$$
(34)

where ar_i is the aggregated rank value for each alternative i.

Step 6.4: The vector $AR = [ar_i]_{i \times 1}$ is then inverted using equation (35).

$$iar_i = \max(AR) - ar_i \tag{35}$$

By performing equation (35), the value of iar_i whose ar_i is the maximum, becomes zero. These iar_i values of the alternatives are then used to find the final rankings of the alternatives.

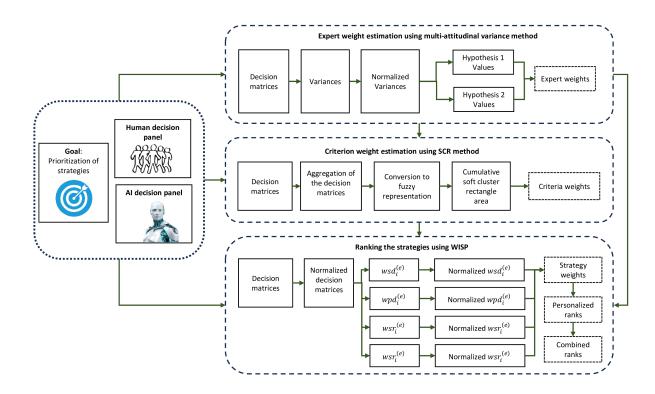


Figure 1: Workflow of the proposed decision framework

3.5 Workings of the proposed decision framework

The proposed decision-making framework's simplified workflow has been shown in Figure 1 to help better understand the decision framework. The application of the framework to a real-world case is tackled in the next section. In the decision framework workflow, a panel of k experts who are usually people with a high level of exposure to the respective decision problem is formed. The k experts give their opinion on m strategies versus n criteria and membership of n criteria to the three clusters mentioned in section 3.3. The multi-attitudinal variance method takes in the strategy versus criterion information and gives a $1 \times k$ vector of the expert weights. The SCR method takes in the criterion cluster membership information and gives a $1 \times n$ vector of criterion weights. The WISP method is applied individually on strategy versus criterion information given by each expert to obtain $1 \times m$ vector of personalised ranks; these are then fused using the fusion procedure mentioned in section 3.4 to obtain the combined ranks of the strategies.

4 Case study

In this section, the case study of prioritising strategies that improve access to education for girls is presented. The case study considers six strategies: Financial Interventions (S1), Accessibility and Infrastructure Interventions (S2), Communal Advocacy and Cultural Interventions (S3), Teacher-Oriented Interventions (S4), Health and Hygiene Interventions (S5), and Technology-Driven Interventions (S6). These strategies are to be prioritized using the following five criteria: Effectiveness (C1), Long-term Sustainability (C2), Cultural Compatibility (C3), Implementation Complexity (C4), and Implementation Cost (C5). For brevity, the six strategies are hereon referred to as S1, S2, ..., S6, and the five criteria are referred to as C1, C2, ..., C5. The criteria C4 and C5 are of the cost type, while the rest are of the benefit type.

Demographic Variables	Subgroups	Number of Experts
Age	20 - 40	1
	40 - 50	5
	≥ 50	2
Highest Education	Doctorate	8
Gender	Male	4
	Female	4

Table 3: Demographic summary of the first panel

4.1 Data

Two decision panels are constructed to evaluate the strategies and the criterion for the case study. The first panel formed through convenience sampling consists of eight human experts with scholarly backgrounds and substantial work experience in academia and research. These experts were selected because of their background that equips them with advanced skills in evidence-based decision-making. For brevity, the members of the first panel will hereon be referred to as E1, E2, ..., E8. The second panel consists of four state-of-the-art models as of the year 2025, "Chain of Thought" [41] enabled large language models: GPT-40 by OpenAI (A1), Gemini 2.0 Flash by Google (A2), DeepThink R1 by DeepSeek (A3), and Grok 3 by xAI (A4). These models were considered for this study due to their advanced reasoning capabilities, which allow them to simulate structured, step-by-step decision-making processes akin to human experts. For brevity, the members of the second panel will hereon be referred to as A1, A2, ..., A4. A demographic summary of the panel members in the first panel is provided in Table 3.

A custom five-element scale questionnaire to collect the panel members' rating on the criterion and the strategies was designed. The linguistic terms used in the scale for collecting ratings were: Very High, High, Moderate, Low, and Very Low. The questionnaire was provided to the first panel through Google forms. The Table 1 was first given as a prompt to the second panel through their respective websites to set the context, and then the questionnaire in the form of plain text was prompted to the second panel.

4.2 Application of the proposed decision framework

The proposed decision framework involves computing the relative importance of experts, estimating criterion weights, and finally assessing the strategies that improve access to quality education for girls. It is to be noted that the framework is applied to the data from each panel independently of each other. The steps that are used to apply the decision framework on the case example on panel member-given data are as follows:

Step a: Decision matrices of dimension 6×5 are formed to store strategies versus criterion data mentioned in section 3.4, and decision matrices of dimension 3×5 are formed to store criterion versus cluster membership data mentioned in section 3.3. The custom five-element scale data is interpreted using HYFS and is converted to score values using equation (5). Since, in section 3.3 the H=0.9 and L=0.1, the scores are to be normalised to the range of [0.1,0.9] using min-max normalisation described in equation (36). It is also to be noted that the HYFS values are designed so that the highest membership is 0.9 and the lowest is 0.1, with non-membership being their complement, while the intermediate values are placed equidistantly to ensure a balanced and symmetric transition. The linguistic terms, HYFS values, the respective scores, and normalised scores are described in Table 4.

$$x' = 0.1 + \frac{(x - x_{\min})}{(x_{\max} - x_{\min})} \times (0.9 - 0.1)$$
(36)

where x' represents the normalised score, x_{\min} represents the minimum computed score, and x_{\max} represents the maximum computed score.

Step b: The procedures mentioned in section 3.2 are applied for each expert given strategies versus criterion data in order to compute the expert weights. Table 5 shows the hypothesis 1 and hypothesis 2 values alongside the computed expert weights for the first decision panel, whereas Table 6 shows the

Table 4. Diliguistic terms and conversions					
Linguistic Terms	HYFS	Score	Normalized Score		
Very High	(0.9, 0.1)	1.710	0.900		
High	(0.7, 0.3)	1.190	0.640		
Moderate	(0.5, 0.5)	0.750	0.420		
Low	(0.3, 0.7)	0.390	0.240		
Very Low	(0.1, 0.9)	0.110	0.100		

Table 4: Linguistic terms and conversions

Table 5: Expert weights for the first decision panel

Expert	Variance	Hypothesis 1 Values	Hypothesis 2 Values	Expert Weights
E1	0.023	0.089	0.13	0.109
E2	0.061	0.232	0.11	0.171
E3	0.034	0.129	0.124	0.127
E4	0.024	0.09	0.13	0.11
E5	0.052	0.197	0.115	0.156
E6	0.029	0.111	0.127	0.119
E7	0.023	0.089	0.13	0.109
E8	0.017	0.064	0.134	0.099

same for the second decision panel.

Step c: The procedure mentioned in section 3.3 is applied for each expert given criterion versus cluster membership data to compute the criterion weights. It is to be noted that the weights $\omega_{\alpha}, \omega_{\beta}, \omega_{\gamma}$ are set to 0.6, 0.3, and 0.1, respectively. Table 7 shows the criterion weights computed using the data from the first decision panel and the second decision panel independently of each other.

Step d: Using the criteria weights obtained from the previous step from the each decision panel and the procedure mentioned in section 3.4 the personalized ranks and the combined ranks for each decision panel is obtained. To obtain the final ranking, the combined ranks from the first decision panel and the combined ranks from the second decision panel are fused together using steps 6.1 to 6.4 from section 3.4, with both panels getting equal weights. The personalised and the combined ranks are described in Table 8. The heat map of the cosine similarity score as defined by equation (37) for the strategies ranks is shown in Figure 2.

cosine similarity =
$$\frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \times \sqrt{\sum_{i=1}^{n} B_i^2}}$$
 (37)

where A and B are two n-dimensional vectors.

5 Discussion and conclusion

Education is an important driver of economic growth, and facilitating access to education positively influences the prospects of future generations, especially in developing countries [6]. Improving access to quality education for girls is one of the crucial targets of the United Nations' SDG 4 and 5. To achieve this, a variety of strategies have been proposed by various researchers and policymakers. However, due to the resource and time constraints, it is essential to prioritise the implementation of the strategies in accordance with the implementation context. Various MCDM methods have been designed by researchers; however, they also have various limitations. The MCDM methods that rely on human expert-given opinions are susceptible to the subjectivity of the human experts.

Table 6: Expert weights for the second decision panel

Expert	Variance	Hypothesis 1 Values	Hypothesis 2 Values	Expert Weights
A1	0.036	0.308	0.231	0.269
A2	0.044	0.382	0.206	0.294
A3	0.024	0.205	0.265	0.235
A4	0.012	0.106	0.298	0.202

Table 7: Criteria weights using both the decision panels

Criteria	Criterion Weights by AI Experts	Criteria Weights by Human Experts
Effectiveness (C1)	0.2957	0.2756
Long-term Sustainability (C2)	0.2957	0.1875
Cultural Compatibility (C3),	0.2552	0.2155
Implementation Complexity (C4)	0.0748	0.1694
Implementation Cost (C5)	0.0785	0.152

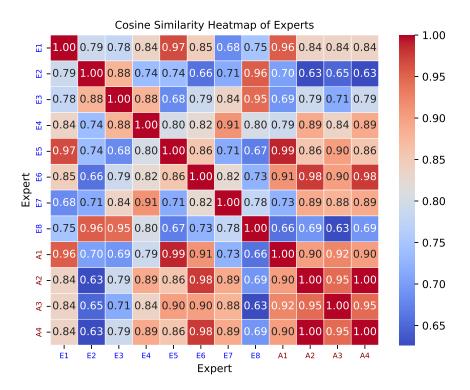


Figure 2: Heat-map of rank cosine similarity between experts

Table 8: The personalized and combined ranks for the strategies

D .		ne personanze				m 1 1
Expert	Financial In-	Accessibility	Communal	Teacher-	Health and Hy-	Technology-
	terventions	and Infrastruc-	Advocacy and	Oriented Inter-	giene Interven-	Driven
	(S1)	ture Interven-	Cultural Inter-	ventions (S4)	tions (S5)	Interven-
		tions (S2)	ventions (S3)			tions (S6)
E1	3	2	1	5	4	6
E2	2	3	4	6	5	1
E3	2	4	5	6	1	3
E4	1	5	4	3	2	6
E5	4	2	1	3	5	6
E6	6	4	2	3	1	5
E7	3	5	6	1	2	4
E8	2	5	4	6	3	1
A1	5	2	1	3	4	6
A2	5	4	3	2	1	6
A3	5	2	4	1	3	6
A4	5	4	3	2	1	6
Combined Hu-	1	4	3	6	2	5
man						
Combined AI	5	4	3	1	2	6
Combined Fi-	2	5	2	4	1	6
nal						

In this study, six strategies that improve access to quality education were selected through a comprehensive literature review. Expert ratings on these strategies and criterion to rate these strategies were collected. The collected data was modelled using HYFS to capture uncertainty and overcome limitations of modelling data using traditional fuzzy sets. To mitigate subjectivity caused by response bias and cognitive fatigue, a multi-attitudinal variance method is used to assign weights to the experts. The SCR method is used to estimate criterion weights. Since the SCR method requires cluster membership data, rather than pairwise comparison data, it reduces the size of the questionnaire that the experts would have to give their ratings on, thus causing less cognitive fatigue. The WISP method was then used to rank the strategies. The personalised ranks were obtained for each expert, which was then combined using a fusion procedure. A highlight of this study was that the study explored the idea of using generative AI as an expert for MCDM, taking inspiration from the concept of Wisdom of Generative Artificial Intelligence Crowd" from Prasad and Pandey [31].

The results show that the Health and Hygiene Interventions (S5) were the most prioritised strategy for improving access to quality education for girls alongside Financial Interventions (S1), and Communal Advocacy and Cultural Interventions (S3), whereas Technology-Driven Interventions (S6) was the least prioritised strategy. The combined ranks of the AI and the combined ranks of the human experts showed that both the AI and humans disagreed on which strategy should be the most prioritised and which one should be the least prioritised. However, there was agreement on the relative ranking of the strategies in the middle, suggesting that while AI and human judgement diverged at the extremes, they aligned in assessing the importance of moderately ranked strategies. This result indicates that AI and human decision-making processes may emphasise different factors when identifying the most and least critical strategies; however, they might converge on those that are deemed to be of intermediate priority. The heat map of rank cosine similarity between experts showed that the human experts had relatively high similarity among themselves, with values mostly above 0.70, whereas the AI experts had even higher internal agreement with cosine similarities exceeding 0.90 among themselves. Notably, the similarity between human and AI experts was generally lower, especially for some pairs where the values dropped below 0.70. This reinforces the finding that AI and human experts differed in their prioritisation, particularly at the extremes.

The results of criterion weights showed that both the "cost" type criterion Implementation Complexity (C4), and Implementation Cost (C5) were weighted relatively lower by both the human and AI decision panel. The "benefit" type criterion, Effectiveness (C1) had gotten the highest weighting by both the human and AI decision panel. The weights given to the "cost" type criterion Implementation Complexity (C4), and Implementation Cost (C5) by the AI decision panel were significantly lower (less than 0.08) than the weights given by them to the "benefit" type criterion (more than 0.2). This discrepancy highlights that both humans and AI placed greater emphasis on the perceived benefits of a strategy than on the associated costs. However, AI appears to emphasise benefits even more strongly, potentially underweighting practical constraints such as cost and complexity. This could have implications for decision-making, as AI might favour strategies with high theoretical impact while downplaying feasibility concerns.

In conclusion, this study prioritises the strategies that improve access to education for girls, a key target of SDG 4 and 5, through a decision framework that combines multi-attitudinal variance, SCR, and WISP. The findings reveal Effectiveness (C1) to be the most important criterion when assessing the strategies and Health and Hygiene Interventions (S5) to be the most prioritised strategy to improve access to quality education for girls. The usage of a decision panel consisting of generative AI LLMs for MCDM, the study reveals that AI diverges in the extremes when compared to humans while aligning in the middle. The study contributes to the existing body of literature by:

- Developing a decision-making framework using HYFS, multi-attitudinal variance, SCR, and WISP for prioritisation of strategies that improve access to quality education for girls.
- Proposing the idea that generative AI LLMs have the potential to be used alongside human experts in the context of MCDM.
- Suggesting the strategies that need to be prioritised, alongside the relative importance of criteria
 to assess those strategies.

The implications of the study are:

- By identifying and prioritising the strategies and the criteria to assess these strategies that improve access to quality education for girls, the study provides policymakers and stakeholders with a robust, data-driven framework for informed resource allocation and strategic planning.
- The integration of generative AI LLMs as experts for MCDM introduces an innovative approach that complements traditional human judgment, potentially enhancing the speed, consistency, and depth of MCDM problems that involve purely human experts.
- The observed divergence between human and AI rankings especially at the extremes, highlight that careful considerations should be made before integrating generative AI into any decision problem. This divergence could also potentially provide complementary perspective to decision problems by offering alternative prioritisation that challenges conventional human biases. While human experts bring contextual understanding and lived experiences, AI can introduce a data-driven, pattern-based approach that may uncover overlooked insights.
- The combined HYFS, multi-attitudinal variance, SCR, and WISP framework developed can also be used in various other contexts beyond education policy, such as healthcare, environmental sustainability, and infrastructure development, where prioritisation of strategies under uncertainty is crucial.

The study, despite the various merits, also has some limitations:

- The framework developed is incapable of interpreting incomplete information
- Since this study represents the first time generative AI has been integrated into MCDM, the findings require further validation through replication across diverse decision-making scenarios to establish the robustness and reliability of AI-driven insights for MCDM.
- The study does not account for dynamic quantitative data that captures the external conditions, such as policy shifts, economic fluctuations, or technological advancements, which could alter the relative importance of the identified strategies over time.

The future studies could explore the possibility of using the developed framework across various other domains to validate its generalisation. The usage of advanced imputation techniques and probabilistic reasoning models to address the limitation of incomplete information should be explored in the future studies. Future studies could also develop various other MCDM frameworks that integrate generative AI for decision-making and leverage adaptive weighting mechanisms to improve decision-making outcomes. The future studies could also examine the ethical and fairness implications of generative AI participation in MCDM to ensure that AI-generated recommendations do not introduce or reinforce biases in decision-making. By addressing the mentioned research directions, the future studies can contribute to the theoretical and practical development of decision-making frameworks that go beyond human expertise.

Acknowledgments

The authors express their sincere gratitude to all anonymous participants who contributed their time and valuable insights by responding to the study questionnaire.

Declarations

The authors have no relevant financial or non-financial interests to disclose.

Statement of generative AI use

During the preparation of this work, the author(s) used QuillBot to edit and refine the manuscript. The author(s) also used GPT-40 by OpenAI, Gemini 2.0 Flash by Google, DeepThink R1 by DeepSeek, and Grok 3 by xAI to collect data as inputs for the MCDM framework as mentioned in the manuscript. After using these tools/services, the author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.

Data availability

The anonymized raw input data collected from both human experts and generative AI is available at https://github.com/regiusherder/Strategies-for-Education

Author contributions

A. Yadav: Conceptualization, Data curation, Method, Software, Writing—original draft; R. Krishankumar: Conceptualization, Method, Prototype, Investigation, Writing—original draft; KS. Ravichandran: Data curation, Method, Investigation, Writing—original draft; V. Zemlickienė: Method, Supervision, Investigation, Writing—Original Draft, Review; Z. Turskis: Method, Supervision, Investigation, Writing—original draft, Review;

References

- [1] D. Adhikari, K. H. Gazi, B. C. Giri, F. Azizzadeh, and S. P. Mondal, Empowerment of women in India as different perspectives based on the AHP-TOPSIS inspired multi-criterion decision making method, Results in Control and Optimization, vol. 12, no. 1, article no. 100271, 2023. DOI: 10.1016/j.rico.2023.100271
- [2] D. Adhikari, K. H. Gazi, A. Sobczak, B. C. Giri, S. Salahshour, and S. P. Mondal, Ranking of Different States in India Based on Sustainable Women Empowerment Using MCDM Methodology Under Uncertain Environment, *Journal of Uncertain Systems*, vol. 17, no. 4, article no. 2450010, 2024. DOI: 10.1142/S1752890924500107
- [3] B. A. A. Akanbang, C. Aneleru, and M. A. Aziabah, Incentives and Girl Child Education in Ghana: An Examination of CAMFED's Support Scheme on Enrollment, Retention and Progression in Garu-Tempane District, Sage Open, vol. 13, no. 3, article no. 12, 2023. DOI: 10.1177/21582440231183904
- [4] K. Austrian, E. Soler-Hampejsek, B. Kangwana, Y. D. Wado, B. Abuya, and J. A. Maluccio, Impacts of two-year multisectoral cash plus programs on young adolescent girls' education, health and economic outcomes: Adolescent Girls Initiative-Kenya (AGI-K) randomized trial, BMC Public Health, vol. 21, no. 1, article no. 2159, 2021. DOI: 10.1186/s12889-021-12224-3
- [5] E. Ayçin, M. Çerçi, and E. Sonugelen, An Evaluation of Women's Human Development Level using Multi Criteria Decision-Making Methods: A Case Study of OECD Countries, *Economic Computation and Economic Cybernetics Studies and Research*, vol. 58, no. 4, pp. 109-128, 2024. DOI: 10.24818/18423264/58.4.24.07
- [6] R. M. Bădîrcea, A. G. Manta, N. M. F. Doran, and F. L. Manta, Linking the government expenditures to the achievement of the Europe 2020 strategy indicators. Evidence from Central and Eastern European Countries, *Technological and Economic Development of Economy*, vol. 28, no. 3, pp. 694-715, 2022. DOI: 10.3846/tede.2022.16526
- [7] A. K. Banik and P. Dutta, An efficient decision making method based on hyperbolic fuzzy environment with new score function and its application in determining crime prone zones, *International Journal of Machine Learning and Cybernetics*, special issue. *Pretraining: Foundation, Frontiers and Applications*, pp. 1-27, 2024. DOI: 10.1007/s13042-024-02404-z

- [8] O. Ban, L. Droj, D. Tuse, G. Droj and N. Bugnar, Data Processing by Fuzzy Methods in Social Sciences Researches. Example in Hospitality Industry, *International Journal of Computers Communications & Control*, vol. 17, no. 2, article no. 4741, 2022. DOI: 10.15837/ijccc.2022.2.4741
- [9] D. Burde and L. L. Linden, Bringing Education to Afghan Girls: A Randomized Controlled Trial of Village-Based Schools, American Economic Journal: Applied Economics, vol. 5, no. 3, pp. 27-40, 2013. DOI: 10.1257/app.5.3.27
- [10] K. Chouhan, R. Sharma, and S. Pareek, Knowledge and Attitude Regarding "Beti Bachao, Beti Padhao Yojana" among Young and Aged Rural Adults: A Cross-Sectional Study, Journal of Datta Meghe Institute of Medical Sciences University, vol. 17, no. 2, pp. 350-353, 2022. DOI: 10.4103/jdmimsu_jdmimsu_275_20
- [11] S. A. Churchill, N. Iqbal, S. Nawaz, and S. L. Yew, Unconditional cash transfers, child labour and education: theory and evidence, *Journal of Economic Behavior & Organization*, vol. 186, pp. 437-457, 2021. DOI: 10.1016/j.jebo.2021.04.012
- [12] M. Divsalar, M. Ahmadi, M. Ghaedi, and A. Ishizaka, An extended TODIM method for hyper-bolic fuzzy environments, Computers & Industrial Engineering, vol. 185, no. 1, article no. 109655, 2023. DOI: 10.1016/j.cie.2023.109655
- [13] P. Dutta and G. Borah, Construction of Hyperbolic Fuzzy Set and its Applications in Diverse COVID-19 Associated Problems, New Mathematics and Natural Computation, vol. 19, no. 1, pp. 217-288, 2023. DOI: 10.1142/S1793005723500072
- [14] A. Eble and F. Hu, Child beliefs, societal beliefs, and teacher-student identity match, Economics of Education Review, vol. 77, no. 1, article no. 101994, 2020. DOI: 10.1016/j.econedurev.2020.101994
- [15] D. K. Evans, C. Gale, and K. Kosec, The educational impacts of cash transfers in Tanzania, *Economics of Education Review*, vol. 92, no. 1, article no. 102332, 2023. DOI: 10.1016/j.econedurev.2022.102332
- [16] D. K. Evans and F. Yuan, What We Learn about Girls' Education from Interventions That Do Not Focus on Girls, *The World Bank Economic Review*, vol. 36, no. 1, pp. 244-267, 2022. DOI: 10.1093/wber/lhab007
- [17] N. Fiala, A. Garcia-Hernandez, K. Narula, and N. Prakash, Wheels of Change: Transforming Girls' Lives with Bicycles, 2022. Available at: https://www.jstor.org/stable/resrep64287
- [18] F.G. Filip, Automation and computers and their contribution to human well-being and resilience, Studies in Informatics and Control, vol. 30, no. 4, pp. 5-18, 2021. DOI: 10.24846/v30i4y202101
- [19] A. Gabus, and E. Fontela, World problems, an invitation to further thought within the framework of DEMATEL, *Battelle Geneva Research Center*, *Geneva, Switzerland*, vol. 1, no. 8, pp. 12-14, 1972.
- [20] T. Huang, W. Chen, V. Nalluri, and T. Huynh-Cam, Evaluating E-Teaching Adoption Criteria for Indian Educational Organizations Using Fuzzy Delphi-TOPSIS Approach, *Mathematics*, vol. 10, no. 13, article no. 2175, 2022. DOI: 10.3390/math10132175
- [21] C. L. Hwang, and K. Yoon, Methods for multiple attribute decision making, Multiple attribute decision making: methods and applications a state-of-the-art survey, vol. 186, no. 1, pp. 58-191, 1981. DOI: 10.1007/978-3-642-48318-9_3
- [22] M. Keshavarz-Ghorabaee, M. Amiri, E. K. Zavadskas, Z. Turskis, and J. Antucheviciene, Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC), Symmetry, vol. 13, no. 4, article no. 525, 2021. DOI: 10.3390/sym13040525

- [23] R. Jha, R. Jha, and M. Islam, Transforming girls' education through social awareness and government interventions: a pathway to equality, *Oxford Open Economics*, vol. 4, no. 1, article no. odae041, 2025. DOI: 10.1093/ooec/odae041
- [24] J. Lim and J. Meer, Persistent effects of teacher–student gender matches, *Journal of Human Resources*, vol. 55, no. 3, pp. 809-835, 2020. DOI: 10.3368/jhr.55.3.0218-9314R4
- [25] H. Majhi and M. Mallick, Infrastructural development and enrollment in elementary education in Odisha, *Economic Affairs*, vol. 64, no. 2, pp. 377-385, 2019. DOI: 10.30954/0424-2513.2.2019.13
- [26] J. P. Mukhopadhyay, S. Mitra, S. Javadekar, and N. Mishra, Does Gender-Based Awareness Campaign Improve Girls' Educational and Learning Outcomes? Empirical Evidence from India, The Journal of Development Studies, vol. 60, no. 11, pp. 1774-1792, 2024. DOI: 10.1080/00220388.2024.2383428
- [27] U. Mukhopadhyay, Gender-neutral vs gender-specific education subsidy: effects on schooling and earning inequality, *International Journal of Social Economics*, vol. ahead-of-print, no. ahead-of-print, pp. 1-17, 2024. DOI: 10.1108/IJSE-07-2023-0554
- [28] G. Nasuna, J. Arinaitwe, E. Barigye, and F. Kyayemagye, Effect of School Infrastructure on Pupil Enrolment in Universal Primary Education Schools: A Case of Mbarara City, Uganda, East African Journal of Education and Social Sciences, vol. 3, no. 2, pp. 155-165, 2022. DOI: 10.46606/eajess2022v03i02.0170
- [29] E. D. Peteros, S. C. Ypil, J. Vera, G. A. Alcantara, M. D. Fulgencio, D. B. Plando, and L. B. Jr, Effects of School Proximity on Students' Performance in Mathematics, *Open Journal of Social Sciences*, vol. 10, no. 1, pp. 365-376, 2022. DOI: 10.4236/jss.2022.101028
- [30] N. J. Pitchford, A. Chigeda, and P. J. Hubber, Interactive apps prevent gender discrepancies in early-grade mathematics in a low-income country in sub-Sahara Africa, *Developmental Science*, vol. 22, no. 5, article no. e12864, 2019. DOI: 10.1111/desc.12864
- [31] S. Prasad and V. Pandey, Wisdom ΑI crowd-Harnessing Generative collective intelligence for idea evaluation, 2024. Available startup at: https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1031&context=treos icis2024
- [32] S. Psaki, N. Haberland, B. Mensch, L. Woyczynski, and E. Chuang, Policies and interventions to remove gender-related barriers to girls' school participation and learning in low- and middle-income countries: A systematic review of the evidence, *Campbell Systematic Reviews*, vol. 18, no. 1, article no. e1207, 2022. DOI: 10.1002/cl2.1207
- [33] S. Rajasekhar and S. Jaishree, An Exploratory Study on Internet Use and its Application by Underprivileged School Girls, *Indian Journal of Educational Technology*, vol. 2, no. I, pp. 1-20, 2020. Available at: https://journals.ncert.gov.in/IJET/article/view/314
- [34] T. L. Saaty, The analytic hierarchy process (AHP), The Journal of the Operational Research Society, vol. 41, no. 11, pp. 1073-1076, 1980.
- [35] V. Shah, H. Nabwera, B. Sonko, F. Bajo, F. Faal, M. Saidykhan, Y. Jallow, O. Keita, W. Schmidt, and B. Torondel, Effects of Menstrual Health and Hygiene on School Absenteeism and Drop-Out among Adolescent Girls in Rural Gambia, *International Journal of Environmental Research and Public Health*, vol. 19, no. 6, article no. 3337, 2022. DOI: 10.3390/ijerph19063337
- [36] D. Stanujkic, G. Popovic, D. Karabasevic, I. Meidute-Kavaliauskiene, and A. Ulutaş, An Integrated Simple Weighted Sum Product Method—WISP, *IEEE Transactions on Engineering Management*, vol. 70, no. 5, pp. 1933-1944, 2023. DOI: 10.1109/TEM.2021.3075783

- [37] Ž. Stević, D. Pamučar, A. Puška, and P. Chatterjee, Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS), Computers & industrial engineering, vol. 140, no. 1, article no. 106231, 2020. DOI: 10.1016/j.cie.2019.106231
- [38] A. Ulutaş, A. Topal, D. Pamučar, Ž. Stević, D. Karabašević, and G. Popović, A New Integrated Multi-Criteria Decision-Making Model for Sustainable Supplier Selection Based on a Novel Grey WISP and Grey BWM Methods, *Sustainability*, vol. 14, no. 24, article no. 16921, 2022. DOI: 10.3390/su142416921
- [39] Progress towards the Sustainable Development Goals, 2024. Available at: https://unstats.un.org/sdgs/files/report/2024/SG-SDG-Progress-Report-2024-advanced-unedited-version.pdf
- [40] M. Wang, J. Lu, X. Zhang, B. Wang, and L. Cao, Analysis of factors influencing women's participation in engineering education: An improved fuzzy DEMATEL approach, Computer Applications in Engineering Education, vol. 32, no. 4, article no. e22730, 2024. DOI: 10.1002/cae.22730
- [41] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia, E. Chi, Q. Le, and D. Zhou, Chain-of-Thought Prompting Elicits Reasoning in Large Language Models, arXiv, 2023. Available at: http://arxiv.org/abs/2201.11903
- [42] H. Yamada and T. M. Vu, The number of toilets, toilet types, and school enrollment rates: Evidence from Cambodia, *International Journal of Educational Development*, vol. 112, no. 1, article no. 103194, 2025. DOI: 10.1016/j.ijedudev.2024.103194
- [43] N. Yıldırım and F. Köroğlu, Revisiting the Impact Evaluation of Women's Empowerment: A MCDM-Based Evaluation Indicator Selection Framework Proposal, *Social Indicators Research*, vol. 172, no. 1, pp. 121-145, 2024. DOI: 10.1007/s11205-023-03302-7
- [44] P. L. Yu, A Class of Solutions for Group Decision Problems, Management Science, vol. 19, no. 8, pp. 936-946, 1973. DOI: 10.1287/mnsc.19.8.936
- [45] S. Zakeri, D. Konstantas, P. Chatterjee, and E. K. Zavadskas, Soft cluster-rectangle method for eliciting criteria weights in multi-criteria decision-making, *Scientific Reports*, vol. 15, no. 1, article no. 284, 2025. DOI: 10.1038/s41598-024-81027-4
- [46] E. K. Zavadskas, D. Stanujkic, D. Karabasevic and Z. Turskis, Analysis of the simple WISP method results using different normalization procedures, *Studies in Informatics and Control*, vol. 31, no. 1, pp. 5-12, 2022. DOI: 10.24846/v31i1y202201
- [47] R. Zelezny-Green, 'Now I want to use it to learn more': using mobile phones to further the educational rights of the girl child in Kenya, *Gender & Development*, vol. 26, no. 2, pp. 299-311, 2018. DOI: 10.1080/13552074.2018.1473226

Copyright ©2025 by the authors. Licensee Agora University, Oradea, Romania.

This is an open access article distributed under the terms and conditions of the Creative Commons Attribution-NonCommercial 4.0 International License.

Journal's webpage: http://univagora.ro/jour/index.php/ijccc/

This journal is a member of, and subscribes to the principles of, the Committee on Publication Ethics (COPE).

https://publicationethics.org/members/international-journal-computers-communications-and-control

Cite this paper as:

Yadav, A.; Krishankumar, R.; Ravichandran, KS.; Zemlickienė, V.; Turskis, Z. (2025). Prioritising Strategies to Improve Girls' Access to Quality Education: A Hybrid Hyperbolic Fuzzy MCDM Framework with Human and AI Expertise, *International Journal of Computers Communications & Control*, 20(6), 7240, 2025.

https://doi.org/10.15837/ijccc.2025.6.7240