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Abstract

The assessment of user experience satisfaction in intelligent automotive cockpits is pivotal for
enhancing vehicle design and user interaction. This study introduces a fuzzy comprehensive eval-
uation model that integrates the Analytic Hierarchy Process (AHP), entropy weight method, and
fuzzy evaluation method to systematically analyze user satisfaction. By combining subjective and
objective data, the model quantifies user perceptions across multiple dimensions, including cockpit
layout, design aesthetics, and information interface usability. Empirical testing involving 20 par-
ticipants validated the model’s effectiveness, revealing key areas for improvement, such as steering
wheel and seat design, while demonstrating consistency between subjective feedback and objective
metrics. The results highlight the model’s ability to provide actionable insights for automotive man-
ufacturers, facilitating the development of more intuitive and user-centric cockpit systems. Future
research will expand the evaluation framework to include diverse seating positions and additional
cockpit features, further refining the assessment methodology.

Keywords: Intelligent car cockpit,fuzzy comprehensive evaluation model, Analytic Hierarchy
Process, entropy method,user experience,human-machine interaction.

1 Introduction
In recent decades, the automotive industry has undergone a profound transformation driven by

advancements in the Internet of Things (IoT), autonomous driving, vehicle-to-vehicle communica-
tion, and artificial intelligence (AI). These innovations have shifted vehicles from mere transportation
tools to sophisticated mobile environments, with the intelligent cockpit emerging as a critical inter-
face for user interaction[10][12]. Modern cockpits integrate infotainment systems, voice commands,
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touchscreens, and personalized settings, aiming to enhance driving safety, comfort, and overall user
experience[19].

Despite these technological advancements, evaluating user satisfaction in intelligent cockpits re-
mains a significant challenge. Current research primarily focuses on aesthetic cognition, intention
styles, and perceptible interior features, often relying on subjective methods such as questionnaires
and interviews [9] [20]. While these approaches capture user perceptions, they suffer from three key
limitations. First is lack of objectivity, traditional methods depend heavily on self-reported data,
which can be biased by users’ varying levels of experience and articulation skills. Second is limited
data dimensionality ,Surveys and interviews yield qualitative or low-dimensional quantitative data,
making it difficult to extract meaningful insights from large datasets. The last is insufficient inte-
gration of multidisciplinary factors , Existing studies rarely combine insights from human-computer
interaction, psychology, and automotive engineering, leading to fragmented evaluations.

To address these gaps, this study proposes a fuzzy comprehensive evaluation model that inte-
grates the Analytic Hierarchy Process (AHP)[3], entropy weight method, and fuzzy mathematics.
This hybrid approach:Quantifies subjective perceptions through structured fuzzy membership func-
tions.Balances expert knowledge (AHP) with data-driven weighting (entropy method) to enhance ob-
jectivity.Combines both subjective and objective data as EEG, eye tracking, and Likert-scale surveys
for a holistic assessment.

By systematically analyzing cockpit layout, design aesthetics, and information perception, this
research provides a scientifically robust framework for evaluating and optimizing intelligent cockpit
designs. The findings offer actionable insights for automotive manufacturers, helping them refine
cockpit interfaces to better align with user needs.

Future work will expand the model’s applicability by incorporating multi-seat evaluations as pas-
senger perspectives and additional cockpit features as ambient lighting to further enhance assessment
accuracy.

2 Literature review
Current research on evaluation methods for user satisfaction with intelligent car cockpit design ex-

periences primarily focuses on aesthetic cognition, intention styles, and perceptible interior features,
often relying on subjective tools such as questionnaires and interviews. While these approaches cap-
ture user perceptions, they face limitations in objectivity, data dimensionality, and interdisciplinary
integration. To address these gaps, various established evaluation methodologies have been proposed,
including the Analytic Hierarchy Process (AHP)[13], Principal Component Analysis (PCA), Fuzzy
Comprehensive Evaluation (FCE)[8], and the entropy-based Technique for Order Preference by Simi-
larity to Ideal Solution (TOPSIS). A structured comparative analysis of these methods is provided in
table 1, highlighting their applicability and limitations in automotive cockpit evaluations.

Recent studies emphasize the growing role of fuzzy theory in addressing uncertainty in user ex-
perience assessments. For instance, Yang et al. (2022) applied FCE to evaluate cockpit comfort,
demonstrating its efficacy in translating subjective feedback into quantifiable metrics[22]. Similarly,
Zadeh’s foundational work on fuzzy sets (1978) underscores its utility in handling imprecise human
judgments, a critical aspect of automotive cockpit evaluations[24]. However, standalone fuzzy methods
often lack integration with objective data, limiting their robustness.

The limitations of these methods highlight the need for hybrid models. AHP’s reliance on expert
judgment risks subjectivity, while TOPSIS’s purely data-driven approach may overlook contextual
nuances[1]. PCA, though useful for dimensionality reduction, fails to capture hierarchical relation-
ships. FCE alone struggles with balancing subjective and objective inputs. To bridge these gaps,
this study integrates AHP, entropy weighting, and FCE into a unified framework. The proposed
model synergizes AHP’s structured hierarchy and TOPSIS’s entropy-based objectivity with FCE’s
fuzzy logic, addressing biases, enhancing data integration, and enabling multidimensional analysis.
By combining expert insights (AHP), data-driven weights (entropy), and fuzzy membership functions
(FCE), the model mitigates individual method shortcomings, offering a holistic and adaptable solution
for cockpit evaluations.
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Table 1: Comparative Analysis of Evaluation Methods
Method Advantages Limitations Applicability in Cockpit

Evaluation
AHP Combines qualitative and

quantitative analysis; hier-
archical structuring.

Subjective bias in expert
ratings; struggles with
large-scale indicators.

Suitable for prioritizing de-
sign factors but limited in
handling complex datasets.

PCA Reduces data dimension-
ality; identifies principal
components.

Requires large sample
sizes; loses interpretability
of original variables.

Less effective for holis-
tic user experience assess-
ments with multifaceted
factors.

FCE Handles vagueness via
fuzzy logic; quantifies
subjective perceptions.

Membership function de-
sign may introduce subjec-
tivity.

Ideal for ambiguous met-
rics like aesthetics but re-
quires robust fuzzy rules.

TOPSIS Objective weighting via en-
tropy; ranks alternatives
relative to ideal solutions.

Sensitive to normalization
methods; ignores correla-
tions between criteria.

Effective for benchmarking
but overlooks interdepen-
dencies in cockpit design.

This integration aligns with emerging trends in intelligent cockpit research. For example, Li et
al. (2023) emphasized the importance of hybrid models in capturing both quantitative physiological
data (e.g., EEG, eye tracking) and qualitative user feedback[6]. Similarly, Xuan and Deng (2023)
highlighted the value of fuzzy systems in processing heterogeneous data streams, a key requirement
for modern automotive interfaces[21]. By building on these advancements, the proposed framework
advances beyond traditional siloed approaches, providing a scalable methodology for iterative cockpit
design optimization.

3 Research methods
This study aims to construct a user-centered evaluation system and evaluation methods for testing

user satisfaction with car cockpit design experiences through analyzing domestic and international
development trends of car cockpits, the semantics and perceptible features of intelligent car cockpit
designs, and combining domestic and international user evaluation methods. Based on the constructed
evaluation system and methods, we will conduct practical case tests to objectively explore user satis-
faction with car cockpit design experiences. The specific objectives are as follows:

(1) Based on the current research status domestically and internationally, investigate the rela-
tionship between the perceptible features of intelligent car cockpit designs perceived by users and
users’ multidimensional perception, as well as the relationship between users’ multidimensional per-
ception and user experience satisfaction[17]. This will provide a theoretical foundation for testing and
evaluation methods.

(2) Based on the multidimensional representation of users and satisfaction theory research, es-
tablish a test indicator system, testing methods, and testing procedures for user satisfaction with
intelligent car cockpit design experiences.

(3) Based on the test indicator system and methods for user satisfaction with intelligent car cockpit
design experiences, establish a fuzzy comprehensive evaluation model for user satisfaction.

(4) Conduct practical case tests on the established fuzzy comprehensive evaluation model to sci-
entifically and objectively evaluate users’ experiential perceptions and verify the feasibility of the
evaluation model.

Through experiential calculations conducted within the same evaluation method, the experiential
levels of different vehicle cockpits can be understood[18]. Unlike traditional statistical methods, the
results of comprehensive evaluation methods can reveal problems and improvement directions in the
cockpit’s experiential aspects[14]. This provides scientific and objective theoretical support for cockpit
design within enterprises, offers objective opinions for design decisions, reduces decision-making errors
caused by subjective factors, and more accurately assesses user satisfaction with product experiences.
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The fuzzy comprehensive evaluation model synergizes the Analytic Hierarchy Process (AHP),
the Entropy Weight Method (EWM), and Fuzzy Comprehensive Evaluation (FCE). The steps for
constructing this model are as follows:

Firstly, establish the factor set and evaluation set for comprehensive evaluation, utilizing the
Analytic Hierarchy Process to filter evaluation indicators.

Secondly, construct fuzzy functions based on the principles of the fuzzy evaluation method.Next,
standardize the evaluations of the indicators within the system.Subsequently, select the assignment
method to establish fuzzy membership functions, aligning with the evaluation objectives and the
characteristics of the indicators.Following this, construct the fuzzy judgment matrix and compute the
weights.Finally, assemble the fuzzy comprehensive evaluation model.

When applied to assess user satisfaction with intelligent car cockpits, this fuzzy comprehensive eval-
uation model combines multiple evaluation methods, quantifying subjective evaluations and thereby
reducing the error introduced by subjective factors. The resulting comprehensive evaluation value can
be used for comparison with other evaluation objects. The results are clear, definitive, and easy to
understand. The research process is shown in Figure 1.

Figure 1: research process

3.1 Selection of Evaluation Indicators

In the evaluation of user experience in automotive cockpits, evaluation metrics are often correlated.
An excessive number of metrics can lead to substantial computational demands during comprehensive
evaluations. For example, when assessing the comfort of an automotive cockpit, metrics such as the
softness of the seat, the adjustable angle of the backrest, and the size of the interior space may be
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interrelated. If all these highly correlated metrics are included in the evaluation system, it will not
only increase the complexity of calculations but may also affect the accuracy of the evaluation results
due to the repeated consideration of certain factors. To address this, the evaluation system needs to
be simplified to maintain effectiveness while reducing unnecessary computational load.

This paper employs Pearson correlation analysis to filter evaluation metrics. The reason is that this
method can precisely measure the linear correlation degree between variables. In the actual scenario
of automotive cockpit evaluation, we hope that the retained metrics can reflect different aspects of
the cockpit’s characteristics and contain no redundant information. For instance, when evaluating
the interaction design of the cockpit, the response speed of the touch screen and the convenience of
operation are two important aspects. If these two metrics are highly correlated, retaining one of them
can represent the information of these two aspects to a certain extent, thus simplifying the evaluation
system. Through Pearson correlation analysis, we can identify which metrics are independent of each
other within the same dimension. Then, we only retain these non - correlated metrics to represent
different aspects of that dimension, effectively reducing the computational burden and improving the
evaluation efficiency.

This approach also mitigates the limitations of the Analytic Hierarchy Process in systems with
numerous evaluation metrics. When the number of evaluation metrics is large, the process of deter-
mining weights in the Analytic Hierarchy Process becomes complex, and the results of consistency
tests vary greatly, making evaluation calculations difficult. Pearson correlation analysis can optimize
the metrics at the screening stage, making the metrics entering the subsequent evaluation model more
concise and reasonable, and enhancing the effectiveness of the entire evaluation model. For example,
for an index system screened by Pearson correlation analysis, when using the Analytic Hierarchy Pro-
cess to determine weights, the calculation process will be more straightforward, and the consistency
test will be easier to pass. The final evaluation results can more accurately reflect users’ experience
satisfaction with the automotive cockpit.Pearson correlation coefficient analysis can describe the rela-
tionship between two continuous variables and perform point - biserial correlation analysis to describe
the relationship between a continuous variable and a dichotomous variable. In this study, Pearson cor-
relation coefficient analysis is used to calculate the relationship between two variables[7]. The Pearson
correlation coefficient between the variables is defined as the ratio of their covariance to the product
of their standard deviations, as shown in formula 1.

σx,y = cov(X, Y )
σxσy

= E[(X − µX)(Y − µY )]
σxσy

(1)

The population correlation coefficient is denoted by σ. The sample covariance and standard de-
viations are used to obtain the Pearson correlation coefficient, commonly denoted by r as shown in
formula 2.

r =
∑n

i=1 (Xi − Y )(Yi − Y )√∑n
i=1 (Xi − X)2

√∑n
i=1 (Yi − Y )2

(2)

The Pearson correlation coefficient ranges from -1 to 1. A coefficient between 0 and 1 indicates
a positive correlation, with higher values signifying stronger correlation. Conversely, a coefficient
between -1 and 0 indicates a negative correlation, with values closer to -1 signifying a stronger negative
correlation. A correlation coefficient near 0 implies a weak correlation.The user experience evaluation
index system for automotive cockpit design is classified into the target layer, criterion layer, sub
- criterion layer, and indicator layer[5]. Based on their relationships, the overall goal, considered
factors, and influencing factors are categorized into the target layer, criterion layer, and indicator
layer, respectively. These layers are then graphically represented[4].

The target layer refers to the ultimate evaluation objective. The criterion layer consists of elements
that make up the evaluation objective. The sub-criterion layer includes factors that constitute the
criterion layer, while the indicator layer comprises specific metrics that reflect the factors in the sub-
criterion layer. These include satisfaction with the automotive cockpit layout, vehicle interior design
satisfaction, and satisfaction with the layout and perceptual shape of automotive information. The
criterion layer is divided based on different evaluation targets and directions, with the sub-criterion
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layer representing different categories within these directions. The detailed hierarchy is illustrated in
Figure 2.

target  

layer

indicator 

layer

criterion 

layer

sub-criterion 

layer 
...

criterion layer

Figure 2: Evaluation hierarchy

3.2 Construction of Fuzzy Functions

The purpose of the user satisfaction test evaluation for automotive cockpit design experience is
to understand the specific feelings of users during their experience in the cockpit[6]. Therefore, the
fuzzy comprehensive evaluation method is chosen. Fuzzy comprehensive evaluation involves the fuzzy
calculation of both subjective and objective data from users’ cockpit experiences to derive their overall
feelings, transforming subjective data into objective results. According to the fuzzy comprehensive
evaluation theory, the user satisfaction test evaluation index system for automotive cockpit design
experience is a multi-level fuzzy comprehensive evaluation.

The evaluation factor set is a collection of elements that influence the evaluation object, which can
be understood as the indicators at each level in this context. The set is typically denoted by U. In
this study, due to the complexity of the three-level, four-tier evaluation system, there are numerous
evaluation factor sets.

To evaluate user satisfaction with automotive cockpit design experience, the evaluation factor set
for the subjects is defined as A = Layout B1, Design B2, Information Layout and Perceptual Shape B3.
These three evaluation factors, used as the target layer, assess user satisfaction with the automotive
cockpit experience. Here, A = B1 ∪ B2 ∪ B3, and B1 ∩ B2 = ∅,B2 ∩ B3 = ∅, B1 ∩ B3 = ∅.

For example, the criterion layer 1 evaluation factor set is defined as: B1 = {Steering Wheel U11,
Central Control Area U12, Auxiliary Instrument Area U13, Seat Area U14, Physical Button Area U15},
B2 = {Steering Wheel U21, Instrument Area U22, Seat Area U23, Auxiliary Instrument Area U24,
Central Control Area U25}, B3 = {Central Control Area U31, Instrument Area U32}.These factor
sets represent the various components that collectively determine user satisfaction in the automotive
cockpit design experience.

Based on specific evaluation levels, an evaluation factor set is established. The comment set mainly
consists of various possible evaluation results for the subjects being evaluated, typically expressed as:

V = {V1, V2, V3, V4, ..., Vn−1, V n} (3)

Among them, Vn (n=1, 2, 3, ..., n-1, n) represents various possible evaluation outcomes, with n
being the total number of evaluation results. Generally, the evaluation results are divided into 3 to
5 levels based on the evaluation purpose, with each evaluation level corresponding to a fuzzy subset
in the comment set. The comment set can be established as 3-level, 5-level, or 7-level based on the
evaluation requirements.

3.3 Establishing Fuzzy Membership Functions

Based on the user satisfaction evaluation set for automotive cockpit design experience V={very
dissatisfied, dissatisfied, neutral, satisfied, very satisfied}, and considering the evaluation objectives
and indicator characteristics, the assignment method is chosen to establish the fuzzy membership
functions[22].

In the context of automotive cockpit evaluation, the relationships between user satisfaction ratings
and evaluation indicator values are complex and do not exhibit simple monotonicity. To accurately
model these relationships, specific types of fuzzy membership functions are selected based on the
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characteristics of different satisfaction levels and the nature of the automotive cockpit evaluation
data.

For the "very dissatisfied" category, a left - shoulder membership function is assigned. In the
automotive cockpit design, when an indicator value (such as the response time of in - car infotainment
systems) is extremely poor, users are very likely to be very dissatisfied. For example, if the touch
screen of the infotainment system has a response time longer than 0.3 seconds, users will be extremely
unhappy. The left - shoulder function can well represent this situation where dissatisfaction reaches a
maximum at very low indicator values and gradually decreases as the value improves.

The "dissatisfied", "neutral", and "satisfied" levels are assigned trapezoidal membership functions.
Take the user - interaction - related indicators in the automotive cockpit as an example. When
evaluating the ease of use of the steering wheel controls, there is a transition area between different
satisfaction levels. A trapezoidal function can accurately and clearly reflect the differences in mem-
bership between adjacent numerical values in this transition area. For instance, when the number of
steps required to perform a common operation on the steering wheel is between 2 and 4, users may
have a "neutral" attitude. As the number of steps decreases to 1 or increases to 5, the membership
degree of the "neutral" level gradually decreases, while the membership degree of the "satisfied" or
"dissatisfied" level increases. The trapezoidal function can smoothly represent these gradual changes
in user satisfaction.

The "very satisfied" category is assigned a right - shoulder membership function. In automotive
cockpit design, when an indicator value (such as the clarity of the head - up display) is extremely good,
users are very likely to be very satisfied. For example, if the contrast ratio of the head - up display
is above 0.9, users will be extremely satisfied. The right - shoulder function can well represent this
situation where satisfaction reaches a maximum at very high indicator values and gradually decreases
as the value deteriorates.

The expressions for the fuzzy membership functions are shown in formula 4 to 8.

r1(µ1) =


1 0 ≤ µ < 0.1
0.3−µ

0.2 0.1 ≤ µ < 0.3
0 µ ≥ 0.3

(4)

r2(µ2) =



0 0 ≤ µ < 0.1
µ−0.1

0.2 0.1 ≤ µ < 0.3
1 0.3 ≤ µ < 0.4
0.5−µ

0.1 0.4 ≤ µ < 0.5
0 µ ≥ 0.5

(5)

r3(µ3) =



0 0 ≤ µ < 0.4
µ−0.4

0.1 0.4 ≤ µ < 0.5
1 0.5 ≤ µ < 0.6
0.7−µ

0.1 0.6 ≤ µ < 0.7
0 µ ≥ 0.7

(6)

r4(µ4) =



0 0 ≤ µ < 0.6
µ−0.6

0.1 0.6 ≤ µ < 0.7
1 0.7 ≤ µ < 0.8
0.8−µ

0.1 0.8 ≤ µ < 0.9
0 ≥ 0.9

(7)

r5(µ5) =


0 0 ≤ µ < 0.8
µ−0.8

0.1 0.8 ≤ µ ≤ 0.9
1 0.9 < µ ≤ 1

(8)
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Table 2: Judgement Matrix "1-9" scale
Factor i in relation to Factor j Quantitative value
Equally important 1
Slightly important 3
Moderately important 5
Strongly important 7
Extremely important 9
Midpoint between two adja-
cent judgments

2, 4, 6, 8

Where r1, r2, r3, r4, r5 represent the membership degrees corresponding to the ratings of very dis-
satisfied, dissatisfied, neutral, satisfied, and very satisfied, respectively, and µ represents the indicator
value.

3.4 Establishing the Fuzzy Judgment Matrix

Firstly, starting from the second layer of the hierarchical structure model, it is necessary to con-
struct a judgment matrix for each layer until the lowest level is reached. Given that qualitative index
weights can be overly subjective, Saaty proposed the Consistency Matrix Method, which employs a
"1-9" relative scale to reduce the difficulty of comparing indices of different natures and enhance ob-
jectivity. By comparing all indices pairwise and evaluating their importance, a matrix composed of
these pairwise comparison results is called a judgment matrix[23].

In the evaluation structure, constructing a judgment matrix at each layer is necessary to determine
the weight of each factor. By performing pairwise comparisons of the n evaluation indices for a single
evaluation object at the sub-criteria level, the comparison judgment matrix Ak = (a(k)

ij )
n×n

can be
obtained as illustrated in formula 9.

Ak = (a(k)
ij )

n×n
=


a

(k)
11 a

(k)
12 . . . a

(k)
1n

a
(k)
21 a

(k)
22 . . . a

(k)
2n

...
... . . . ...

a
(k)
n1 a

(k)
n2 . . . a

(k)
nn

 (9)

and the following conditions must hold:

• Positivity: a
(k)
ij > 0

• Reciprocity: a
(k)
ij = 1

a
(k)
ji

(i ̸= j)

• Unit Diagonal: a
(k)
ii = 1 (i = 1, 2, . . . , n)

Where, a
(k)
ij represents the judgment matrix at the k-th level , that is, the index group number.

i and j respectively represent the row index and the column index in the comparison judgment
matrix,and the "1-9" scale shown in table 2.

The constructed judgement matrix is a consistent one, necessitating a consistency check to ensure
that the scores assigned by experts do not exhibit logical contradictions.

The judgement matrix A has a maximum eigenvalue λ=n, with the remaining n-1 eigenvalues
being zero. Any row or column of A is an eigenvector corresponding to the eigenvalue n, satisfying
AW = nW. A matrix that meets these conditions is referred to as a consistent matrix.

If the pairwise comparison matrix is a consistent matrix, the normalized eigenvector corresponding
to the largest eigenvalue n will be taken. However, in practice, it is difficult for the constructed pairwise
comparison matrix to fully meet this requirement[15]. Therefore, if the pairwise comparison matrix
is not a consistent matrix, the normalized eigenvector corresponding to its largest eigenvalue will be
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Table 3: Random consistency index RI data
n 1 2 3 4 5 6 7 8 9 10 11
RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51

used as the weight vector W. The formula for calculating the weight vector is shown in formula 10.
This method of calculating the weight vector is called the eigenvalue method, which also allows the
calculation of the numerical value of the largest eigenvalue using the formula.

AW = λmaxW (10)

The consistency test index is shown in formula 11.

CI = λmax − n

n − 1 (11)

where λmax is the maximum eigenvalue, and n is the unique non - zero eigenvalue. If CI = 0,
it indicates that the judgment matrix meets the consistency, if CI is close to 0, it indicates that the
judgment matrix has a satisfactory consistency; the larger the CI, the worse the consistency. In order
to balance the size of CI, the random consistency index RI is introduced, and the values of RI are
shown in table 3.

Verify the consistency of the judgment matrix according to Formula 12.

CR = CI
RI (12)

When n < 3, the judgment matrix is certain to be consistent, and there is no need to carry out a
consistency test on it. When n ≥ 3, if CR < 0.1, it indicates that the judgment matrix is consistent.
if CR ≥ 0.1, it indicates that the judgment matrix fails the consistency test, and the judgment matrix
needs to be revised.

3.5 Standardization of Indicators

Before calculating the information entropy of the indicators, the data must be normalized. The
purpose of data normalization is to remove the dimensions of the indicators and convert the indicator
values to the range [0,1]. During the data normalization process, if the indicator is a positive indicator,
it is calculated according to formula 13.

Yijl = uijl − min( uijl)
max( uijl) − min( uijl)

(13)

If the indicator is a negative indicator, it is calculated according to formula 14.

Yijl = max( uijl) − uijl

max( uijl) − min( uijl)
(14)

Where uijl represents the indicators under different evaluation directions;max( uijl) represents the
maximum value in the indicator sample data; min( uijl) represents the minimum value in the indicator
sample data;ijl(i, l = 1, 2, ..., n; j = 1, 2, ..., m) represents the indicator number, where i represents
the serial number of the evaluation direction, j represents the serial number of the evaluation object
under the evaluation direction, and l represents the serial number of the evaluation indicator under
the evaluation object, Yijl represents the normalized value.

3.6 Calculation of Comprehensive Weights

First, compute the proportion of the ijl-th indicator in the l-th sample relative to the total indicator
value[16], as shown in formula 15.
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pijl = Yijl∑ijl
111 Yijl

(15)

Subsequently, calculate the entropy value for the l-th indicator based on pijl, using formula 16.

Eijl = −ln(n)−1
ijl∑
111

pijllnpijl (16)

Here, Eijl ≥ 0 and if pijl = 0 , then Eijl = 0, Eijl represents the entropy value of the ijl-th indicator,
and n denotes the number of samples considered.

Then, compute the coefficient of variation for each indicator as shown in formula 17.

Dijl = 1 − Eijl (17)

The formula for calculating indicator weights is presented as formula 18.

w′′
ijl = Dijl∑ijl

111 Dijl

(18)

Initially, employ the AHP to determine the weights of the indicators[2]. Subsequently, utilize the
Entropy Weight Method to calculate the weights of the indicators. Finally, compute the comprehensive
weights using formula 19.

wi = w′
i · w′′

i∑n
1 w′

i · w′′
i

(19)

Where wi represents the comprehensive weight, w′
i denotes the weight calculated using the AHP,

and w
′′
i indicates the weight derived from the Entropy Weight Method.

3.7 Construction of the Fuzzy Comprehensive Evaluation Model

Following the principles of fuzzy comprehensive evaluation, the synthesis of the fuzzy matrix yields
the comprehensive evaluation result vector S [11]. The final comprehensive evaluation is determined
by applying the maximum membership principle, as depicted in formula 20

S = W ◦ R = (w1, w2, · · · , wn) ◦


r11 r12 . . . r1n

r21 r22 . . . r2n
...

... . . .
...

rm1 rm2 . . . rmn

 = (S1, S2, · · · , Sn) (20)

Where S represents the fuzzy comprehensive evaluation result vector, and ◦ denotes the fuzzy
operation synthesis operator.

In this study chooses to use the weighted average method for calculations, where the value of Sn

is determined by each rnn in the R matrix and wi. Each factor contributes to the comprehensive
evaluation result, with varying degrees of contribution based on their weights. The operation rules of
this operator are outlined in formula 21.

Sn =
n∑

i=1
wi · rnn(n = 1, 2, · · · , n) (21)

According to the maximum membership principle, the final calculation results can be used to determine
the evaluation grade.
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4 Experiment and analysis

4.1 Experimental Context

The target vehicle for this test is a specific brand of sedan, with a testing duration of four working
days. This test is a static real-vehicle test involving 20 participants who evaluate the experience of
the sedan’s cabin design. The test content primarily includes cabin layout, styling, and information
perception on the in-vehicle display screen.

Participants were selected based on different test objectives and requirements. To enhance the
accuracy and scientific validity of the test results, strict criteria were applied to the participants,
including driving experience, potential user status of the product, and intentions to purchase a vehicle.

For the user satisfaction evaluation test of automotive cabin design experience, participants needed
a certain level of familiarity with vehicle operations to understand the cabin layout sufficiently and
prevent task misinterpretation and operational errors. Therefore, participants were required to have
a driving license with a minimum of one year of driving experience and be potential users of the test
vehicle. They also needed to clearly and explicitly express their feelings and thoughts. Based on these
criteria, we selected 20 participants for each type, with a gender ratio of 2:1.

4.2 Test Scenario Setup

The test scenario was designed considering the lighting requirements for the eye tracker, with
overcast conditions chosen as the testing environment. The test site was an open parking lot with
sufficient lighting and no disturbances, as shown in Figure 3.

Figure 3: The experiment site

During the test, different participants were required to complete various tasks from different posi-
tions. For example, in the driver’s task, the participant needed to perform the driver’s cabin layout
and design task from the driver’s seat, while the primary investigator collected physiological data from
the rear. Participants were equipped with an eye tracker, physiological sensors, and an EEG cap to
execute the tasks.

Each participant completed the tasks in a specific order. During the test, the primary investigator
provided no operational hints to the participants to ensure the standardization of the test.

4.3 Data Collection in Testing

During this test, both subjective and objective data were collected. The objective data included
eye movement data, electromyography data, and electroencephalogram data. The subjective data
consisted of subjective satisfaction ratings using a Likert scale, which participants filled out via a
questionnaire on Wenjuanxing after completing their tasks.

The Datastream data acquisition system within the D-lab software was used for the synchronized
collection and display of objective data. D-lab integrates several modules, including eye tracking with
the Dakalis module, video behavior recording and analysis system, physiological indicator detection
system, and the data acquisition system.
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D-Lab allows for the simultaneous display of various objective data on a single timeline, enabling
observation and analysis of different objective data points at the same time. During the test, subjective
data were collected by asking participants to provide subjective ratings on their experience with the
vehicle’s cabin layout, design, information layout, and form perception.

In the test, participants needed to complete the cabin layout and design tasks from the driver’s
seat. The primary tester collected physiological data from the rear, while participants wore an eye
tracker, physiological sensors, and an EEG cap to perform the tasks, as illustrated in Figure 4.

primary 

tester

data 

acquisit ion 

computer

eye t racker EEG cap

physiological 

sensors

List  of 

experimental 

tasks

Figure 4: The experimental scene

Each participant completed tasks in a specific sequence, with no operational hints provided by
the primary investigator during the test to ensure standardization. A total of 20 participants were
involved in the formal test, based on the evaluation index system established in this study.

A total of 520 objective data points and 20 subjective data points were collected from the par-
ticipants. Each participant contributed 49 valid data points, including 24 EEG data points, 10 eye
movement data points, 5 EMG data points, and 10 operation data points. With 20 participants and
21 data sets per participant, the data to be analyzed were filtered accordingly.

4.4 Evaluation Result Analysis

The evaluation result analysis is divided into two parts. The first part focuses on individual user
test data analysis, aiming to verify the feasibility of the testing method and evaluation model. The
second part involves the analysis of overall user test data, with the primary goal of validating the
effectiveness of the testing method and evaluation model, and summarizing the issues in the vehicle
cabin design.

By analyzing the cabin experience data of a single participant, and evaluating the cabin from
his perspective based on his subjective and objective data, the feasibility of the proposed method in
this study is verified, and unique experience information for each participant can be obtained. This
analysis is exemplified using Participant 1. Other participants can be analyzed following the same
method.

Participant 1’s objective experience levels are shown in table 4. The subjective scores range from
1 to 7, where 1 indicates very dissatisfied, 2 indicates dissatisfied, 3 indicates somewhat dissatisfied, 4
indicates neutral, 5 indicates satisfied, 6 indicates somewhat satisfied, and 7 indicates very satisfied.
In the layout experience, tasks include the steering wheel area, center console area, co-pilot dashboard
area, seat area, and physical button area. The objective experience levels calculated by the evalu-
ation model and the participant’s subjective evaluation levels are shown in table 4. The objective
experience levels are categorized into five grades (very dissatisfied, dissatisfied, neutral, satisfied, very
satisfied). From table 4 , we can discern Participant 1’s satisfaction with the test vehicle’s cabin. The



https://doi.org/10.15837/ijccc.2026.1.7067 13

Table 4: No. 1 subject’s objective experience level and subjective scores range
Area objective experience level subjective

scores range
Layout (0.284, 0.122, 0.355, 0.135, 0.103)General 6
steering wheel area (0, 0.190, 0.379, 0, 0.431)Excellent 6
center console area (0, 0.073, 0, 0.622, 0)good 5.5
co-pilot dashboard area (0, 0.071, 0.929, 0, 0)General 5.5
seat area (0, 0, 0.536, 0.464, 0)General 4.5
physical button area (0.686, 0, 0, 0, 0.314)Extremely Unsatisfactory 6
Layout (0.350, 0.246, 0.077, 0171, 0.155)Extremely Unsat-

isfactory
5

steering wheel area (0.36, 0.64, 0, 0, 0)Unsatisfactory 5
Dashboard Area (0.686, 0, 0, 0, 0.314)Extremely Unsatisfactory 5
seat area (0.384, 0.302, 0, 0.314,0)Extremely Unsatisfactory 5
co-pilot dashboard area (0, 0.192, 0.119, 0.314,0.350)good 4
center console area (0.687, 0.039, 0.169, 0.106,0)Extremely Unsatisfac-

tory
4

IP area (0, 0.304, 0.169, 0.256,0.271)Unsatisfactory 4
Information Layout and
Form Perception

(0.294, 0.03, 0.676, 0,0)General 6

center console area (0.670, 0.068, 0.262, 0,0)Extremely Unsatisfactory 5
co-pilot dashboard area (0, 0, 1, 0,0)General 6
Overall Satisfaction (0.745, 0.568, 0.174, 0.093,0.054)General 5.63

overall satisfaction is neutral, with subjective satisfaction data scoring moderately well. However, the
subjective scores are very evenly distributed, making it difficult to discern any distinct feelings the
participant had after experiencing the cabin.

In terms of layout, Participant 1’s objective satisfaction data is ranked as follows: steering wheel
area > center console area > co-pilot dashboard area > seat area > physical button area. The
subjective satisfaction data is ranked as: steering wheel area, physical button area > center console
area, co-pilot dashboard area > seat area. The most contradictory area is the satisfaction with the
physical button area. During testing, it was found that some participants took a long time to complete
simple tasks in the physical button area because they couldn’t locate the function controls. However,
once they found the controls, they realized that the issue was due to their own oversight. This
problem is rarely reflected in subjective satisfaction since, after identifying the control locations, the
tasks became simple, hence the participants did not perceive an issue with the layout of this function.
Therefore, objective data can reveal issues that participants may not be aware of. For instance, the
relatively low objective satisfaction level in the physical button area, as shown by the distribution
(0.686, 0, 0, 0, 0.314) which is ranked as "Extremely Unsatisfactory", contrasts with the relatively
high subjective score of 6. This discrepancy highlights the importance of objective data in uncovering
potential design flaws that might be overlooked in subjective evaluations.

In terms of styling, Participant 1’s objective satisfaction data is ranked as: co-pilot dashboard
area > steering wheel area > seat area, instrument cluster area, center console area. The subjective
satisfaction data is ranked as: steering wheel area, instrument cluster area, seat area > co-pilot
dashboard area, center console area. Most participants cannot clearly articulate their opinions or
feelings about aesthetics, and their subjective data on aesthetics tends to be moderate, resulting in
limited information that can be extracted. It is necessary to conduct a consistency check between the
subjective and objective data. When there is consistency between the subjective and objective data,
the objective data can be used for analysis.The differences in the rankings of objective and subjective
satisfaction in the styling aspect indicate that there might be a lack of clear understanding among
participants regarding aesthetic design elements, or that the evaluation criteria for aesthetics are more
subjective and vary from person to person.
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In terms of information layout and form perception, participants had a poor experience with the
center console and a moderate experience with the instrument cluster, which aligns with the trend
in subjective data. Post-test discussions with participants confirmed that there were issues with the
information layout and form perception of the center console. The objective data for the center console
in this aspect, such as (0.670, 0.068, 0.262, 0,0) being ranked as "Extremely Unsatisfactory", and the
corresponding subjective score of 5, suggest that although the participants’ subjective ratings are not
extremely low, the objective data still points to significant problems in the center console’s information
layout and form perception, which might need further investigation.

In summary, Participant 1 rated the overall satisfaction with the test vehicle as average. The
layout, information layout, and information perception were also rated as average, while the cockpit
styling was rated very poorly, particularly in the instrument cluster and seat areas. Therefore, it can
be concluded that Participant 1 was most dissatisfied with the styling of the instrument cluster and
seats. Similarly, this model can calculate individual satisfaction levels, allowing for the identification
of issues in intelligent vehicle cockpit design through objective user satisfaction ratings.

Using the aforementioned methodology, the subjective and objective data from 20 participants were
analyzed to validate the effectiveness of the testing method and evaluation model. The experience
levels of the participants regarding the cockpit of a certain sedan were obtained, including satisfaction
ratings for layout, styling, information layout, form perception, and multiple sub-areas within these
categories. Initially, a consistency analysis of the subjective and objective data was conducted, followed
by an analysis of the results based on these data. The consistency check between subjective and
objective experience data employed linear fitting, as illustrated in Figure 5, which primarily showcases
the trend of subjective and objective ratings of cockpit experience from 20 users. The subjective data
was derived from satisfaction questionnaire calculations, while the objective data was computed using
the processing method described above.

Figure 5: Distribution Diagram of Subjective and Objective Data on Overall Experience Satisfaction
of Sedan Intelligent Cockpit

The consistency observed in the subjective and objective data from the 20 participants suggests
that the testing method and evaluation model proposed in this study possess a certain level of va-
lidity. These findings can serve as a theoretical foundation for design and improvement in the field
of intelligent vehicle cockpit design. As shown in Figure 6, the subjective and objective distribution
of overall experience satisfaction levels for the cockpit of a certain sedan among 20 participants is
presented. According to the data, the objective results indicate that 47% of users were dissatisfied
with the sedan’s cockpit experience, 35% found the experience average, and only 18% were satisfied
with the design. Subjective data showed that 23% of users were dissatisfied, and only 18% were satis-
fied, aligning with the objective results. This indicates significant issues in the sedan’s cockpit design,
necessitating improvements based on user needs and experiences.

As illustrated in Figure 7 , the distribution of satisfaction levels for the three key elements in
cockpit design is presented. It is evident from the figure that users were most dissatisfied with the
layout design, with 59% expressing dissatisfaction, followed by 52% for styling design, and 35% for
information layout and form perception design. This indicates that layout design is the area with the
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Figure 6: Subjective and objective distribution of overall experience satisfaction level

most significant issues requiring improvement. Subjective evaluations also showed 24% dissatisfaction
and 23% satisfaction with layout design, consistent with the objective data. In styling design, 29% were
dissatisfied and 24% satisfied, also aligning with the objective data. However, there was a discrepancy
in the information layout and form perception design, where 41% of users were satisfied and 30%
dissatisfied according to subjective data, contradicting the objective data. Therefore, the objective
data for this element is deemed unreliable, and analysis should primarily rely on subjective data.

Figure 7: The distribution diagram of the satisfaction level for the three key elements in cockpit design

In the layout, the distribution of satisfaction levels for different layout areas is shown in Figure
8. Since there is consistency between subjective and objective data in both layout and styling design,
objective data can be utilized for analyzing the layout design.

As indicated by the figure 8, 41% of users expressed dissatisfaction with the steering wheel area
layout design, 69% with the central control area, 52% with the auxiliary instrument area, and 64% with
the physical button area. The majority of users are dissatisfied with the central control area layout,
and over half are dissatisfied with the auxiliary instrument and physical button layouts. Therefore,
the central control area should be the first to undergo layout design adjustments in the sedan’s design.
The distribution of satisfaction levels for various styling areas is depicted in Figure 9.

According to Figure 9, 64% of users are dissatisfied with the steering wheel design, 29% with the
instrument panel design, 64% with the seat design, 29% with the auxiliary instrument panel design,
53% with the central control design, and 53% with the IP area design. The majority of users are
dissatisfied with the steering wheel and seat designs, while the auxiliary instrument panel design is
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Figure 8: Distribution of satisfaction levels for different layout areas

the most satisfactory among all areas. Therefore, in the sedan’s design, the steering wheel and seat
areas should be prioritized for styling adjustments.

In the perception of information layout and form, subjective data evaluation is primarily used.
The distribution of satisfaction levels for various areas is shown in Figure 10.

As shown in Figure 10, users have similar and satisfactory experiences with both the central control
and the instrument panel.

5 Discussion
In recent years, the advancement of intelligent connected vehicles has led to a fundamental shift

in in-car interaction behaviors and methods, from large screens to multiple screens, and from tra-
ditional dashboards and central consoles to virtual reality technologies. Traditional human-machine
interfaces no longer meet industry needs. The development of autonomous vehicles will significantly
increase drivers’ HMI time and internet access, driving investment from the internet industry into the
automotive sector. Therefore, the design of intelligent car cabins is crucial for user experience.

The fuzzy comprehensive evaluation model proposed in this paper for assessing user satisfaction
in intelligent car cabins has three main characteristics. First, it is objective and authentic. Unlike
traditional methods, the results of the new method are less influenced by participants’ experience
and expression abilities. Second, it provides quantitative data. Unlike interviews and questionnaires,
which yield mostly descriptive text, this method produces quantitative data that can be generalized to
the entire user population. Third, it captures rich dimensions, offering high-dimensional, quantifiable
data that can reveal potential user insights.

This user satisfaction testing and evaluation method for intelligent car cabin design can be applied
throughout the design process, such as in design method selection and improvement. Traditionally,
design evaluations rely on expert reviews, but the target users are not necessarily experts. Experts
represent only a subset of user opinions and their reviews remain subjective, potentially leading to
choices that do not align with user preferences. User feedback during design improvements is usually
gathered through questionnaires and interviews, which have limitations. Questionnaires often yield
mediocre responses, and the effectiveness of interviews heavily depends on the moderator’s experience.

Our method collects objective user data and employs scientific and objective data processing and
analysis, resulting in more accurate outcomes. With a sufficient sample size, user profiles can be
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Figure 9: The distribution of satisfaction levels for various styling areas

created to gauge preferences and identify strengths and weaknesses of the car cabin design. This
method can also compare different brands’ intelligent car cabin designs using the same user group,
providing comparative user experience ratings. This information can guide design improvements and
offer purchasing insights based on user experience scores.

However, the study also reveals critical limitations requiring deeper reflection. A notable discrep-
ancy emerged between subjective and objective evaluations in specific design areas. For instance,
the physical button area received high subjective scores (average: 6/7) despite poor objective ratings
(e.g., 68.6% ’extremely unsatisfactory’ in Participant 1’s case). This divergence suggests that users
may overlook functional inefficiencies once tasks are completed, highlighting the need for real-time
task difficulty metrics to complement post-task surveys. Similarly, styling evaluations showed incon-
sistencies: participants struggled to articulate aesthetic preferences, leading to moderate subjective
scores that poorly correlated with objective data (e.g., seat design dissatisfaction in Figure 9). Such
gaps underscore the challenge of aligning user self-reports with behavioral/physiological indicators,
particularly for abstract or unfamiliar design elements.

Despite these limitations, the FCE model offers a scalable foundation for cockpit design optimiza-
tion. Its hybrid weighting mechanism (AHP-entropy) balances expert knowledge with data-driven
insights, mitigating biases inherent in standalone methods. For automotive manufacturers, adopting
this framework could reduce design iteration costs by prioritizing high-impact areas while flagging la-
tent issues (e.g., unintuitive button layouts). Future work should focus on real-world validation across
diverse vehicle models and user groups to refine the model’s robustness and address the identified
limitations.

6 Limitations of the Study
Although this study has achieved certain results, there are still some limitations. this research still

has several limitations. Such as follow ones:
The scope of participants and sample size are restricted. The satisfaction tests for intelligent car

cockpit layout and design only involved drivers. However, the cockpit experience varies among different
seating positions like the passenger seat and rear seats. With a sample size of merely 20 participants,
it is relatively small. A larger and more diverse sample, including passengers and individuals with
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Figure 10: The Distribution Chart of Satisfaction Levels Among 20 Subjects Regarding the Cockpit
User Interface Experience

different driving habits and vehicle usage patterns, is essential for drawing more generalizable conclu-
sions. The limited scope and sample size may lead to an incomplete understanding of user satisfaction
across the entire user group, potentially overlooking crucial aspects of the cockpit experience from non
- driver perspectives.

Some cockpit elements were not included in the study. Elements such as lighting or ambient
lighting, which significantly impact user experience in terms of comfort, mood, and even safety, were
not considered. Future evaluations should incorporate assessments of these additional elements to
comprehensively understand user satisfaction in intelligent car cockpits.

Expanding the evaluation scope is crucial. Future research directions identified in this study, such
as evaluating different seating positions and more cockpit functions, can guide automotive manufac-
turers to conduct more comprehensive assessments. By considering factors like lighting and passenger
experiences, manufacturers can create a more inclusive and comfortable cockpit environment. This
not only enhances user satisfaction but also gives companies a competitive edge in the market. Ad-
dressing these limitations will contribute to more in - depth research and better - designed intelligent
car cockpits.

7 Conclusion
This paper primarily investigates the testing and evaluation methods for user satisfaction in in-

telligent car cabins. Initially, it explores the theoretical framework for user satisfaction assessment,
encompassing research classification and user experience channels. Based on relevant research indica-
tors, a user satisfaction evaluation system for intelligent car cabin experiences is proposed, utilizing a
fuzzy comprehensive evaluation model. This model integrates the Analytic Hierarchy Process (AHP),
entropy weight method, and fuzzy comprehensive evaluation method, leveraging their strengths to
provide a more accurate and objective assessment of user experience.

Ultimately, subjective data from participants and various objective behavioral indicators were
collected through real vehicle testing to evaluate the intelligent car cabins. This validated the feasibility
and effectiveness of the proposed fuzzy comprehensive evaluation model. The research provides robust
data support for the design of intelligent car cabins by enterprises and offers an objective basis for
improvements in intelligent car cabin design.

Although this study has achieved certain results, there are several aspects of the user satisfaction
testing and evaluation methods for automotive cabin design that require further research:

(1) The satisfaction testing for the layout and design of intelligent car cabins has been conducted
solely with drivers as participants. However, the cabin experience is not limited to drivers; it varies
across different seating positions within the vehicle. Additionally, the sample size of this study is
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relatively small. Future research should include evaluations from different seating positions within the
cabin. The design of the cabin should also encompass elements such as lighting or ambient lighting,
which were not included in this study. Future evaluations should incorporate assessments of these
additional equipment experiences.

(2) This study explored the multidimensional standard parameters of user experience, with heart
rate data providing supplementary information for a more comprehensive cognitive analysis. How-
ever, in the test design, external factors affecting tasks should be minimized. When collecting EEG
data during observation and tactile activities, participants should be instructed to minimize other
movements to ensure data accuracy.

(3) The fuzzy comprehensive evaluation model is established based on the Analytic Hierarchy
Process (AHP), entropy weight method, and fuzzy comprehensive evaluation method. The indicator
weights are determined by combining expert scoring with the entropy weight method, integrating
both subjective and objective approaches. However, some indicators possess specific attributes that
necessitate the inclusion of more effective measures to calculate and retain those that best represent
the dimensional characteristics. In the comprehensive evaluation, discrepancies between subjective
and objective data were observed. This phenomenon requires further investigation and analysis of
data methodologies to address inconsistencies.
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