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Abstract

We prove the equivalence between Takagi-Sugeno-Kang (TSK) fuzzy systems and neural net-
works with ReLU activation function in two or more dimensions. The TSK fuzzy systems considered
will have tetrahedral membership functions for their antecedents and singleton outputs. We show
an example of a fuzzy system that is locally equivalent to a neural network based on the proposed
method, and we discuss the potential to provide a local analysis to explain the decision process of
neural networks.
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1 Introduction
Neural networks [4] and deep learning [6] are at the forefront of current AI development. Especially

popular are Generative AI models with applications that range from text [16] to image generation [5].
Neural networks are largely regarded as black box methods, and their explainability and transparency
decrease with their size and complexity [11].
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Explainable AI [13] discusses the explainability of machine learning models. There are two main
directions for the consideration of the explainability of ML models. The first approach relies on the
construction of explainable models for various applications. One of the options for this approach is
explainable fuzzy AI [9]. The second approach deals with deciphering neural networks and understand-
ing their decision making process [10]. Both approaches are essential for safety-critical applications,
where explainability is mandated either by law or by users.

Fuzzy sets were introduced by L. Zadeh [14] as mathematical models for uncertain quantities and
are widely utilized in control applications [8]. Takagi-Sugeno (TS) fuzzy systems [12] are fuzzy models
that combine the learning ability of neural networks, with the explainability of fuzzy systems [7]. As a
consequence, TS fuzzy systems are promising candidates for explainable machine learning applications.

The equivalence between Takagi-Sugeno fuzzy systems with triangular membership functions and
neural networks with ReLU activation was proved in the one-dimensional case in [2] and further
generalized in [3]. The extension of these results to the case of multiple dimensions and multiple
layers of neural networks was discussed as an open question, and a potential approach was proposed.

In the present paper, we continue this train of ideas and we prove the equivalence between Takagi-
Sugeno fuzzy systems with tetrahedron membership functions as antecedents and neural networks with
ReLU activation, in the two-dimensional case. These results provide a new local result to analyze the
input-output connections for a neural network, improving their explainability.

2 Preliminaries

2.1 Fuzzy Systems

A fuzzy set [14] is a set with a continuum of membership degrees over a universe of discourse
X, modeled by a function A : X → [0, 1], where we interpret A(x) as the membership degree of the
element x in the fuzzy set A [1].

Fuzzy systems of Mamdani type [8], describe the input output relationship in terms of fuzzy if-then
rules of the form:

If x is Ai then y is Bi, i = 1, ..., n.

Given the above rule base and a crisp (scalar or vector) input x ∈ X, the fuzzy output can be
calculated as

B′(y) =
n∨

i=1
Ai(x) ∧ Bi(y),

where x ∧ y = min{x, y} and x ∨ y = max{x, y} The defuzzified output can be obtained as

COG(B′) =
∫

W B′(y) · y · dy∫
W B′(y) · dy

.

where W denotes the support of the fuzzy system B′(y). Mamdani fuzzy systems have a very intuitive
interpretation, however, they are less easy to train due to the nonlinear input-output relationship.

To resolve the issues presented by training of Mamdani fuzzy systems, Takagi-Sugeno (TS) fuzzy
system are considered [12], [7]. The rule base of a TS fuzzy system is

if x is Ai then y = yi, i = 1, . . . , n

TS fuzzy systems have a fuzzy input, however they have a crisp output. This makes them more
suitable for applications. The Output of a TS fuzzy system is

TS(x) =
∑n

i=1 Ai (x) yi∑n
i=1 Ai (x) .

In the one-dimensional case, we can consider triangular membership functions of the form A = (a, b, c)
and a TS fuzzy system determined by a partition on an interval x = b0 = b1 ≤ b2 ≤ ... ≤ b0n−1 = bn =
x̄. In this case the triangular membership functions determine a Ruspini partition, i.e,

Ai = (bi−1, bi, bi+1), i = 1, ..., n − 1,

we can illustrate its structure by a computational graph as in Figure 1.
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Figure 1: The structure of a TS-system

2.2 Neural networks

A ReLU-based neuron with n inputs x1, . . . , xn, is defined as the function

y = φ

 n∑
j=1

ajxj + b


with weights aj , bias b, and activation function φ(x) def= max(0, x).

A layer of a neural network is a vector formed by m neurons organized in a parallel fashion as its
components

yi = φ

 n∑
j=1

aijxj + bi

 , i = 1, ..., m.

A neural network is a function defined as the successive application of several neural network layers
to a vector of inputs, such that the input of the next layer is the output of the current layer. The
output of layer L can be computed iteratively

yL
i = φ

 n∑
j=1

aL−1
ij yL−1

j + bL−1
i

 , i = 1, ..., mL−1

for each layer L = 1, ..., N − 1, with the output of the last layer being

y =
n∑

j=1
wN−1

j yN−1
j + bN−1.

In the present paper, we consider a regression network, but the results can easily be extended
to a situation where there is an additional function applied to the last layer, such as another ReLU,
sigmoid or softmax, making it a classification network.

3 Main results

3.1 Equivalence between TS fuzzy systems with triangular membership and Neu-
ral Networks with ReLU activation in one dimension

In [2], the authors proved the following equivalence theorem in the one dimensional case:

Theorem 1. The connection between ReLU based neural networks and TS fuzzy systems defined on
a closed interval in one dimension is given by the followings:
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(i) For every TS system with triangular membership functions, there exists a 1-hidden-layer ReLU-
based neural network that produces the same output function F (x).

(ii) For every ReLU-based neural network, there exists a TS system with triangular membership
functions that produces the same output F (x).

The ideas that prove the theorem are based on the connection between triangular membership and
ReLU functions. If A = (a, b, c), a < b < c is a triangular membership function then we can write it
in terms of ReLU functions as

A(x) = φ(x − a) − φ(x − b)
b − a

− φ(x − b) − φ(x − c)
c − b

.

If a = b then we have
A(x) = −φ(x − b) − φ(x − c)

c − b
,

while for b = c we consider
A(x) = φ(x − a) − φ(x − b)

b − a
.

By direct calculation one can rewrite the TS system in Figure 1 as a neural network. To rewrite a
ReLU-based neural network as a TS layer, one observes that the output of a ReLU layer of a neural
network is piecewise linear just as the output of a TS layer. By matching the two functions with each
other at the connection points of two linear pieces of the functions, we can define the two systems to
produce the same output. We have included a review of the proof ideas, since we want to extend these
to multiple dimensions.

We will adapt an incremental approach and prove our result in two dimensions.

3.2 Equivalence between TS fuzzy systems with and Neural Networks with ReLU
activation in two dimensions

In the two-dimensional case, we will start looking at the problem of equivalence between a ReLU-
based neural network and fuzzy system on a local scale. Let x, y denote the inputs of a ReLU-based
neural network layer, wi be the output weights, d be an output bias, ai, bi represent the input weights
and ci are biases. The network can be expresses as

NN(x, y) =
n∑

i=1
wiφ(aix + biy + ci) + d.

Since the network output is piecewise linear, it locally consists of plane regions, so we can find a region
bounded by lines aix+biy+ci = 0, i ∈ S with S being a subset of indices in 1, ..., n. Next, assume that
the smallest region that contains the point (x, y) is a triangle. This does not restrict the generality,
since in the case when this would not be triangular, it could be further subdivided into triangles. Let
us consider then that the region that contains the point (x, y) is bounded by the lines

aix + biy + ci = 0, i = 1, 2, 3.

Let us denote Ai(xi, yi), i = 1, 2, 3 the coordinates of the vertices of the triangle. We will consider
fuzzy sets with tetrahedral membership functions that are 0 outside the interior of the triangle A1A2A3
and given by the expressions below inside the triangle

M1(x, y) = 1 +

∣∣∣∣∣ x − x1 y − y1
x2 − x3 y2 − y3

∣∣∣∣∣∣∣∣∣∣ x2 − x1 y2 − y1
x3 − x1 y3 − y1

∣∣∣∣∣
,

M2(x, y) = 1 +

∣∣∣∣∣ x − x2 y − y2
x3 − x1 y3 − y1

∣∣∣∣∣∣∣∣∣∣ x3 − x2 y3 − y2
x1 − x2 y1 − y2

∣∣∣∣∣
,
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Figure 2: The antecedents for the given TSK-system

and

M3(x, y) = 1 +

∣∣∣∣∣ x − x3 y − y3
x1 − x2 y1 − y2

∣∣∣∣∣∣∣∣∣∣ x1 − x3 y1 − y3
x2 − x3 y2 − y3

∣∣∣∣∣
.

The expression for the function M1(x, y) is obtained by linear interpolation between the points
(x1, y1, 1), (x2, y2, 0) and (x3, y3, 0), for M2(x, y) as interpolation between (x1, y1, 0), (x2, y2, 1) and
(x3, y3, 0) and finally for M3(x, y) as interpolation between (x1, y1, 0), (x2, y2, 0) and (x3, y3, 1)

Now we consider the fuzzy rule base that consist of the three rules that have antecedents M1, M2, M3
respectively and consequences given by the output of the Neural network at the vertices of the triangle
A1, A2, A3 respectively. If we denote zi = NN(xi, yi) we can write

If (x, y) is Mi(x, y) then z = zi, i = 1, 2, 3.

The TSK fuzzy system determined by the above rule base is given in mathematical form by the
expression

TSK(x, y) =
3∑

i=1
Mi(x, y)zi

and it will perform linear interpolation between the points (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3).
Figure 2 illustrates the antecedents for our TSK fuzzy system. As the Neural Network NN(x, y)
performs linear interpolation between the same points, we obtain the local equivalence between the
neural network NN(x, y) and the TSK fuzzy system TSK(x, y). As a conclusion, we can formulate
the following theorem.

Theorem 2. The Neural Network NN(x, y) is equivalent locally (in the interior of the triangle
∆A1A2A3 to the TSK fuzzy system TSK(x, y) given as above, i.e., we have

NN(x, y) = TSK(x, y), for any (x, y) ∈ int(∆A1A2A3)

This local equivalence within a triangle can be naturally extended to the equivalence on each
polygonal-shaped bounded domain – e.g., on a box [−X, X] × [−Y, Y ]. Indeed, as we have mentioned
earlier, this box can be triangulated so that on each triangle, the NN-computed function is linear.
The above construction produces, for each point p of a triangulation and for each triangle that has
this point as a vertex, a linear membership function defined on this triangle that takes value 1 on this
vertex. By combining all these linear fragments, we get a piece-wise linear membership function (see,
e.g., [15]) – just like a triangular membership function is obtained by combining two linear pieces on
two intervals with a common endpoint.

Then, instead of several TSK rules with conclusion f(p) coming from different triangles and corre-
sponding linear membership functions, we can have a single TSK rule with this combined membership
function.
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The graph of this combined membership functions is a pyramid whose base in a polygon formed
by all the triangles from our triangulation that have p as a vertex. Such pyramids are known as
polygonal pyramids. For the 1-D case, a union of two intervals with a common endpoint is an interval,
so such a pyramid would be a triangle. In this sense, polygonal pyramids are a natural generalization
of triangles. So, each combined membership function M(x, y) of two variables is a natural 2-D analog
of triangular membership functions M(x).

3.3 Multi-Dimensional case is similar

In the previous section, we showed that in the 2-D case, the results of a ReLU-based neural network
can be described by a fuzzy system with a natural generalization of triangular membership function
– namely, membership function whose graphs form a polygonal pyramid – a 3-D analog of a triangle.

In the multi-dimensional case, the same arguments can prove that the function f(x) computed
by any ReLU-based neural network with any number of layers can be described a fuzzy system with
membership functions whose graphs form a polyhedral pyramid – a natural multi-dimensional gener-
alization of a polygonal pyramid.

Let us show how to prove this result. Any function f(x) computed by a ReLU-based neural
network is a composition of piece-wise linear functions max(0, a1 · x1 + . . . + an · xn + a0) computed
by individual ReLU neurons. It is well known that the composition of linear functions is also linear.
Thus, the composition of piece-wise linear functions is also piece-wise linear. In other words, there are
finitely many domains on each of which the resulting function is linear.

Since the overall result is continuous, the common boundary of two neighboring domains corre-
sponds to the case when the two linear expressions (that describe the desired function of each domain)
are equal. Thus, each such boundary is described by a linear equation – and is, therefore, part of some
hyperplane. So, the boundary of each domain consists of pieces of hyperplanes – multi-D analogies of
lines in 2-D spaces and planes in 3D space. In other words, each domain is a polyhedron – a natural
multi-D generalization of a polygon in 2-D spaces and 3D polyhedra in 3D space.

It is known that every polyhedron can be triangulated – i.e., represented as a finite union of
simplexes. So, to represent the desired function, it is sufficient to represent a linear function on a
simplex by TSK fuzzy rules.

It is known that each point x = (x1, . . . , xn) inside a d-dimensional simplex with vertices v1, . . . , vp+1
is a convex combination of the vertices, i.e., has the form x = c1 · v1 + . . . + cp+1 · vp+1, where ci ≥ 0
and c1 + . . . + cp+1 = 1.

It is also known that the coefficients ci of this representation linearly depend on the coordinates xi

of the point. This can be shown easily: by an appropriate linear (affine) transformation T from xi to
some other coordinates yj , we can transform each simplex into a standard simplex with vertices v1 =
(1, 0, . . . , 0), v2 = (0, 1, 0, . . . , 0), . . . , vp−1 = (0, . . . , 0, 1, 0), vp = (0, . . . , 0, 1), and vp+1 = (0, . . . , 0).

In the standard simplex, every point y = (y1, . . . , yn) can be represented as y = c1 · v1 + . . . + cp+1 ·
vp+1 with c1 = y1, . . . , cp = yp, and cp+1 = 1 − y1 − . . . − yp. By combining these linear expressions
with the linear transformation T , we get linear functions ci(T (x)) describing ci as linear functions of
coordinates in the original simplex.

Thus, each linear function L(x) on a simplex can be described by p + 1 TSK rules, with i =
1, . . . , p + 1:

If ci(x) then z = L(vi)
Now, similar to the 2-D case, we can combine, for each vertex p of the triangulation, all the linear
functions ci(x) that attain the value 1 on this vertex into a single piece-wise linear membership function
Mp(x).

The graph of this function has the shape of a polyhedral pyramid – a natural multi-D general-
ization of a triangle. We can also, similar to the 2-D case, combine all the rules of the above type –
corresponding to this vertex p – into a single rule:

If Mp(x) then z = f(p),

where f(x) is a NN-computed function that we are trying to describe. On each bounded domain,
these rules will describe exactly the desired NN-computed function f(x).
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Figure 3: f(x, y) = 1 − e−x2−y2 on [0,1]x[0,1]

3.4 Experimental Results

We are going to demonstrate the connection between Neural Networks and the 2-D Takagi-Sugeno
system through experimentation.

We are using keras and tensorflow libraries to train a neural network to approximate a specific
function. Visualize the specific function and its neural network approximation. The parameters of
the trained network and the results in Theorem 2 are used to determine the parameters of the 2-D
TS fuzzy system and then test the fuzzy system that we obtain and compare to the Neural Network
outputs and visualize comparing to actual expected function values.

Let us choose f(x, y) = 1 − e−x2−y2 as the function to approximate and limit its domain to the
unit square. Figure 3

Train a neural network with one hidden layer of 3 nodes, set acceptable minimal loss, and achieve
high accuracy. The training will use metrics of Mean Squared Error for loss and Root Mean Squared
Error for accuracy. ReLU activation for the single hidden layer and identity function for the single
output. By tuning the parameters, we will find that the Adam optimizer and 0.01 learning rate can
yield with a very good approximation: 0.0001 loss and 0.01 accuracy. Figure 4

Now we use the parameters of the trained neutral network and identify the ∆A1A2A3, its points
A1, A2 and A3 corresponding to M1, M2 and M3 antecedents, along with z1, z2 and z3 parameters for
the TSK system. Figure 5

Now we use these parameters and the TSK function to calculate and compare the TS system
generated values to the Neural Network outputs. Observe that the TS system approximates the
function in the very same way as the Neural Network does. The fuzzy system that we obtain is of the
form

If (x, y) is Mi(x, y) then z = zi, i = 1, 2, 3.

with Mi(x, y) having tetrahedron memberships with the base being ∆A1A2A3 and consequences being
z1 = 0.63449395, z2 = 0.17345192 and z3 = 0.64203346.

We perform an additional check and choose 5000 points inside ∆A1A2A3, apply the TSK function
on all points, and aggregate the absolute difference between the results of NN and TSK, finding it
less than 10−5, accounting for the precision of the computer calculations only. Figure 6 shows TSK
values based on inside points of ∆A1A2A3 approximating function f(x, y) = 1−e−x2−y2 . Furthermore,
checked and the values do not match when points are chosen from outside ∆A1A2A3.
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Figure 4: Neural Network approximation and actual values

Figure 5: ∆A1A2A3 is the support of the membership functions M1, M2, M3
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Figure 6: TSK approximation

This method allows us to extract a fuzzy rule base from a neural network built using existing
efficient libraries such as keras and tensorflow, allowing both efficient learning algorithms to be used
in conjunction with fuzzy systems and improves explainability of neural networks.

4 Conclusions and Further Research
We have extended previous results on the equivalence between TSK fuzzy systems and neural

networks to the two-dimensional case. We found that locally, a neural network layer with ReLU
activation can be equivalently described as a TSK fuzzy system with tetrahedron memberships. We
extended the result to the multi-dimensional case as well. For future research we plan to extend the
results from local to global results and to deep learning algorithms.
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