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Abstract

Transport system efficiency is a fundamental and strategic issue for all transport companies.
The ability to adapt transport networks reliably is crucial as demand fluctuates, specifications shift
and traffic specificities cannot be neglected. Uncertainty, ubiquitous in rail transport networks,
complicate this task even further. These uncertainties can manifest themselves in a variety of ways:
unexpected fluctuations in journey times, rolling stock failures or the emergence of additional traffic
tasks that could not have been anticipated in the initial scheduling process. Each type of uncertainty
creates a potential risk related to system imbalance, which requires rapid and complex adjustments
to guarantee rail traffic availability and stability. These maintenance scheduling issues in rail
transport systems demand planning approaches that extend beyond traditional techniques. It is
crucial to evolve maintenance scheduling tools able to manage scheduling under stable conditions, as
well as to effectively respond to unexpected disruptions and quickly shifting traffic conditions. This
paper addresses these challenges problem and proposes a reliable and robust maintenance policy
taking account of tasks imprecision and human expertise. The maintenance model is designed to
assist decision making systems to increase traffic safety significantly, while saving time and money.
To resolve this problem, a fuzzy inference system is used to appropriately deal with uncertainties

using Colored Petri nets and fuzzy logic.

The findings indicate that the adaptive fuzzy model

developed has an excellent ability to precisely learn and predict traffic constraints and lead to
significant changes in decision making and the incorporation of feedback into the management and

support system.

Keywords: Fuzzy logic, railway maintenance, reliability, predictive maintenance, Colored Petri

Nets, frugal exploitation.
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1 Introduction

Transport infrastructure is identified as playing a crucial role in the dynamics of economic devel-
opment in Europe. It is vital to acknowledge the significance of these as a means of enhancing regional
competitiveness, promoting regional cohesion and

improving economic attractiveness. This is achieved by facilitating the mobility of people and
goods. In light of these considerations, Thevenin et al. underscore the pivotal role of transport net-
works in shaping urban structure, commencing with an examination of long-term accessibility. The
study indicates that this approach may be applicable to other national contexts and networks, consis-
tent with Vickerman’s (1995) findings that infrastructure is crucial for analysing varied development
across a European scale [15].

The importance of regional and secondary rail lines, which had previously been overlooked, is now
widely acknowledged as a fundamental component of the region’s infrastructure. The development
of these technologies has become a matter of European concern, necessitating the implementation of
appropriate and sustainable economic models.

The desert areas of the Mediterranean region, which are often located in close proximity to the
sea, expose railway infrastructure to severe environmental conditions. In France, the Salin-de-Giraud
line is a pertinent example, as are certain lines in Tunisia, which are located in close proximity to
saline areas. These environments give rise to specific maintenance requirements, particularly due to
the presence of salt, a corrosive agent.

In addition to that, it is important to note that the maintenance instructions supplied by Hyundai
are based on generic standards, which are illsuited to these particular conditions. In Tunisia, measures
have been implemented to adapt these recommendations to the local context. A parallel strategy could
be adopted in Europe, where analogous circumstances prevail.

In summary, regions are facing climate-related challenges for their railway infrastructure.

The Sahel, however, faces a more severe and complex set of climate-related challenges, coupled
with existing socio-economic vulnerabilities, making the development and maintenance of a resilient
railway network a significant undertaking. It is used as a benchmark case study to demonstrate a
regionally adapted maintenance strategy.

However, as these systems expand in scale and complexity, ensuring operational reliability, avail-
ability, and safety becomes progressively challenging. This is especially pertinent in light of the aging
infrastructure and the increasing demand for services. Conventional maintenance strategies, including
corrective maintenance and time-based preventive measures, often prove inadequate in dealing with
the dynamic, unpredictable, and simultaneous nature of railway operations[1]. This results in resource
inefficiencies, unanticipated system failures and heightened maintenance costs. The advent of Industry
4.0 technologies, including the Internet of Things (IoT), big data analytics, and cyber-physical sys-
tems, has introduced new prospects for the modernization of maintenance practices. The utilisation
of artificial intelligence (AI) methodologies has emerged as a pivotal element in this transformation,
promising to facilitate predictive and adaptive maintenance management. Among the various Al tech-
niques, fuzzy logic has demonstrated its efficacy in managing imprecision and uncertainty, offering a
flexible decision-making framework that is based on linguistic variables and expert knowledge. The al-
lowance of evaluations of a more nuanced nature pertaining to maintenance factors, including but not
limited to fault severity, time constraints, potential failure costs and machine load, is a characteristic
of fuzzy systems. This property enhances the adaptability and realism of maintenance planning. In
order to manage maintenance effectively, it is essential that modeling tools are capable of capturing the
concurrency, synchronization, and variability involved in maintenance processes. Using Colored Petri
Nets (CPNs) as a modelling tool for such systems open the door to powerful analyses. Coloured tokens,
each encoding a detailed attribute, has been demonstrated to empowered the flexibility of CPNs as a
structured yet adaptable methodology in the representation of dynamic workflows, the management
of resource allocations, and the handling of concurrent events within complex maintenance operations.

Though fuzzy logic and coloured Petri nets have been used separately in several industrial sec-
tors, the integration of both approaches for railway maintenance optimisation remains unexplored.
The purpose of this study is to overcome this deficiency by including fuzzy inference mechanisms for
hierarchical task scheduling in coloured Petri net modeling for dynamic maintenance process manage-
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ment. The aim of this approach is twofold: Firstly, to enable flexible decision-making in uncertain
circumstances as well as, secondly, to improve railway maintenance operations. In addition, the ap-
proach aims to ensure coherent and efficient scheduling and task execution. A case study based on
the Tunisian railway network validates the proposed methodological approach.

Although fuzzy logic and Petri nets have both been applied in isolation to industrial and trans-
portation systems, the integration of these approaches within a unified decision-support model re-
mains uncommon, particularly in the context of railway maintenance scheduling under uncertainty.
The present paper introduces a hybrid Fuzzy—CPN framework that combines the reasoning flexibility
of fuzzy inference with the dynamic modelling capacity of Colored Petri Nets. This integration facil-
itates the system’s capacity to manage linguistic uncertainty during the modelling of concurrent and
real-time maintenance operations. It is acknowledged that the application of such a hybridisation in
this particular domain has not been previously documented.

In this study, the focus is on defect prioritization, dynamic task insertion and maintenance exe-
cution process optimization. The paper is organized as follows. Section 2 provides an overview of
the most relevant contributions to intelligent maintenance management. Section 3 details the inte-
grated framework proposed, with particular emphasis on the fuzzy inference mechanism and dynamic
modeling of the maintenance process using colored Petri nets. Section 4 introduces the experimental
set-up, followed by a comprehensive discussion of the simulation results generated from a Tunisian
railway network case study. A detailed review of the main results is provided in Section 5, highlighting
the approach’s strengths and limitations. Moreover, the results’ practical implications are explored,
providing valuable insights for further research and application. Finally, the paper concludes with a
discussion of potential directions for future research.

2 Related Work

In order to ensure the continuity of service, the safety of the system, and the reliability of the
infrastructure, it is imperative to schedule maintenance in railway networks in an efficient manner.
In light of the escalating intricacy of railway operations, the mounting constraints on resources, and
the diminishing intervention windows, researchers are undertaking endeavours to explore intelligent
maintenance strategies that are equipped to manage uncertainty and dynamic reallocation.

The potential of fuzzy logic to model human reasoning and to manage imprecise information has
led to its widespread application across multiple sectors, including transportation, manufacturing, and
automation. Decision-making processes within the domain of railway operations have witnessed the
integration of fuzzy logic, a mathematical paradigm that deals with imprecise information, to facilitate
a range of critical functions. These functions encompass customer classification, route selection, energy
consumption forecasting and risk evaluation, particularly in contexts characterised by uncertainty.
Its adaptability is especially useful in maintenance scenarios where the variables of failure severity,
urgency, and resource availability are difficult to quantify accurately [2, 3].

Furthermore, the utilisation of Coloured Petri Nets (CPNs) in conjunction has been identified as
a significant tool in the modelling of discrete, event-driven systems involving concurrency, resource
sharing, and conditional transitions . The utilisation of Petri nets has been demonstrated as a suc-
cessful methodology in simulated maintenance workflows, the optimisation of task sequences, and the
evaluation of system performance under operational constraints in numerous studies. In the context
of railway control models, train tracking and dynamic task reallocation systems, for instance, Petri
nets can be employed, providing validation capabilities and enhanced process visibility [4, 5].

In the recent literature, there has been an exploration of hybrid models that combine the use
of fuzzy analysis with Petri nets, or with learning-based algorithms for the purpose of predictive
maintenance. The efficacy of adaptive neuro-fuzzy inference systems (ANFIS) in identifying nonlinear
degradation patterns has been well documented; meanwhile, the success of fuzzy expert systems in
balancing sustainability, cost, and operational constraints is equally noteworthy. In the field of rail
infrastructure analysis, fuzzy clustering has emerged as a methodology for the categorisation of railway
track conditions, facilitating the subsequent prioritisation of preventive measures [6].

Subsequent advancements are focused on the integration of fuzzy reasoning with digital twin con-
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cepts, machine learning, and stochastic simulation. The implementation of such strategies enables the
modelling of factors such as uncertainty in sensing, human factors, and reliability of components in
condition-based and predictive maintenance[9]. For instance, hybrid models incorporating fuzzy logic,
stochastic Petri nets and optimization algorithms are being used to schedule emergency maintenance
windows, assess the human element in signalling systems and develop energy-efficient train operation
strategies [7, 8, 10].

Despite the considerable advances that have been made, there is still an absence of a unified
framework that simultaneously addresses fuzzy decision-making and dynamic maintenance execution
within railway systems. In particular, the potential of fuzzy logic for prioritisation and CPNs for real-
time task insertion and execution is an area yet to be explored. The objective of the current study is
to address this discrepancy by proposing a hybrid fuzzy-CPN model capable of real-time adjustment
to maintenance planning, while considering task criticality, operational constraints and concurrent
process behaviour.

This study aims to address the research gaps previously identified, leading to the development
of a hybrid decision-support model for the effective management of railway maintenance operations.
The methodology incorporates fuzzy logic alongside formal process modelling with a view to ensuring
both interpretability and operational responsiveness. The subsequent section is dedicated to the
presentation of the proposed approach’s architecture and functionality.

3 Methodology

he utilisation of a fuzzy inference system facilitates the adaptive prioritisation of maintenance
tasks, with this prioritisation being based upon operational parameters.

In addition, the Colored Petri Net ensures the coherent insertion and rescheduling of maintenance
activities within a dynamic system context.

3.1 Description of Fuzzy Logic

The difficulties experienced in decision-making processes within real-world maintenance environ-
ments, particularly within railway systems, stem from the utilisation of information that is imprecise,
incomplete, and uncertain. In the context of complex scenarios, classical binary logic models based
on strict true/false evaluation have been demonstrated to be inadequate. The introduction of fuzzy
logic by Zadeh [11] provides an effective mathematical framework for addressing these limitations, by
allowing partial degrees of truth ranging between 0 and 1. Fuzzy set theory is predicated on the notion
of membership, whereby elements are connected to a given set with a certain degree of membership,
as opposed to being constrained by predefined boundaries. This characteristic makes it particularly
efficient for modeling of language concepts such as low, medium, or high, which align naturally with
how human experts interpret operational conditions such as fault severity or resource availability. The
fuzzy logic approach is categorised as a soft computing method and has been shown to be beneficial
in circumstances where knowledge is articulated in a qualitative or linguistic manner [12].

In railway maintenance, fuzzy logic provides a practical method for prioritizing tasks based on
uncertain parameters like:

o The severity of the fault (for example, how serious the failure is)
o Time constraints (such as remaining time before the breakdown).
o The cost of failure (e.g., potential economic impact)

o Machine Load (e.g., current usage level of the equipment).

Membership functions are used to model the degree of association with qualitative terms by rep-
resenting each input parameter with a linguistic variable. The simplicity and computational efficiency
of triangular and trapezoidal membership functions make them popular for use [13].

The fuzzy inference process is composed of the following steps[14]:
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1. Fuzzification is the transformation of crisp input values into fuzzy values based on defined
membership functions.
2. Rule evaluation involves applying fuzzy rules defined by experts, typically in the form:

e [IF Fault Severity is Critical AND Time Constraint is Low THEN Priority is Very High;

3. Aggregation: Combining the outputs of all rules to produce a single fuzzy output;

4. Defuzzification is the process of converting fuzzy output into a crisp value using methods such
as the centroid technique.

By including fuzzy logic, the maintenance decision system proposed becomes more flexible, trans-
parent, and resilient to information uncertainty. A method that prioritizes interventions in com-
plex, safety-critical railway systems is offered that emulates expert reasoning and is both human-
interpretable and computationally tractable.

3.2 Proposed Maintenance Model

The proposed model incorporates a fuzzy inference engine and a CPN for the dynamic execution
of tasks. The objective of the proposed model is to facilitate the effective management of maintenance
operations in complex railway systems. The hybrid architecture enables flexible decision-making
in uncertain circumstances and facilitates real-time responsiveness to operational disruptions. The
problem of scheduling railway maintenance (Figure 1) in a simplified manner. In this model, a sequence
of tasks must be completed within specified time and resource constraints to ensure uninterrupted
operations. In order to prevent delays and maintain system efficiency, the model strives to dynamically
prioritise and allocate these tasks.

Resource constraints

— -—
I T O I B . o, e D N O T I

ERES EL e

—

No delays

Figure 1: Railway maintenance line and some of its constraints

3.2.1 Model Architecture

The framework under consideration consists of two interconnected layers.

Uncertain input data is processed by means of a fuzzy decision system to determine maintenance
priority levels.

The execution of tasks, as well as their coordination, is achieved through a CPN model, which is
characterised by its ability to adapt to the dynamic environment of the project.

Recent research trends within this domain advocate a combined approach that integrates intelligent
decision support with formal system modelling techniques for the purpose of predictive and adaptive
maintenance [5]. This integration is a salient feature of contemporary research trends within this
architecture, which is evident in the existing literature. Before proceeding, a few important terms are
defined.

o Definition 1 (Teng, 1997): A fuzzy set F in a universe of discourse U is characterized by a
membership function: pF: U—[0,1]

o Definition 2 (Teng, 1997): A linguistic variable x in a universe of discourse U is
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characterized by:
V(z) = {Vxl,sz, . .,Vf’c} and N(z)= {N;,Ng, .. ,Nf:z}

where V(z) is the term set of z, that is, the set of names of linguistic values of z, with each value V!
being a fuzzy number with membership function N? on U.

3.2.2 Fuzzy Inference System (FIS)

A FIS is a mechanism that implements the Fuzzy Logic criteria in specific applications. By means of
fuzzy input variables, the FIS enables the implementation of the logical dependency of these variables
and the fuzzy output variables based on fuzzy rules. The FIS system consists of four main components:
fuzzification, fuzzy rule set, inference method, and defuzzification:

o Fuzzification transforms a numerical input variable into a fuzzy subset,

o Inference identifies the fuzzy output subset by applying the dependency of the input-output
variables via a fuzzy rule base,

e Defuzzification transforms the output fuzzy subset into a firm numerical variable.

Following the previous definitions, the input vector X that involves the input state linguistic
variables xi’s, and the output state vector Y that enables the output state linguistic variables yi’s,
may be defined as:

X = [xi;U (Ve VE... VEH{NE N2, ... NEL
i di=1,..n

V= Ly ULV Vi Vi {0 NN

J

Jdj=1,....m

3.2.3 Decision Variables and Fuzzification

The fuzzy subsystem is designed to consider four key operational parameters:

e The categorisation of fault severity is a critical aspect of any effective fault management strategy.
e The issue of time constraints is a pertinent one in this context.

e The financial implications of failure must be given full consideration.

e Machine Load

In order to model uncertainty and expert knowledge, each input is linked to linguistic terms (for
example, Low, Medium, High) and membership functions that are typically triangular or trapezoidal.

The membership functions defined for each fuzzy input variable (time constraint, severity, failure
cost, machine load and monitoring technique) are demonstrated in (Figure 2), alongside the output
variable maintenance choice. The evaluation of maintenance conditions in the context of uncertainty
can be conducted in a smooth and human-interpretable manner. To this end, the use of linguis-
tic terms, such as 'Low’, 'Moderate’ and ’High’, which are represented by triangular or trapezoidal
functions, is recommended.
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Figure 2: Fuzzification of the Input and Output Variables

3.2.4 Fuzzy Rule Base and Inference Mechanism

The fuzzy rule base created in this study is designed to generate maintenance decisions that are in
line with operational priorities in the real world. Maintenance Choice comprises five distinct strate-
gies: The following terms are employed in this text: ’Systematic preventive’, ’Conditional Preventive’,
’ predictive preventive’, 'corrective’ and ’improved’. The decision-making process pertaining to main-
tenance is predicated on the consideration of five pivotal parameters: fault severity, time constraints,
failure cost, machine load, and monitoring technique.

The linguistic description of inputs employs intuitive qualitative terms such as Low, Moderate,
High, and Critical (for severity, cost, and load), and Very Low to Very High for the time constraint.
The monitoring method is designated as a ’fuzzy input’, and is divided into linguistic categories
such as visual inspection, vibration analysis, thermography and oil analysis, which reflect the use of
increasingly diagnostic-intensive techniques.

The rule base is the product of a reasoning process driven by experts. In situations where there is
a severe paucity of time and a high machine load, predictive maintenance strategies are the preferred
option for the system. Conversely, in circumstances where conditions are stable or the risk is minimal,
systematic preventive maintenance is adequate. In instances where parameters fall within intermediate
zones or where sensor-based techniques, such as vibration or thermography, indicate the necessity for
closer observation, conditional maintenance should be considered.

The establishment of these regulations was guided by the principle of leveraging the domain’s
proficiency in railway and industrial systems. It is evident that scenarios where all parameters are mild
naturally lead to Preventive Systematics, while mixed or evolving conditions trigger Conditional. In
the event of escalating severity and failure cost, particularly when accompanied by advanced diagnostic
inputs such as oil analysis, predictive preventive is regarded as the optimal response. The addition of
corrective and preventive maintenance options is determined by system-specific needs or cost-benefit
logic.

This model-based approach facilitates the interpretation, visualisation and simulation of a vari-
ety of real-time operating scenarios by maintenance engineers. In environments characterised by the
abundance of data and complexity inherent in railway systems, the fuzzy system functions as a de-
cision support instrument. This instrument is characterised by its capacity for explainability and
customisation, thereby enhancing the reactivity and robustness of the system.

As illustrated in Table 1, this section showcases a curated selection of fuzzy inference rules that
have been employed in the proposed model. The implementation of each rule involves the combination
of multiple linguistic conditions on the input variables, with the objective being the derivation of the
most appropriate maintenance strategy.

Expert knowledge and contextual observations from the Shelia coastal railway network were used
to construct the IF-THEN rules in Table 1. The rules are based on typical operational situations,
such as failure severity, machine workload, and time constraints. To identify relevant conditions that
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Table 1: Examples of fuzzy IF-THEN rules for maintenance decision-making

Time Con-|Severity |Failure Machine |Monitoring Maintenance

straint Cost Load Technique Type

Very Low Low Low Low Visual Inspection |Systematic preven-
tive

Low Moderate |Moderate [Moderate |Visual Inspection |Systematic preven-
tive

Moderate Moderate |Moderate |Moderate |Vibration Analysis|Conditional Preven-
tive

High Critical High High Oil Analysis predictive preventive

Moderate High Moderate |Moderate |Thermography predictive preventive

Very High High High High Oil Analysis Corrective

High Moderate [High Moderate |Thermography predictive preventive

Moderate High Moderate |Critical Thermography Corrective

High High Critical Critical Oil Analysis Corrective

Moderate Moderate [High High Oil Analysis improved

High Moderate |[Moderate |Critical Thermography improved

commonly lead to maintenance interventions since direct access to industrial failure data was restricted.
The rules were modified to reflect the local expertise and operational experience by adjusting the
linguistic terms and variable ranges.

3.3 Modeling Maintenance Process with Colored Petri Nets
3.3.1 Motivation for Using Colored Petri Nets

In dynamic and complex maintenance environments, the accurate modelling of concurrency, re-
source constraints and task variability is imperative. Coloured Petri Nets (CPNs) provide a robust
theoretical framework that incorporates graphical depiction, mathematical rigor, and modularity, ren-
dering them particularly well-suited for the modelling of maintenance processes[Li et al., 2017; Wang
et al., 2019].

In contrast to conventional Petri nets, CPNs permit the transmission of structured data, such as
colours, via the tokens. This facilitates the differentiation of maintenance tasks into the categories
of preventive, corrective and predictive, in addition to the delineation of severity levels and resource
allocations. In addition, recent research emphasises the significance of Petri nets in facilitating smart
maintenance systems and digital twin developments [Xu et al., 2021; Aivaliotis et al., 2020], thereby
validating the appropriateness of CPNs for dynamic maintenance scheduling in uncertain conditions.

3.3.2 Structure of the Colored Petri Net Model

Coloured Petri nets are a substantial improvement on traditional Petri nets, facilitating complex
system modelling in a more understandable manner, notably in industrial system prognostics and
maintenance.

A distinctive feature of CPNs is their ability to embed colours in tokens. This enables a variety
of resource or object classes to be distinguished, increasing the modelling flexibility. In comparison
to traditional approaches the CPN reduces model size, whilst providing a more robust representation
of dynamic processes and intricate interrelationships across a variety of environments.CPNs ability to
manage a wider state and condition spectrum makes them especially suitable for modelling systems
where monitoring resource and event evolution requires a high level of detail, including in preventive
maintenance and failure prediction systems [4].

In this respect, a CPN is presented to illustrate a railway maintenance procedure. Maintenance
decision-making in the railway system is governed by four fundamental criteria:

e The task’s severity: an important factor that prioritises intervention based on its impact on the
rail system’s safety and performance.

e Mileage: this is crucial for planning maintenance based on component wear and preventive
maintenance cycles.
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e Machine load: is assessed on a rolling stock’s usage intensity. If a unit is heavily loaded, it will
require frequent servicing to prevent premature component wear.

e Monitoring techniques: this criterion covers the techniques used for monitoring the equip-ment’s
health. This encompasses such methods as vibration monitoring, temperature analysis, and the
IoT sensors that allow to anticipate failures and optimise maintenance operations.

The Colored Petri net for maintenance is made up of four subnetworks (Figure 3). The first part ‘P1’ is
the deterioration process subnetwork. The second section is dedicated to maintenance resources. The
third subnet relates to maintenance policies. The last subnetwork is related to maintenance planning.
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Figure 3: Colored Petri Nets for modeling railway maintenance process

A/ Deterioration Process (P1)

Generally equipment have two states, working or broken down. A subnetwork model (P1) depict-
ing the deterioration process is shown in (Figure 3). Two places ‘P1’ and ‘P2’ respectively indicate
the system’s operational and failure states. The token indicates the system state. Triggering the ‘T1’
transition indicates the switch from the normal operating to the fault state. The place P3 simultane-
ously represents the task severity <s>, the kilometrage <k> as well as the sensor-delivered critical
measurements <sm>, making this a crucial criterion for maintenance decision-making. The transition
T1 is then triggered either by the appearance of one (or most) of the criteria, The colour set is denoted
C= <s>, <k>, <sm>. If a particular task is ranked as severe, its token will be drawn, denoting its
priority in the maintenance process. As far as the mileage is involved, the corresponding token will be
fired only once it reaches the manufacturer-defined threshold necessitating a specific intervention An
unmarked place denotes a refusal criteria and acceptable operating state. The measurements criteria
constitute dynamic information obtained from the scheduling and monitoring departments.

B/ Maintenance Resources (P2)
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According to the P2 block, when a breakdown happens and the drawings <d>, maintenance teams
<p> and tools <t> are available, maintenance work can begin (place P5) . It is absolutely imperative
that all three components are present and pulled together in order to cross the transition T2, and to
ensure availability of all resources prior to maintenance action.

C/ Maintenance strategies (P3)

The purpose of this block is to preserve or restore an entity to a specific state. Maintenance policies
can be divided into two categories: corrective and preventive. In both cases, the maintenance operation
is triggered through a decision process involving the measured or estimated state of the resources in
question. According to Figure 3 (sub-assemblies P3), transition ‘T4’ matches the maintenance process
when the components are in the triggered state. If there are enough maintenance resources (sufficient
mark at location P5), transition ‘T3’ will be triggered if there is preventive <pr> or corrective <cr>
maintenance (place P6). The A3 subnetwork linked to the maintenance process is based on the
Colored Petri net. The time windows “IS3” assigned to places P6 indicate the maintenance activity
durations. The time constraints represent the maintenance process uncertainty, which depends on the
failure severity and the maintenance resources and spare parts availability.

D/ Maintenance scheduling (P4)

The 4th part is the subnetwork for maintenance scheduling. Scheduling involves allocating re-
sources over time to tasks within time and capacity constraints. The maintenance scheduling of
railway equipment’s refers to the resource allocation to a task in one or several discrete connected
time intervals and to a decision-making process aiming at optimizing one or several targets. Based
on the diagnostic information, this subnetwork’s (P4) role is to decide on the maintenance policy, to
enable urgent procedures and finally to initiate recovery procedures. In this networks the place P8
represents machine load <ch>, the suitability of monitoring techniques <mt> and spare parts <sp>
availability. These three parameters are crucial for maintenance scheduling. When the token moves
to ‘P9’, this indicates that maintenance is required on this rolling stock.

3.3.3 Dynamic Behavior and Maintenance Workflow

The dynamic behaviour of the maintenance process can be observed by tracking token move-
ments across locations. The fuzzy inference engine outputs determine the dynamic insertion of new
maintenance requests, both planned and urgent, into the workflow. The model is enabled:

e The execution of multiple tasks concurrently.

e The real-time insertion of urgent maintenance tasks is a methodology employed to circumvent
the disruption of ongoing activities.

e The process of assigning precedence to resources and subsequently redistributing them in accor-
dance with the prevailing conditions of the system is of paramount importance.

The validation of maintenance strategies, the anticipation of bottlenecks, and the optimisation of
resource utilisation can be achieved through the utilisation of simulation and analysis of the CPN.

3.4 Algorithmic Approach

The implementation of the proposed hybrid model—combining fuzzy inference and Colored Petri
Nets (CPNs)—is structured into a modular, stepwise procedure designed to support dynamic mainte-
nance scheduling under uncertainty. The algorithm ensures the prioritization, insertion, and execution
of maintenance tasks in response to evolving operational contexts.

Step 1: Task Detection and Input Initialization Maintenance requests are generated from either
scheduled planning or real-time system monitoring. For each task, five input parameters are collected:

e Fault severity

e Time constraint
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Algorithm 1 Fuzzy-CPN-Based Dynamic Maintenance Scheduling

1: Input: Task T; with parameters: Severity (5), Time Constraint (7'C'), Failure Cost (F'C'), Machine
Load (ML), Monitoring Technique (MT')
Output: Recommended Maintenance Type and Execution Path
Normalize input values of S, TC, FC, ML, and MT
Fuzzify inputs using defined membership functions
Evaluate activated rules using Mamdani inference
Aggregate outputs and apply centroid defuzzification
Determine the maintenance type: Systematic, Conditional, Predictive, Corrective, or Improved
Generate a CPN token embedding task attributes (type, priority, duration)
Insert token into the initial place of the Colored Petri Net
Simulate CPN transitions: scheduling — execution — completion
. if A high-priority task T™ is detected then
Preempt lower-priority token(s)
Re-evaluate T™* via fuzzy inference
end if
. Log the decision and update system state

= e s e e
ATl sl

e Machine load
o Failure cost
e Monitoring technique

These inputs are normalized over a fixed domain and passed to the fuzzy logic layer.

Step 2: Input fuzzification The input values are converted to fuzzy sets via predefined membership
functions. Each parameter is described by linguistic terms (e.g. low, moderate, high), and mapped to
triangular or trapezoidal functions.

Step 3: Rules evaluation and inference The system assesses active fuzzy rules with Mamdani
inference. For each corresponding rule, the activation degree is calculated and the associated fuzzy
outputs are computed.

Step 4: Defuzzification The aggregate fuzzy output (maintenance choice) is defuzzified by the
centroid method to generate a net maintenance score indicating the recommended maintenance mode
(e.g. conditional preventive, corrective, etc.).

Step 5: RPC token generation Based on the Fuzzy Decision, a coloured token is generated. Each
token carries task-specific attributes: priority level, type of maintenance, estimated time and resource
requirements.

Step 6: Task insertion and execution The token is then inserted in the CPN model, simulating
maintenance status:

Waiting — Scheduled — Running — Completed

Transitions are fired based on system conditions, such as resource availability, concurrency or
preemption logic.

Step 7: Dynamic updating and feedback If a new, urgent task is identified (e.g., due to a sensor
alert), the Fuzzy CPN loop reboots, evaluates the task and dynamically updates it. The resulting
system adapts continuously to operational variations and resource conflicts.

The following section focuses on the practical application of the proposed fuzzy CPN-based main-
tenance optimization framework to a real case study of Tunisia’s railway network. The purpose of this
study is to assess the model’s effectiveness in prioritizing repair interventions and managing mainte-
nance workflows dynamically under operational uncertainty.

3.5 Case Study: Maintenance of Tunisian Railway Network

The Sahel railway line, subject of our study, presents particular interest since it serves the Sahline
salt marshes, which are saline marshes located in eastern Tunisia, extending from Monastir to Sahline



https://doi.org/10.15837 /ijccc.2026.1.7209 12

(Figure 4a). This Tunisian example, with available concrete data, requires careful consideration to
local conditions, particularly the presence of sand and salt from the marshes. However, this study
does not deal specifically, with the effects of these factors; it is mainly, based on a set of generic
recommendations, without any local context. In addition, the geographic configuration of this line
bears strong similarities to some existing lines in France, making it easier to take comparative approach
and potentially transpose proposed adaptations. In France, the Saint-Césaire to Le Grau-du-Roi
line is a railway line that crosses areas where salt marshes are located, particularly near Aigues-
Mortes, (Figure 4b).The key similarity is the fact that both railway lines run alongside salt marshes,
highlights the interaction between transport infrastructure and these naturally occurring or exploited
environments. The Grau de Roi road traverses the Aigues-Mortes salt marsh and is in proximity to
the sea, (Figure 5b).

Maintaining rail transport networks in salt marsh areas requires a proactive approach and the
adopts of specific technologies and methods to tackle the issues of corrosion and vegetation manage-
ment, whilst respecting the sensitivity of these ecosystems. The proactive approach involves careful
inspection planning, damage anticipation, and the implementing of preventive maintenance programs.
The implementation of specific materials and techniques involves innovative solutions in protective
coatings, corrosion-resistant alloys, and appropriate construction methods. While constant vigilance
is provided through regular monitoring, sensors, and in-depth expertise in infrastructure behavior in
this particular environment. Consequences from a maintenance point of view are:

- Extreme heat causing track degradation: indeed, high temperatures cause rail expansion and
contraction, leading to track distortion, rail breaks and increased component fatigue.

- High Evaporation and Low Rainfall: The Camargue is characterized by intense evaporation and
low rainfall, making it ideal for salt harvesting

- Flooding (due to heavy and irregular rainfall) causes track scouring: Intense, short-lived down-
pours can trigger flash floods that carry away ballast and track bed, causing major damage and
disruption.

- Dust storms: frequent and intense dust storms can reduce visibility, which has an operational
safety impact and risks damaging equipment by infiltrating and corrupting mechanical and electrical
systems, which has an indirect impact on the safety and stability of rail operations and infrastructure
investments.

| Salt marshes of Monastir |

Aigues-Mortes
Salt Marshes

7

v
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line
*——ml Railwayline
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(a) Monastir line, Tunisia (b) Nimes-Grau du Roi line, France

Figure 4: Monastir and Grau-du-Roi railway line

The Sahel Metro is an extensive railway network in the region, stretching 70 kilometres. It com-
prises 47 kilometres of double track between Sousse Bab Jedid and Moknine, as well as 23 kilometres
of single track between Moknine and Mahdia. The network comprises 31 stations and stops, which are
strategically positioned to serve urban, industrial, tourist and university centres (ibid). Notable des-
tinations include Sousse Bab Jedid, Sousse Sud, Sousse city centre, the Sahline industrial zone, Habib
Bourguiba International Airport and part of the Eddkhila tourist area. The network also extends
to Monastir University and Monastir town, continuing on to Ksar Helal, Moknine, Khniss, Ksibet
Mediouni, Bennane, Bouhjar, Lamta and Sayada. Furthermore, it extends to the Teboulba industrial
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Figure 5: Sousse and Grau-du-Roi railway station

zone and the municipalities of Teboulba and Békalta, as well as the tourist area and the university
campus of Mahdia. Consequently, the network plays a pivotal role in regional mobility, facilitating
everyday travel and the economic development of the Sahel region. The Saline industrial zone as a
particular interest from a maintenance point of view, because this name comes the presence of Salt
marshes. In this area, the salt density is particularly high. This lead to specific corrosion phenom-
ena that has not been considered by the systematic maintenance rules provided by the rolling stock
builder. The Sahel metro operates with an average frequency of 40 minutes, providing 44 scheduled
circulations per day from 05:00 to 22:00. It is estimated that it will transport more than 9 million
passengers per year, with an average of 27,000 passengers per day.

(Figure 6) illustrates the stations on the Sahel Tunisia train line between Mahdia and Sousse.
The metro’s strategic focus is centred on the customer. This is demonstrated by its commitment to
continuously improving service quality and facilitating dialogue with travellers. Such commitments
are embodied by the organisation of panels and cultural events in station spaces. These measures
foster the development of a framework of mutual trust between travellers and the metro.

eboulba Z. Ind

N g2 EEx =22

Figure 6: Topology of the rail network

3.6 Description of Simulations

To evaluate the potential impact of different operational parameters on recommended maintenance
strategy, five numerical simulations were carried out. Each simulation methodically investigates the
combined impact of two primary parameters on the maintenance decision. The findings are presented
in the form of three-dimensional surfaces.

3.6.1 Simulation 1: Influence of time constraint and severity on conditional-preventive
maintenance

The first simulation aims to analyze the impact of time and severity constraints on the level of
conditional preventive maintenance. The 3D surface obtained is shown below.

As demonstrated in (Figure 7) , for low levels of time constraint and severity, the model demon-
strates a propensity for a conditional approach, exhibiting moderate output levels.
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Figure 7: Three-dimensional trapezoidal membership function: Conditional Preventive Maintenance

= f (time constraint, severity)

As time constraints increase, and even in the presence of moderate severity, the advice gradually
evolves gradually towards increased conditional preventive maintenance. This can be interpreted as a
necessary anticipation of reduced time available for action.

3.6.2 Simulation 2: Influence of the machine load and severity on improved maintenance

A second simulation was conducted to assess the simultaneous impact of machine load and severity
on the strategy for improving maintenance. The results are presented as a three-dimensional surface.

(Figure 8) illustrates that at moderate machine load and with low to moderate damage severity, the
favoured approach is to perform improved maintenance. Clearly, low machine load and high damage
severity reduce the relevance of this approach, indicating that improved maintenance is more suitable
in progressive wear circumstances than in rapid degradation.

Amelioratihve

0.5 0.06

Machine-Load 0 o0 Severity

Figure 8: Three-dimensional trapezoidal membership function: improved maintenance = f (severity,

machine load)
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3.6.3 Simulation 3: Influence of machine load and severity on corrective maintenance

The third simulation examines the cross-impact of machine load and severity on the corrective
maintenance recommendation. The subsequent figure illustrates the results obtained.

0.06
0.04

0.02

Machine-Load Severity

Figure 9: Three-dimensional trapezoidal membership function: corrective maintenance = f (severity,
machine load)
(Figure 9) shows that corrective maintenance is mainly favoured in conditions of low machine

load and low severity. When one of these parameters increases, the trend is towards a reduction in
corrective actions, in favour of more preventive or predictive strategies.

3.6.4 Simulation 4: Influence of machine load and severity on predictive maintenance

In order to study the combined effect of machine load and severity on the implementation of
predictive maintenance, a fourth simulation was carried out. The corresponding surface is shown

below.

Predictive

0.1
0.5 0.06

0.04
0.02
Machine-Load 0. o Severity

Figure 10: Three-dimensional trapezoidal membership function: predictive maintenance = f (severity,

machine load)

As shown in (Figurel0), in situations characterized by high machine load and severity levels, pre-
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dictive maintenance appears to be the most popular approach. Inversely, in instances where load
is minimal, and even where the severity of the problem increases, the interest in predictive mainte-
nance is moderate. This finding underlines the importance of operational constraints in prioritizing
interventions.

3.6.5 Simulation 5: Influence of failure cost and severity on systematic maintenance

Finally, a fifth simulation explores the relationship between failure cost and severity to guide the
systematic-preventive maintenance strategy. The results are summarised in the figure below.

Systematic

0.5 0.06

Failure-Cost 0 o Severity

Figure 11: Three-dimensional trapezoidal membership function: systematic maintenance = f (severity,
failure cost)

As illustrated in (Figure 11), an escalation in failure cost or severity gives rise to a predilection
for a systematic maintenance strategy. However, in cases where the cost and severity are low, a less
systematic approach is adopted.

This phenomenon elucidates the economic rationale underpinning the selection of preventive strate-
gies. This phenomenon elucidates the economic rationale underpinning the selection of preventive
strategies.

3.7 Analysis of Results

The simulation results evidently demonstrate the adaptive capability of the proposed system to
dynamically tailor maintenance recommendations in response to variations in operational conditions.
A detailed analysis of the five simulation scenarios highlights several key patterns:

o Effect of Severity: Severity emerges as a dominant factor, systematically triggering a shift to-
wards more proactive maintenance strategies as its level increases.

e The Effect of Failure Cost: It is evident that an augmentation in the estimated failure cost will
result in a substantial reinforcement of systematic maintenance policies. The implementation of
such policies is aimed at mitigating the considerable economic risks associated with unexpected
breakdowns.

e The Effect of Time Constraint: The contraction of available time windows has been demonstrated
to engender an earlier prioritisation of preventive actions, even in circumstances where the
severity level remains moderate, with a view to ensuring operational continuity.
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e The Effect of Machine Load: In conditions of elevated machine loading, there is an encourage-
ment of the strategic implementation of predictive maintenance methodologies, whilst concomi-
tantly reducing the necessity for reactive (corrective) interventions.

In summary, the developed system demonstrates a high degree of flexibility and robustness, thus
enabling optimised maintenance planning that balances reliability enhancement with cost efficiency
under varying operational and environmental constraints.

4 Discussion

The simulation scenarios in Figures 7 to 11 illustrate the dynamic behavior of the Fuzzy—CPN
model under various maintenance conditions, as demonstrated by the following discussion.

Simulation results clearly indicate the effectiveness of the proposed framework, based on fuzzy
logic and colored Petri nets, in the dynamic optimization of railway maintenance strategies.

This paper seeks to explore the following research questions in this section:

First, what are the benefits of integrating these two modeling techniques? Secondly, what are the
main challenges and limitations encountered? Lastly, what are the practical implications for real-world
implementation within railway networks?

4.1 Advantages of Fuzzy Logic and Petri Nets

This study proposes a novel maintenance framework that integrates fuzzy logic and Colored Petri
Nets (CPNs). It is hypothesised that this integration offers significant advantages for managing
complex and uncertain operational environments:

o Adaptability to uncertainty:

Fuzzy logic enables the system to prioritize maintenance operations even when faced with imprecise
or evolving data. This is made possible through the use of expert-inspired rule bases and flexible
membership functions that reflect real-world decision-making nuances.

e Formal process modeling with CPNs:

Colored Petri Nets provide a rigorous structure for validating and simulating maintenance processes.
They allow for the modeling of complex task interdependencies, dynamic resource allocation, and
event-driven transitions, ensuring logical consistency and operational feasibility.

e Support for concurrency and dynamic evolution:

The hybrid Fuzzy—CPN approach enhances the system’s ability to manage simultaneous and unpre-
dictable events—common in real-world railway maintenance scenarios. It allows maintenance work-
flows to evolve dynamically while maintaining operational coherence.

4.2 Limitations and Challenges

Despite the benefits of the proposed approach, it is vital to acknowledge the limitations and
challenges associated with it.

Firstly, the association of fuzzy inference and CPN results in an increased model complexity, which
can lead to problems in model conception, tuning and interpretation. It is imperative to use careful
fuzzy rule definitions, membership functions and Petri net structures to ensure system traceability
and manageability.

Secondly, the computational costs of simulation can become considerable, particularly when ex-
tended to large, highly interconnected rail networks. It is imperative that fuzzy evaluations and CPN
simulations are further optimized in terms of their computational requirements, if they are to be
applied in real time.
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Thirdly, integration with existing maintenance management systems presents a practical challenge.
It is obvious that a significant proportion of operational systems are founded on legacy and inflexible
platforms. Incorporating dynamic fuzzy CPN frameworks would necessitate implementing meticulous
integration strategies, encompassing data standardization, middleware development and staff training.

Finally, it should be noted that due to confidentiality restrictions imposed by the infrastructure
owner and the train manufacturer, real maintenance datasets could not be disclosed. Therefore, the
proposed model was validated through expert-defined scenarios inspired by the operational context of
the Sahel metro network. Despite the absence of quantitative performance metrics, these simulations
depict realistic maintenance conditions, such as failures caused by saline corrosion and sand dust. The
model’s behavioral accuracy is supported through qualitative validation, while future work will involve
numerical benchmarking upon availability of industrial data.

4.3 Practical Implications

The practical implications of this research are substantial, particularly for railway network man-
agers seeking to modernise and optimise maintenance strategies.

The fuzzy-CPN framework provides a foundation for intelligent maintenance systems that can be
integrated with IoT sensor networks, facilitating real-time monitoring of equipment states and feeding
live operational data into the fuzzy decision engine.

Moreover, the integration of the framework with predictive analytics would empower managers to
anticipate failures with greater precision and to schedule interventions dynamically based on evolving
conditions, as opposed to static time-based schedules.

In addition, the using of Colored Petri Net for modelling facilitates the development of digital
replicas of railway infrastructures. These digital twins can then be employed to conduct real-time
simulations of maintenance workflows. This enables the evaluation of alternative strategies, the pre-
diction of bottlenecks, and the optimisation of resource allocation. The integration of these digital
twins with fuzzy-CPN intelligence has the potential to facilitate the transition of railway operators
towards the development of autonomous, self-adaptive maintenance systems.

5 Conclusion

The present paper addresses the dynamic scheduling problem of maintenance activities within
railway networks. In the field of railway maintenance, compliance with strict standards of operational
reliability and safety is mandatory, and it is the responsibility of the relevant stakeholders to comply
with them. The proposed framework integrates a fuzzy inference system with a colored Petri net model,
thereby facilitating the maintenance management and operation optimization in contexts characterized
by variations in operating conditions and associated uncertainties.

The fuzzy-decision system facilitates the prioritisation of maintenance tasks by appraising pivotal
factors, including fault severity, time constraints, financial cost of failure and machine load, thereby
ensuring interventions are congruent with the evolving criticalities of the system. Concurrently, the
Colored Petri Net framework models the insertion, execution and rescheduling of maintenance tasks
in real time, whilst managing resource constraints and handling disruptions.

The integrated approach is predicated on the minimisation of risk with regard to emergency sit-
uations resulting from delayed interventions. Such situations have the potential to impact both in-
frastructure integrity and traffic operations, ultimately resulting in a degradation of railway service
quality. The proposed model ensures continuous service reliability, even in situations where traffic
conditions and operational disruptions may fluctuate. This is achieved by enabling the flexible and
coherent scheduling of preventive, predictive and corrective maintenance activities.

In most cases, the introduced maintenance integration strategy enables additional maintenance
tasks to be included in the machine’s availability. Traffic can thus continue in the worst-case scenario.
Colored Petri nets are a valuable tool for the careful modeling and analysis of railway maintenance
processes, as they capture the intricate interactions between tasks, resources and temporal constraints.
Despite their effectiveness in describing parallelism and synchronism, complementary approaches are
needed as systems become increasingly complex and lack integrated decision-making mechanisms. To
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achieve optimized scheduling of maintenance tasks, a methodology combining colored Petri nets and a
dynamic insertion algorithm has been proposed. Further implementation and experimental evaluation
of the proposed methodology, including simulations using real data, should allow the model to be
refined and its potential impact on the operational effectiveness of maintenance systems to be assessed.

It will be important to broaden the applicability of the maintenance methodology detailed in
this paper. Monitoring urban and maritime transport network as SEDs would provide a tangible
assessment of the proposed approach. It would be worthwhile developing a specific approach to rolling
stock predictive maintenance by incorporating digital twins.

The proposed Fuzzy—CPN model represents a novel hybrid reasoning-simulation framework, in
contrast to conventional approaches such as ANFIS, standalone Petri Nets, or purely predictive main-
tenance systems. The combination of interpretability of fuzzy inference with the dynamic modelling
capability of Petri Nets enables both uncertainty management and process-level adaptability. In con-
tradistinction to black-box predictive methods, the present approach provides transparent, rule-based
reasoning that dynamically responds to real-time conditions. This hybrid integration has been demon-
strated to enhance decision accuracy, flexibility, and robustness, representing a significant step forward
towards intelligent, self-adaptive maintenance systems.

This integration serves to highlight the practical efficiency and scientific relevance of the proposed
tools for intelligent monitoring and maintenance within complex railway systems.

In the future, the Fuzzy—CPN framework could be enhanced by integrating digital twins for real-
time system simulation and IoT-based sensors for live condition monitoring and adaptive scheduling.
Moreover, machine learning could automate rule tuning and pattern recognition, decreasing the need
for expert-defined logic. With these enhancements, we can expect more autonomous and intelligent
maintenance systems that can continuously learn and self-optimize.
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