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Abstract

To improve the performance and adaptability of multi-view clustering and address issues such
as the neglect of view consistency information in graph construction, sensitivity to initial values,
and the inability to adaptively learn view weights in existing algorithms, this paper proposes
a Multi-View Clustering method based on Bipartite Graph Matrix Consistency (BGMC). The
method learns consistency information represented by consistent anchor points across multiple
views, jointly optimizes the similarity bipartite graphs of each view, and uses an alternating iterative
strategy to solve for the optimal bipartite graph matrix. The model integrates view weights, a
unified matrix, anchor matrices, and similarity matrices into a single optimization framework and
introduces an anchor point mechanism to reduce computational complexity.Experiments on five
real-world datasets including 3sources and YouTube Faces show that BGMC achieves an ACC 3-8
percent higher than the optimal method, an NMI 5-10 percent higher, and a convergence speed
improved by over 20 percent.

Keywords: Consistent Information, Multi-view Clustering, Bipartite Graph Matrix, Self-
adaptation.

1 Introduction
With the rapid development of internet and communication technologies, data from the real world

can be extracted from multiple data sources. Multi-view clustering, which aims to fully utilize the
information contained in multiple views to improve clustering performance, has become a research
hotspot[16]. The objective of multi-view clustering is to integrate feature information from multiple
views. Through joint learning, similar samples are grouped into the same cluster, and dissimilar ones
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into different clusters[15]-[8]. Consistent partitioning across views is required to ensure clustering
accuracy and stability.

However, the current algorithms still suffer from several limitations. During the graph construction
phase, they excessively depend on the conditional independence assumption of multi-view data, thus
overlooking the discrepancies among different views and the consistency information across views. In
the graph fusion process, both the pre-defined anchor point set and the learned view graph matrices
remain static, making them highly sensitive to initial values and prone to converging to local optima.
Additionally, most algorithms fail to adaptively learn the weight of each view without introducing
extra hyperparameters.

To tackle the aforementioned challenges, this paper presents a Multi-view Clustering approach
based on Bipartite Graph Matrix Consistency (MVC-BGMC). The method learns unified anchor
points that encapsulate consistent information across multi-views to reduce the influence of biases
inherent in individual views. It dynamically calculates view weights by measuring the discrepancy be-
tween each view and the unified graph, thereby amplifying the contribution of critical views. Through
joint learning of similarity bipartite graphs for all views, an optimal bipartite graph is derived. By
integrating view weights, a unified matrix, an anchor matrix, and a similarity matrix into a single op-
timization framework, the model significantly enhances algorithmic stability. Additionally, an anchor
mechanism is introduced during bipartite graph construction, which boosts computational efficiency
while maintaining clustering performance.

2 Related Works

2.1 Graph-based Multi-view Clustering Algorithms

Graph-based multi-view clustering characterizes the relationships between samples by constructing
similarity graphs and improves clustering performance through graph learning techniques. Depending
on diverse graph construction approaches, multi-view clustering algorithms can be categorized into
two major types: those based on similarity graphs and those relying on bipartite graphs.[1].

Similarity graph-based multi-view clustering algorithms solve for an n×n-dimensional similarity
matrix in the initial graph construction stage to represent pairwise similarities between data points.
After learning the initial graphs for different views, the algorithm proposed by Kim et al.[11] introduces
rank constraints for further optimization, and the integrated global graph can reflect the exact number
of cluster connection components. Biskel[3] not only focused on intra-view relationships but also
considered inter-view similarities. Initially, they derived a similarity matrix for each individual view,
and then integrated the acquired information into a clustering indicator matrix. They put forward
two parameter-free strategies—the self-weighted approach and the adaptive weighting approach—to
evaluate the weights of different views, thus eliminating the need for excessive parameter tuning. The
algorithm proposed by Wang[17] achieves mutual constraint and update of the required matrices and
clustering results within one framework. Under the constraint of the Laplacian matrix’s rank on the
graph, the quantity of connected components in the combined graph is equivalent to the specified
number of clustering categories.

Khan et al.[10] proposed a scalable graph learning framework where bipartite graphs, clustering
indicator matrices, and view weights are mutually learned with adaptive supervision. Connectivity
constraints are employed to ensure that components directly represent clusters, and a connection be-
tween the proposed algorithm and K-means clustering is further established. Arthur et al.[1] proposed
a multi-view clustering method via effective anchor representation learning, which mainly consists of
three stages: anchor selection, consensus representation learning, and K-means clustering. This model
circumvents the need to compute pairwise similarity between samples. Mi et al.[13] pointed out that
the selected anchors fail to fully characterize the intrinsic data structure and first proposed to learn
anchors within an embedded subspace. To ensure structural balance, a novel balancing strategy was
devised to regulate the learned labels.

Graph-based multi-view clustering algorithms have strong universality and can handle convex data
and data spaces of arbitrary shapes. However, it can be found that such algorithms rely on the number
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of initial clustering centers and the initialization of the initial graph, and the quality of the initial graph
is difficult to guarantee, requiring parameter setting based on experience.

2.2 Subspace-based Multi-view Clustering Algorithms

Subspace-based multi-view clustering captures the latent manifold topology of multi-view data by
learning shared low-dimensional subspaces, thereby achieving sample clustering. It mainly includes
three steps: First, the self-expressiveness of the data is used to learn the subspace representations
of different views, which are fused to obtain a unified representation. Further, a certain clustering
method is applied to the unified representation to obtain clustering results.

Kevin et al.[9] first attempted to address large-scale data problems using subspace clustering.
They first constructed a smaller graph between the original data and generated anchor points, and
designed a new fusion mechanism to merge these graphs, which can significantly accelerate feature
decomposition. The proposed algorithm has a linear time complexity. Winn et al.[18] fully considered
the physical meaning of singular values and proposed using low-rank tensors to represent the high-
order relationships between views. Chen et al.[5] introduced a diverse representation module into
the network to enhance the discriminability of the learned representation matrix. Based on the
deep subspace clustering network, they integrated block-diagonal and multivariate representations to
develop a block-diagonal and multivariate-representation-integrated multi-view subspace clustering
architecture.

The starting point of multi-view clustering algorithms based on subspace representation learning
is to address the challenge of clustering high-dimensional data. The clustering process fully considers
the specific information of each view, and subspace representation can also reduce the impact of
noise on clustering performance. However, such algorithms also have the problem that the generated
low-dimensional representations are difficult to interpret.

3 Research Methods
This paper combines bipartite graph construction with consistent graph learning. The bipartite

graph leverages an anchor mechanism to effectively capture the local structural features of views,
reducing computational complexity while enhancing noise robustness. A unified matrix enforces cross-
view alignment of anchors to capture global structures. Their integration achieves a unified modeling
of local features and global consistency, thus significantly boosting multi-view clustering performance.
An adaptive weighting mechanism is introduced to adjust view importance, suppress noisy views, and
highlight the contribution of critical views.

3.1 Notation

For a multi-view dataset with m views, the specific notation definitions are shown in Table 1.

3.2 Unified Graph Learning

This paper learns a bipartite graph based on the similarity between data points and their corre-
sponding adjacent anchor points.When {Av}m

v=1 is fixed, the graphs of all views can be learned in the
following form:

min
{Sv}m

v=1

m∑
v=1

n∑
i=1

t∑
j=1

∥xv
i − av

j ∥2
2sv

ij + α
m∑

v=1
∥Sv∥2

F s.t. ∀v, sv
ij ≥ 0, 1T sv

i = 1 (1)

In the above equation, the parameter α is used to control the connection sparsity between data
points and multiple anchor points. If α = 0, problem (1) has a solution, i.e., sv

ij = 1, which means
that only its nearest anchor point av

j can be connected to xv
i . This is called hard partitioning. If α

is large enough, connections from all t anchor points
{

av
j

}t

j=1
to xv

i can be established with the same
probability of 1/t. The normalization 1T sv

i = 1 can be regarded as a sparsity constraint on Sv.
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Table 1: Notation and Definitions
Notation Definitions and Explanations Dimension / Type

Xv The data matrix of the v − th view Rdv×n

xv
i The i − th sample (column vector) in the v − th view Rdv×1

Av The anchor matrix of the v − th view, which contains t anchors Rdv×t

av
j The j − th anchor in the v − th view Rdv×1

Sv The similarity matrix between the data and anchors in the v − th view Rn×t

sij
v The connection probability between the sample xv

i and the anchor av
j Rdv×1

U Unified bipartite graph matrix, integrating multi-view similarity Rn×t

δv The weight of the v − th view Scalar
F Feature matrix R(n+t)×c

DU The degree matrix of the bipartite graph R(n+t)×(n+t)

Z The weighted adjacency matrix of the bipartite graph R(n+t)×(n+t)

LU Normalized Laplacian matrix R(n+t)×(n+t)

∥X∥F Frobenius norm Scalar
c The number of target clusters Scalar
t The total number of anchors Scalar

Each graph is only interconnected through the anchor sets. Therefore, views are learned inde-
pendently by constructing a similarity matrix for each view when the anchor sets are fixed. Then, a
unified bipartite graph matrix is generated and used to adaptively update {Av}m

v=1 until convergence.
A unified bipartite graph can be constructed by an integrated matrix U ∈ Rn×t using the collection

of {Sv}m
v=1. Hence, the following issue requires systematic exploration:

min
U

m∑
v=1

∥U − Sv∥2
F δv s.t.∀i, uij ≥ 0, 1T ui = 1 (2)

Where δv denotes the weight of the v − th view, δ = {δ1, ..., δm}, and their sum is 1. Although
introducing view weights can improve clustering performance, Equation (2) yields a trivial solution,
where the weight of the best view is assigned 1 and the weights of other views are 0. Therefore, the
algorithm introduces a new regularization term α ln α, which not only avoids the trivial solution but
also generates a more stable optimal bipartite graph. Thus, Equation (2) can be rewritten as follows:

min
U

m∑
v=1

δv∥U − Sv∥2
F +γ

m∑
v=1

δv ln δv (3)

Problems (1) and (2) can be combined to learn {Sv}m
v=1 and U as follows:

min
{Sv}m

v=1,U

m∑
v=1

n∑
i=1

t∑
j=1

∥xv
i − av

j ∥2
2sv

ij + α
m∑

v=1
∥Sv∥2

F +
m∑

v=1
∥U − Sv∥F δv

s.t.∀v, i, sv
ij ≥ 0, 1T sv

i = 1, uij ≥ 0, 1T ui = 1
(4)

When {Av}m
v=1 is fixed, the matrices {Sv}m

v=1 and U can be learned jointly.

3.3 Common Anchor Learning

While updating the unified matrix U , common anchors can be explored and repositioned across
all views. For the j − th sub-cluster of the data in the v − th view, its anchor av

j is calculated by the
average value of all associated data points connected to it.

av
j =

∑n
i=1 uijxv

i∑n
i=1 uij

(5)
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Where av
j ∈ Rdv×1, j = 1, ..., t. Then the anchor matrices {Av}m

v=1 are updated. Finally, Equation
(5) is combined with Problem (4) to jointly learn the matrices {Sv}m

v=1, U , and {Av}m
v=1.

min
{Sv}m

v=1,{Av}m
v=1,U

m∑
v=1

n∑
i=1

t∑
j=1

∥xv
i − av

j ∥2
2sv

ij + α
m∑

v=1
∥Sv∥2

F +
m∑

v=1
∥U − Sv∥2

F δv

s.t.∀v, i, sv
ij ≥ 0, 1T sv

i = 1, uij ≥ 0, 1T ui = 1
(6)

3.4 Optimal Bipartite Graph Learning

The edge weights of the bipartite graph are encoded by the matrix U ∈ Rn×t, wherein each element
uij is the edge weight connecting xi and the corresponding aj across all views. The block structures
of the weighted adjacency matrix Z ∈ R(n+t)×(n+t) and the degree matrix DU are as follows:

Z =
[

0 U
UT 0

]
, DU =

[
D1 0
0 D2

]
(7)

Where D1 ∈ Rn×n, the i − th vector of D1 is d1
i =

∑t
j=1 uij ; D2 ∈ Rt×t, the j − th vector of D2 is

d2
j =

∑n
i=1 uij . Therefore, the normalized Laplacian matrix is:

LU = I − (DU )−1/2Z(DU )−1/2 (8)

Once the bipartite graph contains exactly c connected components, the neighborhood anchor al-
location across all views achieves optimality for each data point. This can be realized by enforcing a
rank constraint on the Laplacian matrix LU associated with the bipartite graph Z of U . Reference[21]
demonstrates that the multiplicity of the eigenvalue 0 for the normalized Laplacian matrix LU is ex-
actly c, which equals the number of connected components in the bipartite graph associated with U .
If rank (LU ) = (n + t) − c, the n data points and t anchors can be partitioned into c clusters based on
Z associated with U . Therefore, the final sub-clusters can be generated without performing additional
clustering methods. The learning of the optimal bipartite graph is solved by Problem (9):

min
{Sv}m

v=1,{Av}m
v=1,U

m∑
v=1

n∑
i=1

t∑
j=1

∥xv
i − av

j ∥2
2sv

ij + α
m∑

v=1
∥Sv∥2

F +
m∑

v=1
∥U − Sv∥2

F δv

s.t.∀v, i, sv
ij ≥ 0, 1T sv

i = 1, uij ≥ 0, 1T ui = 1, rank (LU ) = (n + t) − c

(9)

To relax the constraint on the rank, this paper introduces the c smallest eigenvalues of LU , denoted
as {ηq (LU )}c

q=1, where ηq (LU ) ≥ 0. Given that LU is positive semi-definite, the rank constraint can
be enforced via setting

∑c
q=1 ηq (LU ) = 0. This problem is reformulated as an optimization problem.

The objective function can be obtained by substituting Problem (10) into Problem (9):

c∑
q=1

η(LU ) = min
F ∈R(n+t)×c,F T F =I

Tr(F T LU F ) (10)

In equation (10), F denotes a positive definite matrix.

min
{Sv}m

v=1,{Av}m
v=1,F

m∑
v=1

n∑
i=1

t∑
j=1

∥xv
i − av

j ∥2
2sv

ij + α
m∑

v=1
∥Sv∥2

F +
m∑

v=1
∥U − Sv∥2

F δv + βTr(F T LU F )

s.t.∀v, i, sv
ij ≥ 0, 1T sv

i = 1, uij ≥ 0, 1T ui = 1, F T F = I

(11)

As the parameter β is sufficiently large, the optimal solution U derived from Problem (11) can
satisfy the condition

∑c
q=1 ηq (LU ) = 0. Additionally, β serves as a control parameter for the number

of connected components in the bipartite graph, designated as γ. In each iteration, β increases when
γ < c and decreases when γ > c . Therefore, the resulting bipartite graph matrix Z yields exactly c
connected components, grouping the n data points and t anchors into c clusters.



https://doi.org/10.15837/ijccc.2026.1.7103 6

3.5 Optimization Strategy

The variables to be optimized in this paper are {Sv}m
v=1, {δv}m

v=1, U , F , and {Av}m
v=1. The

optimization method adopted here is to fix all other variables and update only one variable at a time.

3.5.1 Update Sv

When fixing δv, U , F and Av, the last term becomes a constant, the problem becomes:

min
{Sv}m

v=1

m∑
v=1

n∑
i=1

t∑
j=1

∥xv
i − av

j ∥2
2sv

ij + α
m∑

v=1
∥Sv∥2

F +
m∑

v=1
∥U − Sv∥2

F δv

s.t.∀v, i, sv
ij ≥ 0, 1T sv

i = 1
(12)

The update of Sv is independent across all views, and the update of each vector sv
i is independent.

Only consider the k nearest anchors for each data point xv
i . The final optimization solution for sv

ij is:

sv
ij =


θi,k+1−θij+2δv(uij−ui,k+1)

kθi,k+1−
∑k

a=1 θia−2kδvui,k+1+2
∑k

a=1 δvuia

j ≤ k

0 j > k
(13)

3.5.2 Update U

When fixing Sv, δv, F and Av, Problem (11) can be transformed into:

min
U

m∑
v=1

∥U − Sv∥2
F δv + βTr(F T LU F ) s.t. ∀i, uij ≥ 0, 1T ui = 1 (14)

All LU , DU , and Z depend on U , and each row update ui in U is independent. Let φ and ϕ be
the Lagrangian multipliers for the two constraints, so the Lagrangian function of Problem (14) can be
obtained as:

L(ui, ϕ, φ) =
m∑

v=1
∥ui − sv

i ∥2
2δv + βµT

i ui − ϕ(1T ui − 1) − φT ui (15)

Then, take the derivative of L with respect to ui, set it to zero, β can be adaptively determined,
so β is treated as a known parameter. Let a = 2

∑m
v=1 δv and pi = 2

∑m
v=1 sv

i δv − βµi be constants.
According to the KKT conditions, we have:

u∗
i a − pi − ϕ∗1 − φ∗ = 0 (16)

According to the constraint, we can obtain:

ϕ∗ = a − 1T pi − 1T φ∗

t
(17)

Substituting ϕ∗ into equation (16), we can get u∗
i for each row of U .

u∗
i = pi

a
+ 1

t
− 1T pi1

at
− 1T ϕ∗1

at
+ ϕ∗

a
(18)

3.5.3 Update F

When fixing Sv, δv, U and Av, as a block matrix, F can be rewritten as:

F =
[
F1
F2

]
(19)

Where F1 ∈ Rn×c, F2 ∈ Rt×c, F can be updated by equation (19).

max
F T

1 F1F T
2 F2=I

Tr(F T
1 (D1)−1/2U(D2)−1/2F2) (20)
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In equation (20), B = (D1)−1/2 U (D2)−1/2, with F1 ∈ Rn×c, B ∈ Rn×t and F2 ∈ Rt×c given. The
optimal solution to the problem is:

max
F T

1 F1F T
2 F2=I

Tr(F T
1 BF2) (21)

Where F1 =
√

2
2 B1 and F2 =

√
2

2 B2, B1 is the first c left singular vectors of B, and B2 is the first
c right singular vectors of B. The optimal F is composed of the optimal F1 and F2.

3.5.4 Update Av

When fixing Sv, δv, U , and F , each av
j can be updated by Equation (4).

3.5.5 Update δv

When fixing Sv, U , F and Av,let hν =
∑m

ν=1∥U − Sν∥2
F ,the optimization of δv can be simplified

to:
m∑

v=1
δvhv + γ

m∑
v=1

δv ln δv (22)

The Lagrangian function of the above formula is:

L(δv, η) =
m∑

v=1
δvhv + γ

m∑
v=1

δv ln δv − η

(
m∑

v=1
δv − 1

)
(23)

Where η is the Lagrangian multiplier, taking the partial derivative of L with respect to δv and
setting it to zero, we have:

∂L
∂δv

= hv + γ(ln δv + 1) − 1 = 0 (24)

By adding the constraint
∑m

ν=1 δν = 1 to the obtained solution, we can get:

δv = exp(−hv/γ)∑m
v=1 exp(−hv/γ) (25)

With all update processes completed, the steps of the proposed algorithm are as follows.

• Input: Datasets of m views X1, ..., Xm, where Xv ∈ Rdv×n, the number of anchor points t, the
number of clusters c, the number of anchor neighborhoods k, and the initial parameter β.

• Output: Clustering results.

• 1: Initialize the anchor point matrix Av and the similarity matrix Sv.

• 2: Initialize the bipartite graph matrix U using Equation (2).

• 3: Set the weight of each view as δv = 1/m.

• 4: Initialize F with the eigenvectors of the Laplacian matrix.

• 5: while not converged do

• 6: Update Sv through Equation (13).

• 7: Update U through Equation (18).

• 8: Update F through Equation (21).

• 9: Update Av through Equation (4).

• 10: Update δv through Equation (25).

• 11: end while.
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3.6 Complexity and Convergence Analysis

3.6.1 Complexity Analysis

The computational complexity of the BGMC approach is primarily composed of six components,
which respectively correspond to the initialization and update processes of variables.

The complexity of updating {Sv}m
v=1 is O (mnt), with m being the count of views, n is the number

of data objects, t is the number of anchor points with c ≤ t << n, and c is the desired number of
clusters.

The computational complexity of updating the weights of all views δ is O (mnt).
The computational complexity of updating the unified graph matrix U is O (cn).
The computational complexity of learning F is O (cnt). Therefore, the computational complexity

of this sub-iterative process is O ((2mt + c + ct) nζ1), where ζ1 is the number of iterations.
The computational complexity of updating the anchor points A is O (mntd), where d = max

(
d1, ..., dm

)
.

The anchor points {Av}m
v=1 are initialized with a computational complexity of O (ndt), and the

initialization of {Sv}m
v=1 has a computational complexity of O (mntd).

Therefore, BGMC ‘s computational complexity amounts to O (((2mt + c + ct) ζ1 + mtd) nζ2 + ndt (m + 1)),
where ζ2 represents the iteration count.

3.6.2 Convergence Analysis

Using the optimization strategy proposed earlier to solve problem (11), after alternately optimizing
the variables, each corresponding subproblem is convex, and admits an optimal solution. Moreover,
their convergence is demonstrated as follows.

During the update of {Sv}m
v=1, the objective function in problem (13) exhibits convexity. Since

its second derivative with respect to sv
i equals 1, the optimization strategy adopted is monotonically

decreasing.
When updating the weight δ, the objective function in problem (2) constitutes a linear convex

problem, and the closed-form solution for δ is obtained by equation (25).
When updating U , Û represents the updated value of U in the augmented Lagrangian iteration,

with Γ (U) = βTr
(
F T LU F

)
. Therefore, as the function error decreases, the following inequality can

be deduced from problems (14):

m∑
v=1

∥Û − Sv∥2
F

2∥Û − Sv∥F

+ Γ(Û) ≤
m∑

v=1

∥Û − Sv∥2
F

2∥Û − Sv∥F

+ Γ(U) (26)

According to the lemma in Reference[19], the convergence of Problem (14) can be obtained.
To update F , according to the lemma in Reference[19], the objective function of Problem (20) for

updating F is updated through the singular value decomposition of B.
When updating {Av}m

v=1, the problem attains convergence once the associations between data
points and anchor points remain unchanged.

4 Experiment

4.1 Dataset selection

To evaluate the effectiveness of BGMC, this paper carefully selects five representative multi-view
datasets as experimental data, namely 3sources, bbcsport, Caltech-7, Mfeat, and Webkb, to compre-
hensively assess the performance of the proposed algorithm. The detailed information of these datasets
is shown in Table 2.

In the table, v is the number of views, m is the number of data objects, c is the number of desired
clusters, and dv represents the feature dimension in the v − th view.
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Table 2: Statistical Information of Experimental Datasets
Dataset m v c d1 d2 d3 d4 d5 d6

3sources 169 3 6 3560 3631 3068 – – –
bbcsport 116 4 5 1991 2063 2113 2158 – –

Caltech - 7 1474 6 7 48 40 254 1984 512 928
STL10 13000 3 10 1024 512 2048 – – –

YouTube Faces 101499 5 31 64 512 64 647 838 –

4.2 Anchor Initialization Experiment

For the proposed BGMC method, the initialization of uniform anchor points plays a critical role,
whereas K-means demonstrates notable sensitivity to the initial anchor positions. Considering the
effectiveness of clustering and computational efficiency, four commonly used initialization methods are
compared: k-Means[1], greedy k-means++[12], PCA-part[6], and Var-part[4]. All these initialization
approaches process the concatenated features across all views.

Regarding the aforementioned initialization approaches, d = d1 + d2 + · · · + dv; l denotes the
iteration count, t represents the number of centers, and s is the additional sampling size. In the
experiment, one initialization method is chosen to initialize the anchor points of the BGMC method
depicted in Step 1 in algorithm of Section 3.4.5. For each real-world dataset, t = n/5 and k = 5 are
set empirically, and the initial value of the parameter β is set to 1. Its value is adaptively adjusted
during the objective function optimization process for each dataset. Two commonly used clustering
performance evaluation metrics are employed: Accuracy (ACC) and Normalized Mutual Information
(NMI). For the randomized trials, each method is executed 5 times, and the mean values of the metrics
are recorded.

Table 3 tabulates the clustering results of BGMC under two evaluation metrics using different
initialization methods on five real-world datasets. Inspection of the table reveals that the PCA-part
and Var-part initialization strategies exhibit comparatively similar performance, both yielding high-
quality initial anchors that outperform k-means and greedy k-means++ in clustering accuracy. Com-
putationally, the Var-part method demonstrates distinct advantages. While the PCA-part approach
shows slightly better effectiveness in certain scenarios, the Var-part method offers better scalability to
high-dimensional data with reduced computational complexity. For these reasons, this study selects
the Var-part method as the default initialization strategy for the BGMC framework.

Table 3: Clustering Results of Different Initialization Methods on Five Real-World Datasets
Metric Initialization method 3sources bbcsport Caltech - 7 STL10 YouTube Faces

ACC

K - Means 0.775 0.915 0.781 0.920 0.773
Greedy k - means++ 0.789 0.923 0.735 0.925 0.782

PCA - Part 0.794 0.929 0.783 0.933 0.787
Var - Part 0.797 0.921 0.785 0.932 0.795

NMI

K - Means 0.669 0.955 0.670 0.914 0.495
Greedy k - means++ 0.672 0.961 0.702 0.908 0.523

PCA - Part 0.689 0.969 0.710 0.917 0.524
Var - Part 0.705 0.960 0.697 0.910 0.540

4.3 Experimental Results

During the experiment, comparisons in terms of clustering will be made with the following algo-
rithms.

(1) Single-view clustering algorithm: K-means is run on each view of the dataset, and the best
clustering results among these views are recorded.

(2) Bipartite graph-based multi-view clustering algorithms: The LMVSC algorithm[7] constructs
a smaller additional graph between the original data points and the generated anchor points, and
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designs a new integration method to merge these graphs. The EMKMC algorithm[20] first constructs
anchor point graphs for each view, then uses an improved K-means for integration, and designs two
algorithms to solve the model.

(3) Graph-based multi-view clustering algorithm:The COMVSC[2] algorithm proposes a joint
learning framework. By integrating partition-level information to reduce inter-data noise and ef-
fectively capture complementary information across views, it further improves the consistency and
accuracy of clustering results.

(4) Deep Learning-Based Clustering Algorithms: The IBFDMVC[14] algorithm adopts a unique
information-bottleneck fusion strategy, enabling it to handle the complexity of multi-view data. The
SIB-SMC algorithm utilizes self-supervised learning and an information bottleneck strategy for multi-
view subspace clustering.

According to the recommendations in the experimental analysis of existing papers, the parameters
of the comparative methods were set. For BGMC, t = n/5 and k = 5 were set, respectively, with
the initial parameter β ixed at 1. Its value was dynamically adjusted during the objective function
optimization process for each dataset. Three widely adopted clustering evaluation metrics were uti-
lized: ACC, NMI, and F- score. For the randomized trials, each method was executed five times, and
the average metric values were reported. Table 4 presents the clustering results of the five methods
across the five real-world datasets, with the optimal results highlighted in bold. Inspection of the
table reveals that the BGMC method yields superior performance.

Table 4: Measurement Results of Clustering Five Real-World Datasets with Different Methods
Metric method 3sources bbcsport Caltech - 7 STL10 YouTube Faces

ACC

K - Means 0.4961 0.2772 0.3726 0.5911 0.5038
EMKMC 0.6568 0.6662 0.5160 0.6337 0.5727
LMVSC 0.4994 0.5060 0.7266 0.7204 0.8965

COMVSC 0.6864 0.6983 0.8134 0.7714 0.9450
IBFDMVC 0.7960 0.7048 0.7368 0.7571 0.8965
SIBSMC 0.7747 0.7156 0.7145 0.7245 0.8057
BGMC 0.8263 0.8056 0.7859 0.8950 0.9048

NMI

K - Means 0.5356 0.4336 0.4710 0.6505 0.6108
EMKMC 0.6737 0.7438 0.5440 0.6851 0.6183
LMVSC 0.5754 0.5443 0.5193 0.7596 0.8443

COMVSC 0.5301 0.5346 0.5311 0.7040 0.8925
IBFDMVC 0.7465 0.7146 0.7652 0.8160 0.8323
SIBSMC 0.7293 0.7257 0.7046 0.7267 0.8053
BGMC 0.7754 0.7532 0.7082 0.8363 0.8725

F - score

K - Means 0.4556 0.4569 0.4654 0.6952 0.6320
EMKMC 0.7160 0.7017 0.8130 0.7095 0.7125
LMVSC 0.5207 0.6034 0.6947 0.7143 0.8540

COMVSC 0.6788 0.5322 0.7728 0.6776 0.8934
IBFDMVC 0.8054 0.7534 0.7854 0.8953 0.8834
SIBSMC 0.7542 0.7835 0.7354 0.8457 0.8369
BGMC 0.8338 0.7935 0.8233 0.9091 0.9194

5 Discussion

5.1 Analysis of Experimental Results

As observed from Table 4, in terms of ACC and NMI, the BGMC algorithm yields the optimal
performance across all datasets, except for a near - optimal solution on the Caltech - 7 dataset. In terms
of F - score, BGMC outperforms other baseline methods significantly. When evaluated by average
values, BGMC also demonstrates superiority over all comparative methods. The BGMC algorithm
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Figure 1: Comparison of Running Time

designates cluster centers as anchors for bipartite graph construction, and incorporates matrix - derived
information for dynamic iterative updating. Compared with a complete graph, it can better capture
fine - grained partition structure information across views. Moreover, by learning consistent anchors
from individual graphs, a unified graph, and all views, BGMC enables the acquisition of a more robust
unified graph representation.

5.2 Comparison of Running Time

Experiments were conducted for each clustering method in the same computational environment,
and the running time of each method on each multi-view dataset was recorded in detail, as shown in
Figure 1.

Experimental results indicate that when the dataset size is small, the running time of all algorithms
is relatively short, whereas as the dataset scales up, the running time of these algorithms lengthens
accordingly. Among multi - view approaches, BGMC exhibits remarkable time efficiency across all
datasets. Notably, on medium - to large - scale datasets, its running time is significantly lower than that
of traditional clustering algorithms (e.g., LMVSC). This efficiency enhancement is primarily attributed
to the introduction of an anchor mechanism in the bipartite graph construction by BGMC, which
successfully reduces the computational time complexity while safeguarding clustering performance.
Furthermore, in comparison to K - means, which boasts shorter running time, BGMC achieves a more
optimal balance between operational efficiency and clustering performance. This demonstrates its
higher applicability in handling multi - view large - scale data.

5.3 Ablation experiment

To verify the effectiveness of the proposed algorithm, we conducted three ablation experiments
by: R1) removing the anchor update mechanism; R2) fixing the view weights; and R3) removing
spectral clustering, with each serving as a control variable. All experiments were performed under the
same experimental environment and parameter settings. The results are shown in Table 5, where the
optimal results are marked in bold.

Table 5: Measurement Results of Clustering Five Real-World Datasets with Different Methods
Metric method 3sources bbcsport Caltech - 7 STL10 YouTube Faces

ACC

BGMC 0.8263 0.7048 0.7359 0.7826 0.9048
R1 0.5063 0.6387 0.4946 0.6234 0.8025
R2 0.5463 0.6254 0.5134 0.7571 0.8209
R3 0.6063 0.5177 0.6134 0.5254 0.6383

F - score

BGMC 0.8338 0.7935 0.8233 0.9091 0.9194
R1 0.7035 0.5973 0.7921 0.4354 0.8341
R2 0.6279 0.7247 0.6526 0.7234 0.5033
R3 0.6367 0.6635 0.6848 0.8345 0.5912

As shown in the ablation experiment results, when only fixed initial anchor points are used without
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Figure 2: Convergence curves of BGMC on 3source

Figure 3: Convergence curves of BGMC on bbcsport

iteratively updating the anchor point matrix via a unified bipartite graph matrix, the ACC and F-
score metrics across all datasets decrease. This indicates that the bipartite graph matrix is crucial for
capturing view consistency across views. If the weights of each view are fixed statically at 1/m instead
of being dynamically adjusted based on view quality, the NMI drops by 5-8 percent, demonstrating
that dynamic weights can boost the contribution of key views. After removing spectral embedding,
the clustering performance metrics on all datasets show a significant decline, further verifying the
importance of fusing view information in improving clustering performance.

5.4 Convergence Analysis

To verify the effectiveness of the objective function optimization strategy proposed in this paper,
the convergence curves of BGMC on five different datasets are plotted. For each subgraph, the
x-axis represents the number of iterations, and the y-axis represents the objective function value.
Convergence curves of BGMC on 3source as shown in Figure 2, convergence curves of BGMC on
bbcsport as shown in Figure 3, convergence curves of BGMC on cal-7 as shown in Figure 4, convergence
curves of BGMC on STL10 as shown in Figure 5, convergence curves of BGMC on YouTube Faces
as shown in Figure 6. It can be seen from the figure that BGMC converges rapidly for all datasets.
According to the convergence iterations of the comparative algorithms in existing papers, SIBSMC
converges within 10 iterations, IBFDMVC converges after 15 iterations, and LMVSC converges after
20 iterations. In terms of the number of convergence iterations, the algorithm in this paper performs
above the average level.

6 Conclusion
To fully exploit consistency information and enhance clustering performance and adaptability, this

paper presents a novel multi-view clustering approach grounded in bipartite graph matrix consistency.
By learning and leveraging the consistency information encapsulated by a sparse set of consistent
anchor points, the proposed method jointly learns the similar bipartite graphs across multiple views
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Figure 4: Convergence curves of BGMC on cal-7

Figure 5: Convergence curves of BGMC on STL10

Figure 6: Convergence curves of BGMC on YouTube Faces
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and employs an efficient alternating iterative optimization strategy to progressively resolve the vari-
able optimization problem. Extensive experimental evaluations demonstrate that the method achieves
superior performance in terms of clustering accuracy, convergence speed, and algorithmic efficiency.
Nevertheless, it remains subject to certain limitations: the view weights exhibit insufficient robustness
when confronted with views containing intense noise or substantial semantic disparities, and param-
eters such as the number of anchor points rely on empirical settings rather than fully automated
determination. Future research may focus on directions including robust weight learning mechanisms,
parameter-free anchor selection strategies, and cross-modal data extension, with the aim of further
enhancing robustness, universality, and cross-scenario application capabilities.
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