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Abstract

This paper presents the development and analysis of an intelligent autopilot system for a fixed-
wing unmanned aerial vehicle (FWUAV), designed to stabilize and track critical flight parameters:
airspeed, altitude, heading angle, and sideslip angle. The proposed system leverages a modular
control architecture based on successive closed-loop control channels, enhanced by advanced opti-
mization methods: Ant Lion Optimizer (ALO), Differential Evolution (DE), Bat Algorithm (BA),
and Harmony Search (HS). Simulation results validate the robustness and efficiency of the autopilot
system under various scenarios, including fixed set-point hovering and trajectory tracking for both
straight-line and orbital paths, with and without wind perturbations. Comparative analyses with
state-of-the-art methods from the literature demonstrate that the DE and ALO-based controllers
consistently achieve superior performance in terms of precision and rapidity while maintaining
adaptability to nonlinear dynamics and external disturbances. Furthermore, the findings highlight
the potential of the proposed autopilot architecture and optimization methods in enhancing UAV
control accuracy and robustness.

Keywords: Fixed-wing UAV, Intelligent Autopilot, Optimization, Differential Evolution, Ant
Lion Optimizer, Bat Algorithm, Harmony Search, Trajectory Tracking.
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1 Introduction
Since their development, control algorithms for stabilizing Fixed-Wing Unmanned Aerial Vehicles

(FWUAVs) have gained significant attention within the scientific community. This interest stems
from the inherent complexity of FWUAV dynamics, which pose a major challenge for researchers.
Additionally, these vehicles are frequently deployed in critical missions such as wide-area surveillance,
mapping, or search and rescue operations, requiring both precision and robustness. The diversity of
these applications has driven the need for high-performance autopilot systems capable of maintaining
accurate maneuverability under varying and often unpredictable conditions.
FWUAVs are particularly one of the most critical and complex systems due to the strong correlation
among their main flight parameters. Furthermore, their classification as under-actuated systems, with
fewer actuators than degrees of freedom, adds to the complexity of their control. Consequently, the
development of autopilot architectures that ensure both stability and trajectory tracking accuracy
remains a pressing research objective.

Over the past decades, a growing body of literature has explored various linear and nonlinear con-
trol strategies for FWUAVs. This exploration has led to the development of diverse linear and nonlinear
methodological approaches. Classical linear methods such as Proportional-Integral-Derivative (PID)
controllers, Linear Quadratic Regulators (LQR), and Root Locus (RL) techniques have laid a solid
foundation due to their simplicity and effectiveness in well-modeled systems [1, 2, 3, 4]. These con-
trol methods largely rely on linearized models that can perform near the trimming conditions, where
steady-state flight is assumed. For instance, the PID controller has been extensively utilized to stabilize
FWUAVs, as demonstrated in [1], where cascade PID controllers were developed for decoupled lateral
and longitudinal control, while the LQR technique had promising outcomes when it was applied to en-
hance the longitudinal stability in turbulent conditions [2, 3]. RL techniques have also been employed
to design longitudinal control laws based on classical control theory [4]. Nevertheless, while traditional
methods are effective in certain contexts, they exhibit limitations when managing high-performance
maneuvers, particularly under the influence of non-linearities and coupling motion properties inher-
ent in FWUAV dynamics. To address these limitations, nonlinear control methods have emerged as
more robust alternatives. Significant advancements have been observed in techniques such as Integral
Sliding Mode Control (ISMC), the backstepping method, and Nonlinear Model Predictive Control
(NMPC). These approaches have demonstrated improved performance in handling complex flight
scenarios. Studies like [5, 6] have shown that these methods can effectively reduce cross-track errors
and manage large deviations in altitude and flight path angles by leveraging nonlinear sliding surfaces.

Despite these advancements, challenges remain, particularly in terms of computational complexity
and sensitivity to model uncertainties. In response, the integration of Artificial Intelligence (AI)
techniques has introduced new perspectives by combining the strengths of traditional methods with
adaptive learning capabilities provided by AI technology. Within this field, Soft Computing (SC),
Evolutionary Algorithms (EA), and Swarm Intelligence (SI) offer powerful tools for efficiently tuning
autopilot systems across various flight modes using available input-output data [7].

Soft computing techniques, including Adaptive Neural Networks (ANN) and Fuzzy Logic (FL), are
among the most well-known developments in this domain. These methods have proven their ability
to manage complex non-linear dynamics, as in [8, 9]. Furthermore, they can handle those complex
dynamics presented for FWUAVS. For example, in [10, 11], self-tuning fuzzy PID controllers have
shown superiority in speed stabilization and error tracking when designing the autopilot systems for
Aerosonde fixed-wing UAVs. On the other hand, the ANN method has been successful in dealing
with complex behaviors and uncertainties, and it has been used effectively as a neural design for the
autopilot of remotely controlled vehicles [12]. Furthermore, the Adaptive Neuro-Fuzzy Inference Sys-
tem (ANFIS) employs ANN and FL to dynamically enhance the UAV’s feedback control performance.
This method combines training a neural network with fuzzy logic reasoning, allowing for real-time
adjustments to PID parameters [13, 14].
Otherwise, Evolutionary Algorithms (EA) and Swarm Intelligence (SI) methods offer a simpler and
more effective alternative to optimize control settings in complicated, nonlinear systems. Unlike ANN
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and FL, which require extensive parameter tuning, EA and SI methods automate the search for op-
timal solutions, reducing manual effort and improving adaptability, and enhancing their practicality
for real-world applications [15, 16]. Techniques such as Particle Swarm Optimization (PSO) and Ge-
netic Algorithms (GA) have demonstrated their effectiveness in optimizing control parameters and
have been successfully applied to UAV control problems. In [17, 18], the authors have successfully
applied the PSO and GA in improving the dynamics of quadcopters during trajectory tracking. These
techniques are particularly suited for systems with unknown dynamics and external disturbances, as
they naturally adapt to changing conditions without requiring precise modeling or extensive prior
knowledge.
GA-based optimization has shown remarkable success in tuning PID controllers for FWUAVs, where
both longitudinal and lateral dynamics can be effectively regulated, accounting for system nonlinear-
ities and complexities. In [19], an intelligent flight control system was developed and optimized using
GA for an Aerosonde fixed-wing UAV to address transient response issues. The GA-PID integration
in the flight control system was successfully compared against classical PID tuning methodologies,
demonstrating superior performance. Similarly, [20] presents a hybrid control architecture that lever-
ages GA to optimize input weight feedback for a Robust Linear Quadratic Regulator (RLQR), en-
hancing aircraft performance. This comprehensive redesign of a UAV autopilot showcased improved
response and robustness against uncertainties and nonlinearities compared to traditional PID con-
trollers. Furthermore, GA has been compared with ANFIS and FL in intelligent autopilot system
design for Aerosonde fixed-wing UAVs. The results highlighted GA’s superior robustness and relia-
bility with lower computational costs. Alternatively, other SI techniques, such as the Artificial Bee
Colony (ABC) algorithm, have also shown promise. In [21], a cascade PID controller for UAV altitude
control was designed and optimized using ABC. The Integral Absolute Error (IAE) was identified as
the optimal fitness function, leading to significant performance improvements.

Research on FWUAV stabilization and trajectory tracking has highlighted several limitations. Lin-
earizing dynamic models, while practical, often fails to capture the system’s non-linear complexities,
especially under disturbed conditions. Additionally, interactions between key parameters, such as
airspeed, altitude, heading angle, and sideslip angle, are frequently underestimated, compromising
stability. Conventional control methods like PID and LQR struggle to adapt to evolving dynamics
and external disturbances, leading to suboptimal performance. In contrast, EA and SI methods offer
robust solutions, addressing non-linearity and system complexity effectively. Unlike soft computing
techniques, which rely on extensive parameter tuning, EA and SI adapt more naturally to dynamic
environments. Their rapid advancement and innovative heuristics paved the way for more reliable and
efficient UAV control systems, meeting the growing demands for stability and precision.

In this paper, we employ four modern evolutionary and swarm intelligence algorithms named Ant
Lion Optimizer (ALO), Differential Evolution (DE), Bat Algorithm (BA), and Harmony Search (HS).
They are carefully selected and used for the first time to deal with the control of FWUAVs because
of their proven effectiveness in solving nonlinear control problems across various applications [22, 23].
These algorithms are not only utilized for the design of the control framework but also serve as a
comparative and analysis platform to validate their robustness and ability to efficiently explore the
solution space in complex optimization tasks [24, 25]. Our contribution introduces a novel control
and stabilization framework that explicitly addresses parameter coupling, system nonlinearities, and
environmental disturbances. The proposed methodology adopts a multi-objective optimization strat-
egy to simultaneously regulate key flight parameters, including airspeed, altitude, heading angle, and
sideslip angle. A reduced-parameter autopilot architecture, consisting of four successive closed-loop
control channels, implements the control process. Each channel is dedicated to one flight variable
and is optimized using ALO, DE, BA, and HS. Furthermore, a comparative performance evaluation is
conducted to benchmark these algorithms against one another and against existing methods in the lit-
erature. The results confirm the robustness and efficiency of the proposed approach under diverse and
challenging flight conditions. The rest of this paper is structured as follows: The FWUAV’s dynamic
description and mathematical modeling are shown in Section 2. An overview of the swarm intelligence
and evolutionary algorithms used in this study is given in Section 3. The suggested autopilot system
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architecture is described in detail in Section 4. The best way to tune the flight control system with
the chosen algorithms is explained in Section 5. The simulation results and performance evaluation
are covered in Section 6. And the conclusion part is in Section 7.

2 Fixed wing UAV dynamic of flight
The dynamic model of FWUAVs provided in Figure 1 is a particularly complex, non-linear, under-

actuated system. It is based on strongly coupled differential equations between the various flight
parameters. The system uses four main inputs to control its movements: three deflection control
surfaces (Elevator δe, Ailerons δa, and Rudder δl) and one propulsion control (Throttle δt). Precise
adjustment of these four inputs enables the performance of various high-performance flight maneuvers,
such as hovering, climbing, landing, or coordinated turns. These maneuvers are influenced by the
system’s dynamic states, including position (pn, pe, pd), attitude angles (roll angle ϕ, pitch angle θ,
yaw angle r), angular velocity (roll rate p, pitch rate q, yaw rate r′), linear velocity components
(u, v, w), and the stability of airframe components (airspeed Va, angle of attack α, and sideslip angle
β). As a result, the dynamics of the system are represented in the Equation 1.

Figure 1: Fixed-wing UAV configuration

ẋ = f(x, u)
x = [pn, pe, pn, u, v, w, ϕ, θ, r, p, q, r′, Va, α, β]
u = [δe, δa, δl, δt]

(1)

To drive the FWUAV dynamical model, a set of assumptions is considered in this paper [26]:

• The UAV is considered a rigid body.

• The inertial mass of the UAV remains constant and is initially determined based on flight state
values.

• The UAV is subjected to a uniform gravitational acceleration.

• The Earth is regarded as a fixed plane within inertial space.

• Changes in angular momentum due to rotating subsystems are omitted from consideration.
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• Changes in angular momentum resulting from fuel movement and the motion of hinged compo-
nents are also excluded.

The equations of motion of FWUAVs are established by taking into account two reference frames:
a fixed inertial frame I = (Ix, Iy, Iz) and a relative frame linked to the body of the system B =
(Bx, By, Bz). The translation and rotation dynamics, which describe all the dynamic phenomena
acting on the UAV, are derived from the Newton-Euler formalization. This approach establishes a
relationship between the linear and rotational accelerations and the forces and moments applied to
the system. These fundamental equations, expressed as coupled relationships, are represented by
Equations 2 and 3.

m× dV

dt
|I= Faero + Fgravity + Fprop (2)

where dV
dt is the linear velocity derivative vector expressed along the inertial reference frame I, while

Faero (lift and drag forces), Fgravity, and Fprop denote the external applied forces of the aerodynamic,
gravitational, and propulsion forces, respectively.

J × dΩ
dt

|B +Ω × (J × Ω) = Taero + Tprop (3)

Where dΩ
dt represents the angular velocity derivative expressed in the body reference frame, Taero

and Tprop denote the moments acting on the UAV caused by the aerodynamic and propulsion effects
following the three types of rotation (rolling, pitching, and yawing), and J is the moment of inertia
matrix, which is derived under the assumption that the UAV’s structure is symmetrically represented,
leading to the following expression for J:

J =

 Jxx 0 −Jxz
0 Jyy 0

−Jzx 0 Jzz

 (4)

Thus, the dynamic model of fixed wing in terms of rotation (ϕ, θ, r) rotation rates (p, q, r′) and position
(pn, pe, pd) and velocity is given by the following equations:

ṗn = cθcψu+ (sϕsθcψ − cϕsψ)v + (cϕsθcψ + sϕsψ)w
ṗe = cθsψu+ (sϕsθsψ + cϕcψ)v + (cϕsθsψ − sϕcψ)w
ṗd = −sθu+ sϕcθv + cϕcθw

(5)

u̇ = rv − qw − gsθ +m−1 (Fx(Va, α, q, δe) + FT (Va, δt))
v̇ = pw − ru+ gcθsϕ +m−1Fy(β, p, r′, δa, δl)
ẇ = qu− pv +m−1Fz(Va, α, q, δe)

(6)

ṗ = Γ−1 (
Γ1rq − Γ2pr + Tl(β, p, r′, δa, δl)

)
q̇ = J−1

y

(
(Jz − Jx)pr − Jxz(p2 − r2) + Tm(Va, α, q, δe)

)
ṙ′ = Γ−1 (

Γ3pq − Γ2qr + Tn(β, p, r′, δa, δl)
) (7)

ϕ̇ = p+ sϕ tan θ q + cϕ tan θ r′

θ̇ = cϕ q − sϕ r
′

ṙ = sϕ sec θ q + cϕ sec θ r′
(8)

Where ci = cos i, si = sin i i = ϕ, θ, r

Γ = JxJz − J2
xz Γ1 = JyJz − J2

z J
2
xz

Γ2 = (Jx − Jy + Jz)Jxz Γ3 = J2
x − JyJx − J2

xz

(9)
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Va =
√
u2 + v2 + w2

α = tan−1
(
w

u

)
β = sin−1

(
v

Va

) (10)

In the equation above, m represents the UAV mass, and Γ, Γ1, Γ2, and Γ3 are constants that are
calculated by the moment of inertia matrix component Jx, Jy, Jz, Jxz.

Fx, Fy, Fz, and Fprop are the resulting aerodynamic, gravitational, and propulsion force compo-
nents. Tl, Tm, and Tn denote the roll, pitch, and yaw resulting moment acting on the system, as-
suming that these parameters are non-linear functions depending on the aerodynamic coefficients and
time-varying as the operating point of the vehicle, i.e., α, β, and Va, changes that are updated using
Equation 10. More details for the mentioned forces and moments, as well as all needed aerodynamic
coefficients, are expressed in [26].

In a coordinated turn, an aircraft must adopt a specific roll angle to maintain a smooth turn
without incurring lateral forces. During a turn, the lift generated by the wings is inclined, producing
a vertical component to compensate for the force of gravity and a horizontal component to generate
the centripetal force required to change heading. The roll angle ϕ is directly correlated to the rate
of heading change ψ̇. In the absence of wind and skid, the aircraft performs a smooth turn without
lateral acceleration, ensuring a balance between gravitational and centrifugal forces. The relationship
between the heading rate and the roll angle is kinematically expressed as follows:

ψ̇ = g

Va
tanϕ (11)

To ensure navigation at the desired speed and altitude, as well as the execution of coordinated turns
while minimizing the disruptive effects of wind, it is essential to precisely control four fundamental pa-
rameters that directly influence the aircraft’s longitudinal and lateral dynamics: airspeed Va, altitude
z = −pd, heading angle ψ, and sideslip angle β. These parameters play a central role in the stability
and control of the aircraft in flight. Therefore, an autopilot system must be designed with extreme
rigor to regulate these parameters autonomously, thus guaranteeing stable, precise, and efficient flight
performance, even under variable aerodynamic conditions.

3 Overview on the proposed methods
The Ant Lion Optimizer (ALO), Differential Evolution (DE), Bat Algorithm (BA), and Harmony

Search (HS) are four chosen intelligent optimization methods used to tackle the complex control
issues in FWUAV autopilot design. This section offers a comprehensive explanation of each method’s
application in this particular context.

3.1 Ant Lion Optimizer

Ant Lion Optimizer (ALO) is a collective intelligence-based optimization method developed by
Sidali Mirjalili in 2015 [27]. The algorithm is inspired by the hunting behavior of antlions, which set
traps for ants seeking food. In ALO, ants are used as search agents, while antlions guide them via a
mathematically modeled random walk, as in Equation 12. Each ant adjusts its position according to
the best solutions discovered in the search space. The algorithm is based on intelligent selection of the
global optimum from a population of NP ants and antlions, initially distributed in a search space at
D-dimension. Antlions influence the ants’ random walk, increasing the probability of capturing them,
and update their positions according to their fitness values to converge towards optimal solutions.

R(t) = [0, cumsum(2 · r1(t) − 1), cumsum(2 · r2(t) − 1), . . . , cumsum(2 · rd(t) − 1)] (12)

where R(t) represents the position of the ant at time t, rj(t) (for j = 1, 2, . . . , D) is a stochastic
variable that represents a random binary value (either 0 or 1), and D is the dimension of the problem
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space. This random walk is then normalized and confined within the boundaries of the search space
by the antlion, ensuring that the solution search progresses effectively and balancing the exploration
and exploitation processes in the algorithm.

3.2 Differential Evolution

Differential evolution, another strong metaheuristic algorithm used for complex optimization prob-
lems, was introduced by Strorn and Price in 1995 [28]. DE operates by evolving a population of candi-
date solutions over generations to be updated adequately by using three main operators of mutation,
crossover, and selection all over to find the global optimal solution. It is an iterative process that
tries to avoid the non-adoptive solution, starting with a randomly generated matrix of NP individuals
within D-dimensional search space. Each individual is updated by operating the three main operators
of the algorithm. The first one is the mutation that is created by using Equation 13 to promote a high
level of search space exploration. While the crossover is used to gain the exploration of the obtained
mutation element by combining each one to the current population individual, which is described by
Equation 14. Finally, the selection process then tries to select the more adapted solution, retaining the
better one for the fitness function for the next iteration. This process continues until a stop criterion,
making DE effective for the multidimensional problem.

Vi = Xr1 + F · (Xr2 −Xr3) (13)

Ui,j =
{
Vi,j if rj ≤ Cr or j = jrand

Xi,j otherwise
(14)

where Vi is the mutant vector, F is the mutation coefficient, and Xr1, Xr2, Xr3 are three randomly
selected individuals from the current population. While Uij denotes the trial vector element, Cr is the
crossover probability.

3.3 Bat Algorithm

The BA algorithm is a nature-inspired intelligent optimization method created by Xin-She Yang in
2012 [29]. It is based on bats behavior in looking for food and prey, where the bats use the sound waves
to navigate and locate their prey. It tries to emit pulses of sound and wait for the echoes to estimate
the position-prey distance and the required velocity. This mechanism is modeled mathematically to
create a process for getting the optimal solution and making the diverse search space exploitable and
explorable. BA also requires a fitness function relevant to the search agent position, which is bats. In
this case, it operates within a defined search space, ensuring diversity in the population by updating
the bat position by its velocity and emission frequency, which also depend on the loudness and the
pulse rate parameters. After a random initialized matrix of the NP bat population, the velocity of
each bat in the current iteration is updated based on the current best position found so far, which is
described by the following equations.

fi = fmin + (fmax − fmin) · ri
vti = vt−1

i + (xt−1
i − x∗) · fi

xti = xt−1
i + vti

(15)

where fi, fmin, fmax are the current, minimum, and maximum frequencies, respectively; vi denotes the
velocity; xi the current position; and x∗ denotes the best position found in the current iteration.

The algorithms incorporate locale search xnew around the best-found position depending on the
bat’s pulse emission rti and loudness Ati to intensify the exploration progress. The parameters of pulse
rate and loudness are also dynamically adjusted as the algorithm progresses according to Equations
16, balancing exploration and exploitation to discover the global optimum.

At+1
i = δAti, 0 ≺ δ ≺ 0
rt+1
i = rti(1 − exp−λt) λ ≻ 0

(16)
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3.4 Harmony Search

The main idea behind the harmony search algorithm (HS) is that musical improvisation could be
modeled as an optimization process, indeed, because trying to find a perfect harmony by improvising
the notes of musical instruments and avoiding the false ones is similar to how the optimization works
to find the best solution and avoid the worst ones. This methodology was developed by Greem in
2001 [30]. The algorithm process of HS uses to store the possible solution as a matrix of decision vec-
tors, named by harmonic memory (HM). Harmony memory size (HMS) determines the size of this
matrix and the number of candidates within HM. Similar to other metaheuristic algorithms, the HS
also starts with the random initialization of HM within the possible range of the search space, and the
updating solution ximemory is guided through memory consideration, pitch adjustment, and random
consideration based on three parameters: harmony memory consideration rate HMCR, pitch adjust-
ment PAR, and bandwidth bw. And the new solution, xinew, is computed using the following structure:

xinew =


ximemory avec une probabilité HMCR,
ximemory ± rand() × bw avec une probabilité PAR,
rand(xmin, xmax) avec une probabilité 1 − HMCR,

(17)

where rand() generates random numbers for broader exploration. HS iteratively updates the harmony
memory by replacing the worst solution with a better one.

4 Autopilot System Design for Flight Control
The model equations described above exhibit strong non-linearity and coupling, making the system

inherently complex and unstable while also making it particularly sensitive to environmental conditions
and external disturbances. Consequently, controlling this type of behavior proves extremely difficult,
especially when the control task must cover the entire system and be directly implemented while
ensuring that the temporal response meets design requirements and delivers robust performance. To
overcome these challenges, a successive loop closure approach is adopted for the autopilot system
control tasks. This approach involves the use of several simple feedback loops chained around the
open system, thus eliminating the need to design a single, complex control system. Instead, a system
specifically designed to make rapid and precise control adjustments is preferred.

The autopilot system is designed to control a fixed-wing drone and provide precise navigation as
required. It incorporates four blockchain controllers designed to respond to longitudinal and lateral
movements with fully coupled system parameters. These chains are proposed for this application
according to the control laws described by Equation 18, in order to maintain the desired airspeed,
altitude, heading angle, and sideslip angle. The first controller is dedicated to maintaining the desired
airspeed and is designed with a proportional gain of Kv and Kdv, due to the stable open-loop speed
behavior observed. The second controller corresponds to the pitch chain with commanded altitude,
taking into account current feedback of pitch rate q, pitch angle θ, and altitude z to ensure pitch and
altitude stabilization by adjusting Kq,Kθ,Kz gains. The third chain concerns roll with commanded
heading, developed in a similar way to the pitch chain, with Kp,Kϕ,Kψ gains to guarantee roll and
heading angle stabilization. Finally, the fourth chain is dedicated to sideslip angle, using two gains,
Kβ and Kr′ , for the same purpose of stabilization.

δt = Kv(Vac − Va) +KdvV̇a

δe = Kθ(Kz(zc − z) − θ) −Kqq

δa = Kϕ(Kψ(ψc − ψ) − ϕ) −Kpp

δl = Kβ(βc − β) −Krr
′

(18)

where Vac, zc, ψc, and βc denote the desired velocity, altitude, heading angle, and sideslip angle, re-
spectively.
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The overall stability of the proposed cascade control architecture for fixed-wing drones is addressed
through Lyapunov stability analysis, a widely used method to rigorously demonstrate the stability of
closed-loop systems. Indeed, the integration of cascade control architectures often poses hierarchical
stability problems, requiring rigorous analysis based on the Lyapunov method to guarantee the sys-
tem’s stability and overall performance, as discussed in [31, 32]. Furthermore, several studies have
shown that cascade structure controllers, combined with nonlinear control techniques, are analyzed us-
ing candidate Lyapunov functions to ensure the asymptotic stability and robustness of fixed-wing UAV
systems [33, 34]. Although the proposed control is based on a cascade structure, its stability aligns
with this well-established theoretical framework, as confirmed by our simulation results illustrating
asymptotically stable trajectory tracking performance even in the presence of nonlinear dynamics and
disturbances.
Figure 2 illustrates the comprehensive flight controller system for the fixed-wing UAV. The four blocs

Figure 2: The autopilot system control loop

(controllers) operate as successive loop closure configurations, employing ten proportional actions to
stabilize attitude, altitude, and velocity. The complete autopilot controller architecture receives as
inputs the current variable state and the predefined desired signals for altitude, airspeed, heading, and
sideslip angle (Vac, zc, ψc, βc) according to the autopilot system requirements. In contrast, the sensor
signals for the desired pitch and roll angles (ϕc, θc) are derived from the commanded altitude and
heading angles. All gains require appropriate optimal tuning inside a fully coupled system to ensure
precise, rapid, stable, and resilient performance.

5 Optimal Flight Control System Tuning
The control system has been designed using Equations 18 is directly based on the architecture

shown in Figure 2. Its main objective is to stabilize the system studied through its key flight parame-
ters: airspeed, altitude, heading angle, and sideslip angle. To this end, 10 parameters corresponding to
the proportional actions of the four controllers developed were identified as variables to be optimized
for the desired performances. Consequently, the ALO, DE, BA, and HS algorithms were used to solve
this optimization problem.
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Figure 3: The block diagram of the optimal autopilot system using ALO, DE, BA, and HS.

A matrix of candidate solutions was randomly generated to initialize each parameter, thus ex-
ploiting the stochastic search dynamics specific to these algorithms. This matrix constitutes the
search space where each element represents an agent or a candidate solution. Each candidate vector
P = [Kψ,Kϕ,Kq,Kβ,Kr,Kz,Kθ,Kq,KVa ,KdVa ] contains all the controller gains and will be updated
by the dynamics algorithms to ensure fast, accurate, and robust transient responses. An initial pop-
ulation of 100 agents was adopted in this process.

Minimizing the deviation between desired values and regulated responses was addressed by con-
sidering three performance measures: overshoot, settling time, and steady-state error. These criteria
were combined to form a fitness function offering an overall assessment of the quality of candidate
solutions and their ability to satisfy performance requirements. The optimization problem was divided
into four elementary functions dedicated respectively to airspeed, altitude, heading, and sideslip, as
shown in Equations 19 and 20.

fi = aOvi + bTi + cEi where i = (Va, z, ψ, β) (19)

F =
∑

fi (20)

The composite fitness function F ensures a balanced evaluation by assigning different weights to
the performance indexes where a = 1, b = 0.75, and c = 0.4, and it was calculated using simulations
on the block diagram shown in Figure 3. The tuning parameters specific to each algorithm, which
influence their ability to explore solutions, were chosen by successive trials and are summarized in
the following Table 1 below. An optimal set of parameters for all four controllers results in superior
system performance and minimized performance indices. Table 2 compares the gains obtained using
the ALO, DE, BA, and HS methods.

6 Simulations and Results
In this section, a series of simulations is conducted to evaluate the efficiency and robustness of the

proposed autopilot architecture, and they are performed using the ALO, DE, HS, and BA algorithms
applied to an FWUAV under various flight scenarios. These scenarios include stabilization at fixed
reference points for airspeed, altitude, heading angle, and sideslip angle, as well as trajectory tracking
in the presence of dynamic disturbances. The MATLAB/Simulink environment is used to implement
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Table 1: Parameter tuning
Algorithm Parameter Signification Value

ALO NP Population Size 100
T Number of iterations 40

DE F Mutant constant 0.6
CR Crossover 0.9

BA
[fmin, fmax] Frequency range [0.6, 0.9]

r0
i Initial Pulse Rate 0.5
A0
i Initial Loudness 0.5

HS

HMS Harmony Memory Size 20
N_Impro Number of Improvisations 600
HMCR Harmony Memory Consideration Rate 0.9
PAR Pitch Adjustment Rate 0.5
bw Band Weight 0.7

Table 2: Optimal autopilot parameters obtained with Differential Evolution (DE), Antlion Optimizer
(ALO), Bat Algorithm (BA), and Harmony Search (HS) for the fixed-wing UAV

Intelligent Algorithms
Controller parameter DE ALO BA HS

Heading angle ψ
Kψ 3.5620 6.4612 1.8249 3.8169
Kϕ -2.4131 -3.3476 -2.1407 -3.6776
Kp -0.2118 -0.0010 -0.6998 -0.1836

sideslip anlge β Kβ -0.2841 -0.0001 0 -0.0635
Kr′ 0 -0.6993 0 -0.0266

altitude z
Kz -0.1518 -0.0523 -0.1860 -0.0440
Kθ -3.6923 -2.4745 -2.9002 -3.2881
Kq 0 -0.0002 -0.0034 -0.3168

Airspeed Va
KVa 29.0462 11.3555 29.8395 15.0553
KV̇a

12.5829 5.9856 0 16.2147

intelligent control strategies and determine the optimal autopilot parameters, aiming to enhance sys-
tem performance and achieve the desired control objectives. Table 3 summarizes the geometric and
technical specifications of the FWUAV model used in the simulations.

6.1 Desired Setpoint Holding Flight

The main objective of this scenario is to enable the controller to maintain a hover under standard
conditions, around predefined fixed values. Initial flight conditions and setpoints for airspeed, altitude,
heading angle, and sideslip angle are specified by Equations 21 to 22, guaranteeing a stable flight point
to be reached and maintained.

[pn0, pe0, z0, ϕ0, θ0, ψ0, V a0] = [0m, 0m, 100m, 0◦, 0◦, 0◦, 23m/s] (21)

[Vac, zc, ψc, βc] = [25m/s, 110m, 30◦, 0◦] (22)

The purpose of the sideslip control chain is to sustain the sideslip angle β at 0 to avert lateral drift
of the drone during flight. The optimal controller parameters obtained via each optimization algorithm
are summarized in Table 2, thereby enabling direct comparison and full comprehension of our tuning
results. The time responses of the controlled flight parameters (airspeed, altitude, heading angle, and
sideslip angle) are shown in Figures 4 to 7, while the corresponding control signals (δe, δa, δl, δt) are
illustrated in Figure 8. Additionally, the comprehensive analysis and comparison between the studies
methodologies is offered by the metrics performance and include a statistical assessment shown in
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Table 3: The parameters of the FWUAV
Parameter signification Value
Jx The x-axis Moment of inertia 0.7795 kg.m2

Jy The y-axis Moment of inertia 1.122kg.m2

Jz The z-axis Moment of inertia 1.752 kg.m2

Jxz The xz-plane Moment of inertia 0.1211kg.m2

Jprop Propeller moment of inertia 0.002 kg.m2

Rprop Propeller radius 0.254m
c Chord 0.18m
b Wind span 2.8956m
S Wing area 0.55m2

g Gravitational 9.81m/s2

Va Airspeed bounds [15 50]m/s
m weight 13.5 kg
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Figure 4: Fixed-wing UAV’s altitude z using Differential Evolution (DE), Antlion Optimizer (ALO),
Bat Algorithm (BA), and Harmony Search (HS).

Table 4 and Table 5, including the overshoot Ov, the settling time Ts and mean RMSE across 10
independant runs.

The simulation results demonstrate the efficacy of the suggested autopilot architecture in precisely
controlling Va, z, ψ, and β, despite the UAV system’s coupled, non-linear dynamics. The curves in
Figures 4 to 7 demonstrate that the chosen algorithms, ALO, DE, BA, and HS, proficiently utilize
their exploration and exploitation dynamics to provide appropriate proportionate gains for each con-
trol loop. This feature ensures adherence to desired performance metrics across all dedicated flight
parameters. Additionally, it can be clear that the autopilot’s modular closed-loop architecture has
successfully facilitated the management of interactions among flight dynamics while maintaining sys-
tem stability. Whereas, the decrease in parameters enhances the optimization efficiency and allows
the algorithms to calibrate the controllers with exceptional accuracy. These insights highlight the
autopilot system’s capacity to overcome the UAV control complexity while maintaining performance
integrity.

Regarding the numerical metrics in Table 4, the performance among the optimization strategies
utilized for the autopilot is highlighted. For the airspeed parameter, DE and ALO consistently out-
performed the other algorithms, achieving the shortest settling times (3.1908 s), acceptable overshoot,
and the lowest Integral of Squared Error (ISE), with values of 7.5618 and 8.8322, respectively. These
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Figure 5: Fixed-wing UAV’s airspeed Va using Differential Evolution (DE), Antlion Optimizer (ALO),
Bat Algorithm (BA), and Harmony Search (HS).
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Figure 6: Fixed-wing UAV’s heading angle ψ using Differential Evolution (DE), Antlion Optimizer
(ALO), Bat Algorithm (BA), and Harmony Search (HS).
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Figure 7: Fixed-wing UAV’s sideslip angle β using Differential Evolution (DE), Antlion Optimizer
(ALO), Bat Algorithm (BA), and Harmony Search (HS).
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Figure 8: The obtained control laws for Elevator δe, Ailrons δa, Rudder δl, and Throttle (δt) using
Differential Evolution (DE), Antlion Optimizer (ALO), Bat Algorithm (BA), and Harmony Search
(HS).
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Table 4: Performances obtained with Differential Evolution (DE), Antlion Optimizer (ALO), Bat
Algorithm (BA), and Harmony Search (HS) for the fixed-wing UAV.

output parameter performance Intelligent Algorithms
DE ALO BA HS

Va

Ts 3.1908 3.2603 2.9498 3.3325
Ov 0.0 0.0012 1.4019 0.0001
ISE 7.5618 10.3176 7.8591 11.4846
IAE 10.9121 8.8322 12.5040 9.2047
ITSE 26.5700 19.5109 39.7467 21.6491
ITAE 456.7204 236.4117 600.1468 243.2234

z

Ts 2.6087 2.1065 2.5892 2.0221
Ov 0 0.4994 0.0181 0.3242
ISE 133.8442 116.4806 134.6100 112.5975
IAE 34.7789 17.8759 26.8220 21.2580
ITSE 185.9892 86.9537 152.9012 90.9155
ITAE 613.3255 31.4377 679.2017 303.8817

ψ

Ts 5.5139 6.5348 7.4238 5.7219
Ov 0.3802 0.0402 0.0000 1.3935
ISE 0.4965 0.6145 0.6078 0.5413
IAE 1.6262 2.1886 1.9989 1.8249
ITSE 0.7256 1.1012 1.1881 0.8618
ITAE 14.1718 37.7356 12.1316 22.1279

Table 5: Mean RMSE and standard deviation over 10 runs for UAV control parameters
Algorithm RMSEVa RMSEz RMSEψ RMSEβ
DE 1.19 ±(0.04) 1.07±(0.07) 0.07± (0.005) 0.007±(0.002)
ALO 1.59±(0.25) 1.07±(0.35) 0.14±(0.19) 0.011±(0.007)
BA 1.19±(0.06) 1.04±(0.07) 0.08±(0.01) 0.013±(0.008)
HS 1.20 ±(0.06) 1.09±(0.15) 0.28±(0.53) 0.011±(0.007)

results indicate that DE and ALO, in particular, provide the most precise and stable control response.
The Bat Algorithm (BA) exhibited moderate settling time and ISE values, suggesting acceptable but
less optimal performance. In contrast, Harmony Search (HS) showed the minimum overshoot and a
significantly longer settling time (3.3325 s), reflecting a slower response. Overall, DE emerges as the
most effective algorithm for airspeed control within the proposed autopilot framework.
For the altitude, ALO and HS are performing slightly better at 2.1065 s and 2.0221 s, respectively.
In terms of overshoot, DE and BA demonstrated near-zero values, indicating highly stable responses.
However, DE exhibited a higher Integral of Squared Error (ISE) at 133.8442 compared to HS (112.5975)
and ALO (116.4806), suggesting that while DE maintained stability, it was less accurate in minimiz-
ing cumulative error over time. Overall, HS achieved the best balance between rapid response and
low error, while DE and ALO offered strong stability with slightly higher ISE values. These results
highlight the trade-offs between precision and responsiveness in altitude control and demonstrate the
value of selecting the appropriate algorithm based on mission requirements. For heading angle control,
the simulation results indicate that DE and HS achieved the fastest settling times, at 5.5139 s and
5.7219 s, respectively. The BA demonstrated the best overshoot performance with a value of 0.0000,
followed closely by ALO (0.0402). In terms of cumulative error, DE achieved the lowest Integral of
Squared Error (ISE) at 0.4965, indicating a highly accurate response. Although ALO and BA had
slightly higher ISE values (0.6145 and 0.6078), their performance remained competitive. HS, while
fast in response, exhibited the highest overshoot (1.3935), which may affect stability in sensitive appli-
cations. Overall, DE again stands out for its balance of speed and accuracy, while BA offers excellent
overshoot control with slightly slower convergence.
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Regarding the results contained in Table 5, analysis of the RMSE results over 10 independent runs
reveals that the DE and ALO algorithms offer significant accuracy and stability gains in the adjust-
ment of parameters for controlling Va, z, ψ, and β. Furthermore, BA and HS also offer competitive
results, although their error level is slightly higher than that of DE, with moderate variability. These
observations justify that the DE and ALO are preferred algorithms, due to its balance between ac-
curacy and robustness in the context of automatic autopilot adjustment. The other algorithms show
greater variability, particularly for certain parameters, highlighting the importance of robust statisti-
cal evaluation to ensure the reliability of optimizations.

Among the four algorithms evaluated, the DE and ALO algorithms excel in overall performance
due to their capacity to integrate accuracy and stabilization speed, especially for crucial parameters
like Va and z. This feature emphasizes its strength and efficacy in managing UAV nonlinearities and
dynamic couplings, making them a favored choice for applications necessitating accurate and rapid
control.

In addition, it would be beneficial to mention that all optimization experiments were performed on
a workstation equipped with an Intel i3 processor and 16 GB of RAM. Each algorithm was allowed a
maximum number of predefined iterations/generations: 40 for the DE, ALO, and BA algorithms, and
600 improvisations for HS. Furthermore, the average convergence time was approximately 30.13 min
for DE and 32.03 for ALO, while BA and HS required slightly less computation time, around 28.34
min. For all methods, convergence was defined either by reaching the maximum number of iterations
and by minimizing the choosed objective function in Equation 20. In terms of computational costs,
DE and ALO generally performed an accurate number of fitness function evaluations per run, due to
their population-based nature. Hence, their robust convergence profiles resulted in better optimized
parameters. All algorithms completed their calculations within practical limits for offline autopilot
tuning. .

After examining the results, it is clear that the creation and improvement of our autopilot using
the DE and ALO algorithms performs exceptionally well when compared with other evolutionary
techniques. This underlines the value of the solutions obtained, making the studied method a partic-
ularly competitive option for comparisons with techniques drawn from the literature. As reported in
[19], the Genetic Algorithm (GA) optimized Intelligent PID showed a clear improvement compared
to the traditional PID, decreasing the stabilization time for altitude from 10.28 s to 2.73 s and for
velocity from 11.39 s to 7.73 s. However, when comparing these results with those of our DE or ALO
based approaches, it is clear that our configuration outperforms them, showing additional decreases
in stabilization time of 22% and 58% respectively for altitude and airspeed, while maintaining similar
simulation conditions.

The article [35] points out the versatility of soft computing methods, in particular through the
use of hybrid systems combining fuzzy logic and neural networks (ANFIS). This technique has proved
its competitiveness against PID-GA, with significant reductions in stabilization times. However, com-
pared with ALO’s performance, our method still manages to reduce this time by 16% for altitude and
59% for airspeed.

Our DE-based autopilot system also exceeds the performance of the fuzzy PID controller presented
in reference [11], with regard to heading angle. It reduces the turn time from 9.41 to 5.5139 seconds,
which represents an improvement of 41%. Overall, the particular modifications and innovations that
the ALO and DE algorithms have introduced demonstrate superior competitiveness, outperforming
not only traditional approaches but also soft computing techniques such as FL, ANFIS, GA, and NN.

6.2 Disturbances Rejection via Attitude Stabilization

The objective of this simulation is to assess the efficacy of our autonomous piloting system to track
with variable reference, including external added disturbance. that is induced by a 2 m/s wind speed
originating from a direction angled at 60° to the north and subsequently modeled. The disturbance
was generated with advanced Simulink tools using the horizontal wind model, the wind shear model,
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Figure 9: The fixed-wing UAV altitude z obtained by Differential Evolution (DE), Antlion Optimizer
(ALO), Bat Algorithm (BA), and Harmony Search (HS). with changed reference and disturbance

and the Dryden wind turbulence model predefined in Simulink. These models are engineered to repli-
cate real-world airflow properties precisely, considering turbulence events and unforeseen variations.
Figures 9 to 12 illustrate the graphical progression of flight parameters (airspeed, altitude, heading,
and sideslip) when the external disturbance of wind is added. Based on the observations made in
the figures, it is evident that the intelligent algorithms effectively reject the influence of disturbances
on the overall system dynamics. Target values are adhered to precisely, and wind disturbances are
quickly mitigated, even with time differences in reference values. This result demonstrates the flexi-
bility and effectiveness of the proposed controller. Furthermore, the study indicates that performance
is significantly influenced by the autopilot’s architecture, defined by its interconnected modules and
loops. By isolating critical flight parameters, including airspeed, altitude, heading, and sideslip, and
optimizing them dependently using ALO, DE, BA, and HS, the system ensures superior responsiveness
and improved stability, even under dynamic turbulence.

When comparing algorithms, the DE and ALO algorithms excel in generating a high-quality re-
sponse in complex scenarios, especially those involving wind-induced turbulence. Results show that in
the most critical situations, the ALO algorithm facilitates rapid turbulence mitigation and enhances
accuracy in maintaining the necessary parameters. This exceptional performance proves its suitability
for applications requiring enhanced resilience in turbulent conditions.

6.3 Orbital and Straight line Trajectory Tracking

In order to evaluate the robustness and performance of the proposed controller under higher-level
situations, its capacity to follow specified trajectories is evaluated with and without wind gusts. This
evaluation verifies the system’s precision and dependability when encountering difficult trajectories,
regardless of external perturbations.

The two types of paths followed are a linear trajectory and an orbital trajectory, the obtained
performance is depicted in Figures 13 and 15, respectively. These graphs illustrate the outcomes of
intelligent controllers utilizing the DE, ALO, BA, and HS algorithms under optimal settings, devoid
of disruptions. Conversely, Figures Figures 14 and 16 depict the impact of disturbances, simulated
by winds (2 m/s, originating from a direction of 60° relative to north), on the persistence of these
trajectories. Table 6 presents details for the performance index corresponding to each flight parameter,
including speed, altitude, heading, and sideslip. These performance metrics, obtained by tracking
errors, offer a quantitative evaluation of the efficacy of the different algorithms.

The simulations demonstrate that, despite the existing disturbance, all algorithms successfully
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Figure 10: The fixed-wing UAV velocity Va is obtained by Differential Evolution (DE), Antlion Opti-
mizer (ALO), Bat Algorithm (BA), and Harmony Search (HS). with changed reference and disturbance

Figure 11: The fixed-wing UAV heading angle ψ is obtained by Differential Evolution (DE), Antlion
Optimizer (ALO), Bat Algorithm (BA), and Harmony Search (HS). with changed reference and dis-
turbance
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Figure 12: The fixed-wing UAV sideslip angle β obtained by Differential Evolution (DE), Antlion
Optimizer (ALO), Bat Algorithm (BA), and Harmony Search (HS). with disturbance.

maintain appropriate trajectory tracking, hence affirming the robustness of the proposed system.
However, performance inequalities remain: the Differential Evolution (DE) algorithm demonstrates
greater accuracy in tracking linear trajectories, whereas the Artificial Lion Optimizer (ALO) shows
enhanced ability in managing orbital trajectories, particularly under the presented disturbance. The
results show the controller’s ability to adjust to varying conditions while minimizing tracking errors.

Table 6: The obtained performance ISE using DE, ALO, BA, and HS

output parameter performance Performance Indexe ISE
z ψ β Va

Straigth line

DE 0.7447 0.1518e-03 0.2188e-04 10.4787
ALO 0.5024 0.2265e-03 0.1097e-04 10.8049
BA 0.8238 0.1441e-03 0.3669e-04 10.5645
HS 0.4831 0.1715e-03 0.3379e-04 10.8887

Orbital

DE 0.6110 0.0258 0.0340e-03 1.1914
ALO 0.4865 0.0355 0.0147e-03 1.3849
BA 0.6091 0.1211 0.4590e-03 1.2222
HS 0.4719 0.0236 0.0511e-03 1.4102

The figures and Table 7 results demonstrate that the employed algorithms effectively follow the
linear and the orbital trajectories, even in the presence of disturbances, showing a promising outcome.
Significant variations are present in the performance metrics associated with flight parameters. The
DE algorithm effectively regulates the altitude and the heading angle along a straight-line trajectory,
achieving high performance metrics in terms of ISE. Such behavior confirms its effectiveness in main-
taining this essential characteristic consistently. The HS algorithm demonstrates superior altitude
performance for straight trajectories, closely followed by the ALO, highlighting their effectiveness for
controlling altitude variations in the complexities of the system’s non-linear dynamics.

The ALO stands out for its high precision in maintaining the sideslip angle, especially while fol-
lowing an orbital trajectory. This highlights its effectiveness in decreasing lateral disturbances caused
by crosswinds. The DE and HS algorithms demonstrate superior performance in heading orientation,
particularly in relation to orbital paths. Their ability to maintain high directional stability is crucial
for the success of complex operations. The comparison of the two trajectory types illustrates the
importance of enhanced disturbance management and synchronized dynamics in orbital trajectories,
while ALO and DE are characterized by their greater robustness. The results highlight the autopi-
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Figure 13: The fixed-wing UAV’s position (pn, pe, z = −pd) was obtained by Differential Evolution
(DE), Antlion Optimizer (ALO), Bat Algorithm (BA), and Harmony Search (HS) (straight-line path
following).

Figure 14: The fixed-wing UAV’s position (pn, pe, z = −pd) was obtained by Differential Evolution
(DE), Antlion Optimizer (ALO), Bat Algorithm (BA), and Harmony Search (HS) with disturbance
(straight line path follow).
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Figure 15: The fixed-wing UAV’s position (pn, pe, z = −pd) was obtained by Differential Evolution
(DE), Antlion Optimizer (ALO), Bat Algorithm (BA), and Harmony Search (HS) (orbital path follow).

Figure 16: The fixed-wing UAV’s position (pn, pe, z = −pd) was obtained by Differential Evolution
(DE), Antlion Optimizer (ALO), Bat Algorithm (BA), and Harmony Search (HS) with Disturbance
(orbital path follow).
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Table 7: The obtained performance ISE using DE, ALO, BA, and HS in the presence of disturbance

output parameter performance Performance Indexe ISE
z ψ β Va

Straigth line

DE 0.6746 0.1321e-03 0.2992e-04 16.5385
ALO 0.4569 0.2078e-03 0.2612e-04 16.8461
BA 0.7387 0.1054e-03 0.2670e-04 16.6652
HS 0.4407 0.1484e-03 0.4429e-04 16.9158

Orbital

DE 0.7085 0.0222 0.0400e-03 1.6171
ALO 0.4561 0.0312 0.0219e-03 1.8080
BA 0.6626 0.1234 0.4731e-03 1.6234
HS 0.4498 0.0199 0.0524e-03 1.8566

lot’s ability to effectively adapt to critical situations due to its modular design and enhancement via
the intelligent methods. These algorithms enhance system stability and accuracy, ensuring optimal
performance across various conditions. In conclusion, the algorithms DE and ALO exhibit suitability
for applications requiring high reliability, with each method offering unique advantages depending on
the flight parameters considered.

7 Conclusion
This study proposed a novel autopilot architecture for fixed-wing UAVs and optimized it through

the application of advanced swarm intelligence and evolutionary algorithms, including Ant Lion Op-
timizer (ALO), Differential Evolution (DE), Bat Algorithm (BA), and Harmony Search (HS). The
primary objective was to achieve efficient stabilization and accurate trajectory tracking under nonlin-
ear constraints and external disturbances while simplifying the control problem through a modular
architecture based on successive control loops.

The simulation results prove the remarkable performance of the proposed system. The autopilot
successfully controlled critical flight parameters such as airspeed, altitude, heading angle, and sideslip
angle, demonstrating optimal performance and reduced stabilization time. The DE and ALO al-
gorithms outperformed the other techniques, achieving significant improvements in key performance
metrics across both static and dynamic scenarios. Moreover, simulations conducted under windy
conditions demonstrated that the autopilot exhibited robustness and precision, with exceptional dis-
turbance rejection and excellent tracking of both linear and orbital trajectories.

Compared to existing approaches, such as PID-GA controllers and ANFIS-based systems, the
proposed autopilot exhibited superior performance, with notable reductions in tracking errors and
stabilization times. These findings validate the proposed architecture and highlight the advantages of
reduced-parameter control and the significant potential of swarm and developing intelligence method-
ologies.

Despite these promising results, certain limitations remain. The current evaluation is limited to
simulated environments, and further testing in real-world conditions is necessary. Additionally, more
complex scenarios such as long-duration missions under extreme climatic conditions should be ex-
plored. Integrating deep learning techniques with ALO and DE for real-time adaptation could further
enhance the system’s capabilities. Testing the architecture in more critical and realistic scenarios
would also help strengthen its practical relevance in uncertain and dynamic environments.
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