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Abstract

In the context of Internet of Things (IoT) structures, sensor nodes have been observed to
generate erroneous data due to their constrained operational capacity and position. The presence
of faulty nodes can lead to significant challenges in communication, data traffic, and data evaluation.
Consequently, it is imperative to segregate data obtained from faulty nodes from standard data.
Concurrently, the identification of the specific fault type is paramount. The present study utilised
machine learning and deep learning techniques to classify fault types, with the data collected from
54 sensors in a closed building over a period of 3 months. Initially, the performance analysis of
the LSTM model was compared with that of Support Vector Machine (SVM), K-Nearest Neighbor
(KNN) and Random Forest (RF) machine learning algorithms, given the utilisation of large amounts
of data. Subsequently, as certain classes were characterised by limited data, data augmentation was
implemented using synthetic data, and the SMOTET-LSTM model was developed through HPO
(Hyper Parameter Optimization). This model demonstrated superior performance in comparison
to the other algorithms.

Keywords: Fault Detection, Classification, Deep Learning, Machine Learning.

1 Introduction

A Wireless Sensor Network (WSN) can be defined as a structure in which sensors communicate
with each other through nodes [1]. Sensors connected to these nodes collect data independently
of each other in indoor and outdoor environments. The sensors affixed to these nodes have the
capacity to collect data in an autonomous manner, both within indoor environments and in outdoor
settings. Sensors enable the data in the environment to be converted into analog or digital signals.
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These data can be temperature, humidity, sound, gas or particles, etc. Sensors are used by being
integrated into an embedded system in WSN. The functionality of embedded systems is predicated
on the capacity for data from sensors to be transferred between nodes using end-to-end wireless
protocols [2]. Embedded systems are defined as devices that operate on low-power, with constrained
computing power, memory, batteries, and storage capacity. There are many studies with WSNs in
the fields of military, commercial, health and agriculture [3][4]. Cisco predicted that by 2023, the
number of networked devices will be more than three times the population [5]. This will present
difficulties in network management, given the volume of traffic on the Internet. In order to manage
such large traffic, management mechanisms need to be developed on many objects. Because of the
limited resources of IoT nodes and problems with access to the locations where they are placed, there
are many problems with communication and data transfer. These problems can lead to increased
network traffic, irregular battery and power usage, and incorrect data transfer in the IoT network. In
addition, the instant data collection of the sensors increases energy consumption as it will continuously
transmit the data to the network. This causes IoT nodes to shut down in a short time. Shutting
down nodes require that the routing be changed to transfer data through the neighbour node. This
situation causes blockages or interruptions in the communication of IoT nodes. For these reasons,
investigation or detection of failure occurrence and taking measures will increase the service quality of
the network. Error detection and intuition techniques have become interesting in IoT to provide more
efficient traffic routing, efficient energy use, error-free data transmissions and accurate evaluations
[6-10]. Fault detection techniques are those which are employed to locate faulty nodes within wireless
sensor networks. These failures can be classified as permanent, intermittent and temporary [11].
Permanent faulty nodes produce faults continuously over time or do not respond to other nodes in
the communication range [12]. Intermittent faulty nodes are usually prone to permanent failure [13].
Transient faulty nodes are not easily detected and become a probable event over time. Repeated tests
may be required to detect transient faults. However, iterative fault detection algorithms increase the
energy consumption and memory usage of the WSN node [14]. Due to the limited features of IoT
nodes, this balance should be taken into account when performing effective fault detection. WSNs use
different techniques such as mathematical, statistical, heuristic, and machine learning algorithms for
fault detection [8,15-18]. The most important factor in detecting faults is the time intervals of repeated
trials and the classification of the fault. Since running repeated fault detection algorithms will increase
the energy load, it is necessary to determine the optimal time intervals. Determining the optimal time
intervals is a situation that will reduce the limited energy consumption in Wireless Sensor Networks
(WSNs). Fault detection systems represent a major field of study within the engineering discipline.
Especially with the development of big data technologies, researchers have enabled the development
of intelligent fault detection systems. Fault detection has often been considered as a classification
problem. Support vector machine (SVM) model, one of the most widely used machine learning
models as a classification model, is used in fault detection systems. Recent studies have witnessed
significant advancements in the realm of fault diagnosis, largely attributable to the incorporation of
artificial neural networks, fuzzy theory, machine learning algorithms utilising random forests, genetic
algorithms (GA), the combination of GA and SVM, particle swarm optimization (PSO) and SVM.In
the context of these recent developments, a noteworthy advancement is the introduction of fuzzy logic
as a potential alternative to the limitations encountered by conventional fault detection computational
methods[19]. The development of intelligent fault classification methodologies employing artificial
neural networks (ANN) has been an active area of research in recent years [20]. (ANN) have been
shown to possess certain advantages, including their ability to operate with incomplete information
and to produce results with a high degree of efficiency, even when utilising minimal computational
resources. However, it should be noted that they are not well-suited to datasets comprising a limited
number of samples. In a separate study [21], The proposition of a technically sophisticated system
for the identification of faults was presented, employing machine learning algorithms, with particular
emphasis on the Random Forest algorithm. The efficacy of this approach is contingent on the quality
of the training data, the employed learning algorithms, and the selected parameters. In [22], a genetic
algorithm (GA) is proposed for fault detection. The GA is a very powerful computation that supports
multi-objective functions and is very powerful for finding optimum solutions, although it is quite
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difficult to find the optimum solution due to its limitations, being time consuming and not suitable for
problems with large variables. In the work cited in [23], a combination of a genetic algorithm (GA)
and a support vector machine (SVM) has been proposed to form a hybrid system. This system is
very useful for search and optimization, but it is unsuitable for large and uncertain data sets, which
complicates parameter selection and leads to overfitting during the SVM process. As reported in this
paper, a methodology integrating particle swarm optimization (PSO) and support vector machine
(SVM) is proposed [24]. It has a strong generalisation capability for a high dimensional and nonlinear
classification problem. However, this methodology is not without its drawbacks, chief among which is
the sensitivity to local minima as well as the inevitable reliance on judicious selection of parameters
for classification performance. Most of the data generated by IoT structures are considered as big
data. Therefore, the LSTM classification model, which is a deep learning model, is also used in
the problem of fault detection. In solving these problems, the data generated by sensors is usually
considered as input data. The classification model is created according to predefined error values or
reference value ranges [25-30]. In the study on artificial data generation [31], novel data on data
generation facilitated the observation of new data, examples of minor classes separated from safe
and borderline elements, and datasets exhibiting variable dimensions and instability characteristics.
The preprocessing methods and classifier settings that formed the subject of the research have been
extended. The study specifically examined the distributions of safe, borderline, rare, and outlier
instances (corresponding to easy, medium, and difficult datasets), the classifiers employed, and the
preprocessing methods utilized.Following the classification of errors in the data obtained from the
sensors, it is possible that certain classes may exhibit a highly imbalanced distribution. In [32],
the SMOTE algorithm is employed to address this imbalance, with the training and test ratio being
equalised at 50%-50%, given the substantial volume of data.Integration of SMOTEBoost and bootstrap
with minority data equalisation to other classes using SMOTE has been demonstrated in [33] to yield
enhanced classification accuracy in the test dataset. The primary factor contributing to the efficacy of
fault detection is the time interval between repeated trials, as well as the classification of errors. It is
imperative to ascertain the optimal time intervals for executing repeated error detection algorithms,
as their implementation will inevitably result in an augmented energy load. Determining the optimum
time intervals is a situation that will reduce the limited energy consumption in IoTs

2 Material and Methods

2.1 Building Area Network System Model

Smart building systems consist of a combination of home area network and cloud computing
systems. The Building area network shown in the figure includes four main components: smart
devices, home gateway, VPN and cloud service provider.
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Figure 1: Typical Building Area Network[34]
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2.2 Faults Taxonomy in WSN

WSNs are classified according to the time interval and location of the fault. It is classified as
transient, intermittent, and permanent failures depending on the timing. Failures that occur for a
limited duration are designated as transient failures. These failures can occur due to blockages in
the network in nanoseconds and milliseconds, changing weather conditions. These failures disappear
after a certain period of time. Intermittent failures, similar to transient failures, show that nodes have
changed at some time intervals while they show normal behaviour. These periods are expected to be
longer in intermittent failures. These faults are usually caused by incorrect readings of sensors. These
errors are difficult to detect. Persistent errors are errors that do not disappear until the bug fix is
resolved. The occurrence of such faults is ordinarily attributable to malfunctions in a local component
of the WSN. [35]. The categorisation of the fault can be ascertained through the identification of its
location. The fault itself is then classified as data- or system-centred. In the instance of data-centric
failures, the characteristics of sensor readings are taken into consideration. In system-centric faults,
the features of the system components used in WSNs are considered. Faults that occur according to
the location of the fault are also explained in Table 1 [18,36,37].

Table 1: Error Types and Descriptions in WSN
Offset Fault

It identifies predictable deviations in sensor readings. It is
usually due to the deterioration of sensor calibrations.

The rate at which data detected in sensor readings is different
from the expected data is referred to.

Data Centric Faults
Stuck-at Fault

‘ Gain Fault
\
|

When there is no change in sensor readings or zero. ‘

Out of bounds Occurs when sensor readings are out of normal reading trend

Spike Fault Errors occur ringing times if the rate of change is too high
over the same time period.

Data Loss Fault In case there is missing data in sensor readings over a certain
time.
Calibration Fault Errors in WS are usually calibration errors. Errors in the cal-
ibration formulas of sensors. Offset errors and earnings errors
System Centric Faults occur.

Battery Failure

Causes incorrect transmission of data sent between nodes. ‘

Hardware failure These are very common errors because WSN nodes are often
present in harsh geographic conditions. In these failures, the
defective equipment usually needs to be replaced. It causes
permanent failures.

The limitations of the sensor nodes cause heavy computational systems not to be supported. In
addition, its deployment in dangerous areas such as closed areas, factories, forests, railways, hard-to-
reach lands causes difficulties in the fault detection of WSN. For this reason, there are many factors
that force the diagnosis of WSN. The accuracy of fault detection in WSN increases the accuracy rates
in evaluating data. In detecting the faults described in Table 1, the differences between the normal
reading and the malfunction should be clearly revealed. A clear distinction must be made between
faults. Fault detections must be fast because sensor readings are valuable information. In solving these
challenging problem solving scenarios, it reveals that deep learning techniques and machine learning
models can be a suitable solution for evaluating errors in challenging sensor readings. Classification
of faults can be achieved with the classification techniques of these models.

2.3 Learning Models for Fault Detection

Classifiers are used to classify newly obtained observations according to the specified categories
using the data set obtained from an environment for educational purposes. There are many clas-
sification algorithms used in the Literature on fault detection. The algorithms under scrutiny here
are the support vector machine (SVM), the random forest (RF) and the K-nearest neighbour (KNN)
algorithm|[38-40]. SVM are a feed-forward, supervised machine learning algorithm employed in data
analyses for regression and classification. They were developed at the ATT Bell laboratory [41]. The
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objective of SVMs is to minimise the upper bound of generalisation errors, as well as reducing ex-
perimental measurement errors. Consequently, the weight coefficient obtained in the training phase
demonstrates superior generalisation and prediction performance for test data that has not been pre-
viously encountered. The classification of natural functions is a challenging problem. To address this
challenge, SVM employs a transformation of the training data into a higher dimensional space, utilis-
ing linear functions to map the data. Rf algorithm is a community learning algorithm. Community
learning represents a technique that involves the integration of numerous machine learning algorithms,
with the objective of generating precise predictions that surpass those of any individual model. RF
is composed of the merger of multiple decision trees. It is often used in regression and classification
problems [42]. This algorithm is also created based on a random subset of observed data, with each
tree created in decision trees.

2.3.1 LSTM

LSTM is an artificial neural network technique used for deep learning of the Long Short -Term
Memory network. LSTM transfers information from the previous model to the next model. Time
series analysis is called the analysis used based on previous data to predict a time-based variable. In
time series analysis, the previous situation can affect the next situation. However, if sudden changes
occur, it may be necessary to determine that this is a different situation. For this reason, these time
series analyses can be performed with LSTM techniques. LSTM is an RNN variant that can effectively
address the issue of detecting sudden changes in the degradient and time series (gradient vanishing)
that are destroyed by introducing a collection of memory units. The recurrent neural network model
ensures that the continuity of this information is available in layers in the common network model.
Each neural network creates a loop within itself. Thanks to this structure, a repetitive structure is
created by ensuring the continuity of knowledge. Evidently, in every instance, it can be seen that
the function and weights applied to the network remain constant. At the time of t, the memory unit
consists of three doors that contain all historical records to date. These are; (the entrance gate), forget
the door and the exit door. The input values assigned to these gates range from 0 to 1. The LSTM
network structures very suitable for sensor data sets such as temperature, pressure, gas, movement,
light intensity, humidity, which contain time size. In this data, a few records of the current situation
and the past status are sufficient for network training.In LSTM, input data can be defined as a
multivariate time X = x1,x2+...4+x¢ series. The aim is to determine the fault detection algorithm
consists of two parts. Prediction and detection. The initial stage in constructing the LSTM model is
to reach a decision regarding the information derived from the cell states. This decision is made by a
sigmoid layer with a forgetting gate. Eq. (1) controls the cell states in the LSTM model by outputting
a number between 0 and 1 for each number C(t — 1) A value of 1 means ‘keep completely’, while a
value of 0 means ‘get rid of completely’ ht — 1)z

ge = 9(Wy [t = 1), 2] + by) (1)

The subsequent phase involves the determination of the effects to be stored in the cell state. Initially,
a sigmoid layer known as the ’Gate Layer’ determines the value to be updated (see Eq.( 2)). Subse-
quently, a tanh layer generates new candidate vectors A (Ct) to be appended to the state ((see Eq.
3)). The amalgamation of these two steps engenders an update from an old cell state, Ct-1, to a new
cell state, Ct.

it = ﬂ(Wl[h(t — 1), Jlt} + bz) (2)
Cy = 9(We[htl), 4] + by) (3)

According to Eq. (4), we bump into the old state with the proportion of forgetting states and add
each status value to be updated to scale.gizxCY

Ct = ngtl + ith’t (4)

Finally, predictions are intensively computed based on the filtered cell states. It is the function of
the sigmoid layer to determine the state of the cell, which is then output via Eq. (5). The filtered cell
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states are then processed through a tanh function, thereby transforming the values within the range
-1 and 1. The output is the sigmoid pass multiplied by the tanh value.

Or = O(Wo.lht — 1), 2] + b;) (5)
ht = Ot:ztcmh(C't) (6)

nput
Data

Figure 2: LSTM Typical Structure

Regarding this function, hyperbolic tangent is an appropriate choice for activation function for
data limitation purposes: because being in range -1 and 1, the activation function supports both
negative and positive values of standard incoming data.

2.3.2 KNN Algorithm

K-nearest neighbors (KNN) is a method proposed by Fix and Hodges that is easy to separate
and has high separation between them. The KNN algorithm is predicated on the number of close
neighbours, as determined by the calculation of the distance between new data and the sample data
set. This is achieved by comparing the new data with the data in a particular sample set against
other data [43]. The Data with unknown classes are monitored with other data in the training set
and distances are tracked. According to the calculated distance, appropriate class assignment is made
for new data [44]. First, it is aimed to reduce the size of the feature area.A = (x1,x2,..., ;) and
B = (y1,Y2,...,ym) by using the distance function.The most commonly used distance measures in
calculating distance are the Euclidean, Minkowsky, Chebychev, Mahalanobis, and Cosine similarity
distance in[45].

Table 2. Distance Metrics Used in KNN

m )2
Euclidean Distance ZZ='(+%) Minkowsky Distance {/ SNz — wil?
Mahalanobis Distance \/ (yz-—:):i)T C—! (yi—x;) Chebychev Distance |z; — i
Diny Tl

Cosine similarity Distance

VL SVEL v

2.3.3 Support Vector Machine (SVM) Algorithms

The Support Vector Machine (SVM) algorithm is a computerised learning algorithm that is utilised
for the purposes of classification or regression. The SVM algorithm is based on finding the maximum
boundary between different data by moving the data to a high dimension where it can be linearly
separated in the nonlinear sample space [46].
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Figure 3: LSTM Typical Structure

The SVM algorithm is an optimally precise tool for the delineation of data into two categories,
through the establishment of n-dimensional hyperplanes. In the field of support vector machines,
problems are classified as either linearly or nonlinearly separable. The objective in cases of linearly
separable problems is to ascertain the hyperplane that traverses the given features. In support vector
machines, problems are categorised as linearly separable or non-linearly separable. In the case of
linearly separable issues, the objective is to identify a hyperplane that intersects the features. The
lines in which the properties of the classes are farthest from each other give the hyperplane. Figure
3 shows the support vectors and the hyperplanes. The linear lines passing through the middle of the
plane acts as a separator for the classes.

2.3.4 Random Forest (RF) Algorithms

The random forest algorithm is a technique that has been demonstrated to be both effective
and efficient when applied to a wide variety of problems. The most significant advantage of the
random forest algorithm is its capacity to be utilised in classification problems with minimal parameter
regression. In the context of the random forest algorithm, it is necessary to determine the optimum
number of trees by gradually increasing the number of trees. In terms of the classification approach,
to create a random forest algorithm, each node is divided into at least two branches until a decision
is made to stop the node. Nodes are selected by a threshold so that data variance is minimal. By
progressing through all these branches and nodes, a prediction is made somewhere [47].

2.4 Synthetic Minority Oversampling Technique

The synthetic data transfer process is undertaken with the utilisation of the following methods:
SMOTE, SMOTETomek, OMC and UMC. SMOTE, an acronym for Synthetic Minority Oversampling
Technique, is a method employed for the oversampling of minority classes in imbalanced data sets.
There is a high imbalance in the classes of our sensor data obtained. SMOTETomek technology,
the first persistence SMOTE process is used to multiply the minorities as in Figure 4. The second
multiplication is removed using the Tomek Link technique to be distributed in the new data set used
with multiplied minorities as in Figure 5. IFollowing the execution of the SMOTETomek operation,
there will be a reduction in the number of majority class instances. This is due to the operation’s
capacity to identify and remove majority class instances that form Tomek links with minority class
instances. The objective of this process is to enhance class separation by eliminating instances at
the class boundary. UMC, Majority class reduction (Undersampling Majority Class) density class to
minority class reduction method, the density class data is equalized to the minority class according
to random or statistical samples. When the difference between the majority and minority classes is
high, the data loss will be high, so it provides poor varieties. In the OMC Data Linkage Process,
in the Oversampling Minority Class technique, new samples are added to the minority class until
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the minority class becomes equal to the density class to eliminate the imbalance of this oversampled
manual dataset[48].
The basic equation for SMOTE can be written as [49].

.l:l ) -\

Class A Classs B ClassC Class D Class A Class B ClassC Class D

Original Data Class Distribution After Sampling Data Minority Classes

Figure 4: SMOTE Minority Class Balancing Process

Xnew =X+ (TCLTLd() * Xnearest - X)) (7)

Where: X,ey is the new synthetic sample generated by SMOTE, X is the minority sample that is being
oversampled and X, cqrest is one of the nearest neighbors of X(based on some distance metric)[50] Eq.
(7) creates a new sample between a randomly generated value (random minority sample (X) and one
of its nearest neighbors (Xyearest). The number of minority samples is thus increased, and will help
create a more balanced dataset for the model.

-l:l -\

Class A ClasssB ClassC Class D Class A Class B ClassC Class D

Original Data Class Distribution After the SMOTETome technique of the data

Figure 5: Minority Class Balancing Process with SMOTETomek

3 System Model

The data used in fault classification were obtained from sensor nodes placed in Intel Berkeley
Research Lab [51]. Nodes are placed in positions determined on a two-dimensional plane as in Figure 6.
Sensors placed in this closed area consist of 54 nodes that detect heat, light and humidity information.
Data were obtained at half-hour intervals between February 2004 and April 2004.

It consists of 1048576 lines in total. Before entering the classification models, the data is first
classified according to certain ranges. It is assumed that the temperature information obtained from
indoor temperature sensors is in the range of 0-40 degrees Celsius, the light information is in the
range of 0-10000 lux, and the humidity information is in the range of 0-100%.The fact that the data
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Figure 6: Indoor placement points for 54 sensors at Intel Berkeley Research Lab[51]

detected by the sensors are outside these ranges “offset fault”; reading the same data at intervals of
change “gain fault”; Being 0 or not changing for a long time is defined as “stuck fault”. In some of
the perceived data, cases of having more than one error at the same time were encountered. In these
cases, another row was created for the same data and different errors were specified. Table 3 shows
an example data set.

Table 3: Example Data on The Sensor’s Indoor Test Environment

date time Epoch moteid temparture| humidty | light Fault
31.03.2004  03:38:16 2 1 122,15 -3,92 11,04 offsetFault
28.02.2004  00:59:16 3 1 19,99 37,09 45,08 normalDat4
28.02.2004 01:03:16 11 1 19,3 38,46 45,08 normalDat3
28.02.2004 01:06:16 17 1 19,17 38,8 45,08 normalDatg
28.02.2004  01:06:47 18 1 19,18 38,84 45,08 normalDat3
28.02.2004 01:08:46 22 1 19,15 38,94 45,08 normalDatg
21.03.2004  05:18:34 63880 10 19,97 47,57 0,92 offsetFault
21.03.2004  05:19:36 63882 10 19,97 47,47 0,92 offsetFault
21.03.2004  05:20:58 63885 10 19,98 47,54 0,92 offsetFault
21.03.2004  05:22:24 63888 10 19,97 47,54 0,92 offsetFault
21.03.2004  05:23:08 63889 10 19,96 47,54 0,92 offsetFault
21.03.2004  05:18:34 63880 10 19,97 47,57 0,92 offsetFault

Our aim is to detect errors in data read in real time as time series. In order to detect errors,
data pre-processing, correlation analysis, development of prediction model and classification of errors
were determined. Training was performed for 4 different classification values in prediction results:
Offset Error, Gain Error, Compressed Error and normal data. Classification results obtained from
SVM, KNN and RF algorithms used in data science related to error classification and LSTM were
compared. Synthetic data generation process was performed to avoid imbalance in class data and
generalizations in classification.



https://doi.org/10.15837 /ijccc.2025.3.7046

10

3.1 Hyperparameter Tuning Models

The efficacy of machine learning algorithms in training is contingent upon the optimisation of

numerous internal hyperparameters [52].

While a hyperparameter may be known to have an effect
on a model in general, the optimal tuning of a hyperparameter for a specific dataset remains unclear.
Furthermore, many machine learning models possess a set of hyperparameters, which can interact in
non-linear ways. Consequently, it is often necessary to record a hyperparameter setting that provides
the best performance of a model on a given tuning data. This constraint requires a practical solution
for optimizing hyperparameters.

DATA

/ Search Methods \
PSO BO Grid Random ¢
o Search

Search - . ™~
@ Data Pre-Processing

Features Selection

/ Hyper Parameter Tuning \ Minmax Scaling

LSTM SVM KNN RF 1

neuron.size | ¢ leaf size | bootstrap /” Balancing Minority Classes
layer size | gpgilon [ € metric n_estimators

learning_rate Gamma( 'Y] weights sample_leaf G— SMOTE

batch_size sample_split \ SMOTETomek

[Perfomance analysis of all mehods ]

{Evaluation of all methods ]

Figure 7: Schematic Of The Model Implemented For The Classification Of Sensor Data

Table 4: Intervals of Hyperparameter values according to models

n__estimators

100, 200, 400, 800)]

‘ Models ‘ Parameters ‘ Value Range ‘
‘ ‘ Activation Function ‘ sigmoid,tanh,relu,softmax ‘
\ | Layer size | [5,10] \
‘ LSTM ‘ Learning rate ‘ [0.99,0.8] ‘
\ | Batch size | 32, 64, 128, 256 \
\ | C | [1,10000] \
\ SVM | Epsilon | [0.001,0.1] \
\ | Gamma | [0.00001-0.9] \
\ | n_neighbors | [, 7,9, 11, 13, 15,17] \
‘ KNN ‘ Metric ‘ [manhattan’,’euclidean’,’ minkowsk’,”Mahalanobis’] ‘
‘ | weight | [uniform’,’distance’] ‘
\ | max_ depth | [10, 20, 30, 40, 50] \
‘ | min_ samples_ leaf | [1, 2, 4,8] ‘
‘ RF ‘ min__samples__split ‘ [2, 10, 20] ‘
| | | |

In the current study, the following search algorithms are utilised for hyperparameter optimization
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(HPO): particle swarm optimization (PSO), Bayesian optimization (BO), grid search and random
search. It has been established that these algorithms are frequently employed to identify optimal
solutions within the designated parameter ranges of machine learning (ML) and deep learning (DL)
algorithms. The Bayesian search model is an optimization model founded upon Bayesian theory.
This model constitutes a strategy that is employed to identify the minimum and maximum values
of objective functions that are challenging to evaluate. It requires more computational power since
a probabilistic model (e.g. Gaussian Process) must be updated at each iteration. Particle swarm
optimization (PSO) can operate on continuous or discrete solution spaces. The correct tuning of the
parameters significantly affects the success of the algorithm. It is generally faster because it is based
on simple update rules. The extant literature suggests that Support Vector Machines (SVMs) with
multiple classification features are considered to be an algorithm that can be used in the classification
of errors. However, the parameters that must be determined for SVMs may present a challenge when
setting parameters in a heterogeneous network. Consequently, it is necessary to ascertain the most
suitable parameters for SVMs in a Building Area Network where heterogeneous reading operations
are performed.

Table 5: Abbreviations used and their meanings

| Abbreviations| Meaning

|
| SVM | Support Vektor Machine |
| KNN | K Nearest Neighbors |
| RF | Random Forest \
| LSTM | Long Short Term Memory |
| BO | Bayesian Optimization |
| PSO | Particle Swarm Optimization |
| RS | Random Search \
| GS | Grid Search \
| SMOTE | SMOTE \
| SMOTET | SMOTETomek \
| OMC | Oversample Minority Class |
| UMC | Undersample Majority Class |
| HPO | Hiper Parameter Optimization |

4 Result

The simulation results section consists of comparative analysis of the results obtained from SVM,
KNN, RF, LSTM, SMOTE-LSTM and SMOTET-LSTM models. In order to achieve this objective,
the performance of the algorithms was evaluated according to the mean absolute error (MAE), root
mean square error (RMSE), correctly classified samples and training model generation time criteria.

These evaluations were conducted on a computer equipped with an i7 processor, 16 GB of RAM
and a 640-core GPU, utilising the Python 3.7 compiler. Perusal of the scatter plot in Figure 6 will
allow the data utilised in this study to be viewed.According to this plot, the data correctly detected
by the sensor nodes is shown as “normalData”.It is seen that ‘normalData’ is more frequent than other
data.In WSN, gainFault and stuckFault occur less frequently than offsetFault. LSTM model was used
as a classification method in deep learning of the training data. It was compared with SVM, KNN
and RF machine learning models to analyze the data and determine its accuracy. RMSE, MAE and
MSE performance values showing the classification success for each model are shown in Table 6.

As demonstrated in Table 6, LSTM has been shown to outperform SVM, KNN and RF in accu-
rately representing data variation. However, some classes were found to be generalised according to
the metrics in the classification report of LSTM, SVM, KNN and RF.When the classification report
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Figure 9: After Minority Class Balancing Process (SMOTET)
Table 6: Performance of the Classification Models
Model HPO Tecnique | RMSE | MAE | Correctly
Classified
Examples
| SVM | RS | 0.2089 | 0.0941 |  %89.32 |
| KNN | RS | 0.2272 | 0.0563 |  %89.06 |
| RF | RS | 0.2503 | 0.0775 |  %96.80 |
| LSTM | RS | 0.2022 | 0.0373 |  %99.18 |
| SMOTE-LSTM | BO | 03337 | 0.1150 |  %99.05 |

BO | 0.1736 | 0.0070 | %99.36

was analysed, it was observed that some classes were generalised.To overcome this imbalance, syn-
thetic data were generated using SMOTE and SMOTETomek operations. The findings of this study
demonstrate that the generalisation problem was effectively addressed in all four classes (offsetFault,
NormalData, stuckFault, gainFault).As illustrated in Figure 10, minority classes are instantiated in
other classes.The implementation of the SMOTE operation resulted in enhanced precision, recall and
F1-score values, as depicted in Figure 11. Furthermore, the incorporation of SMOTETomek resulted
in a more pronounced sampling of other classes (see Figure 12) and consequently enhanced perfor-
mance.Following the experimental phase, where the RMSE and MAE values also attained the optimal
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value in Table 6, it was observed that the SMOTET-LSTM model achieved the maximum precision,
recall and F'1-score values.

Classification Report Heatmap

™ 0.00 0.00 0.00
- 0.00 0.00 0.00
precision recall fl-score

Figure 10: LSTM

Classification Report Heatmap

Pprecision recall fl-score

Figure 11: SMOTE-LSTM

Classification Report Heatmap

0.94

i i '
precision recall fl-score

Figure 12: SMOTET-LSTM
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Model Performance Comparison
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Figure 13: Comparison of Models

Table 7: Comparison Between Current Algorithms in Literature and the Proposed Algorithm

‘ Algorithm ‘ Accuracy ‘
| Prasojo et.al. [9] | 97.62 % |
| Manoj et al. [10] | 97.62 % |
‘ Prasojo et al. [11] ‘ 96.35 % ‘
| Zhang et al. [13] | 96.50 % |
| Samah et al.[50] | 98.22 % |
| SMOTET-LSTM | 99.36 % |

5 Conclusion

In many studies, classification models such as SVM, KNN and RF are used for error classification.
The findings of our study show that these models perform optimally. However, in scenarios involving
the use of significant data volumes in the model training process, the LSTM classification model is
observed to be the fastest. LSTM, a deep learning technique, has been reported to achieve superior
results in the context of classes characterised by large datasets and scarcity of data types. In this
study, stuckFault and gainFault errors were generalised and accepted as normal data. To avoid this,
synthetic data was generated and when tested with SMOTE, the RMSE and MAE results increased,
although it gave good results compared to previous models. However, it was then tested with the
SMOTETomek technique. The results of this model evaluation revealed that the RMSE and MAE
reached the optimum performance, while the sensitivity, recall and fl-score values showed a significant
improvement following this process. The Hyper Parameter Optimization (HPO) procedure has emerged
as a very important element that gives different results between various values and models. The optimal
result was obtained by adjusting the basic parameters. It was observed that SMOTET-LSTM gives
favourable results when the dataset size increases. In real-time studies, a long time should not be
allocated for the training time of the model. For this, it is critical to set up the training model
quickly. Because the data is instantaneous and in case of error, it should be classified instantly
by the system. In this case, it will be appropriate to perform the training of the data and the
classification process with the cloud server over the end units and will also alleviate the load on
the cloud server. Our results show that it is quite suitable for a WSN that can be used in real
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time. This research significantly advances the field of intelligent fault detection in sensor networks by
effectively integrating sophisticated methodologies such as LSTM, SMOTETomek oversampling and
hyperparameter optimization.
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