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Abstract

This paper proposes a new active fault-tolerant control strategy for quadrotor unmanned aerial
vehicles against simultaneous unknown external disturbances, system uncertainties, actuator faults,
and sensor faults, which pose critical safety risks in autonomous flight operations. Unlike existing
approaches that address these challenges separately, the proposed method provides an integrated
solution for simultaneous actuator and sensor fault compensation. Based on a quadrotor’s non-
linear dynamic model, time-varying actuator and sensor faults are simultaneously estimated by a
nonlinear unknown input observer. To attenuate the disturbance’s effects on fault estimation, an
H∞ performance index is used. Subsequently, a robust nonlinear adaptive backstepping sliding
mode controller is proposed to actively compensate for the estimated faults while maintaining sta-
bility despite the presence of uncertainties and disturbances. MATLAB simulations demonstrate
successful fault estimation convergence and robust control performance across various challeng-
ing scenarios with different fault combinations and operational conditions. The proposed strategy
achieves high tracking accuracy, with attitude RMSE below 10−3 rad and position RMSE below
0.2 m under concurrent actuator and sensor fault conditions.

Keywords: Active fault-tolerant control, quadrotor UAV, actuator and sensor faults, nonlinear
unknown input observer, adaptive backstepping sliding mode control.
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1 Introduction
In recent years, quadrotors, as unmanned aerial vehicles (UAVs) have become increasingly vital

in various fields. However, their widespread use also raises significant security concerns, including
potential system failures and external disturbances. Ensuring the reliability and resilience of quadro-
tors in the face of such challenges is critical for their effective operation in both civilian and military
applications.

To address these challenges, fault-tolerant control (FTC) systems have become a focal point of
research. Recent research has focused extensively on developing FTC strategies for quadrotors to
address uncertainties, disturbances, actuator and sensor faults. In [1], [2], [3], and [4], the authors
address actuator faults and/or disturbances and uncertainties for quadrotors; however, these studies
lack coverage of sensor faults and uncertainties. In [5], the authors studied the diagnosis and com-
pensation for sensor and actuator constant faults in a quadrotor UAV in the presence of uncertainties
and external disturbances using a feedback linearization technique and a nonlinear high-gain observer,
excluding time-varying faults. A new FTC strategy for quadrotors under time-varying sensor faults
and disturbances, based on a disturbance observer and a non-singular fast terminal sliding mode algo-
rithm, is proposed in [6], excluding actuator faults and uncertainties. Finally, [7] introduces a robust
backstepping control strategy that includes an adaptive observer for actuator faults, missing sensor
faults, disturbances, and uncertainties. Other FTC strategies are proposed in [8], [9], and [10].

Existing FTC approaches for quadrotor UAVs often ignore full fault coverage, especially regarding
time-varying faults. Unlike previous strategies [1]-[10], none have examined the handling of both
time-varying sensor and actuator faults in the presence of uncertainties and external disturbances.

For fault estimation (FE), in [11], the authors suggest a novel nonlinear unknown input observer
(NUIO), but they did not take into consideration the effect of system uncertainties. In [12], [13],
and [14], the proposed NUIO with partly decoupled disturbances must meet a rank condition, which
limits its use to many real systems. In [15], the authors did not consider sensor faults. Inspired by
[16], a novel NUIO with disturbance attenuation without rank requirement for the quadrotor model
is proposed. This NUIO is integrated with backstepping and sliding mode control (SMC) techniques
to handle time-varying external disturbances, uncertainties, and actuator and sensor faults.

The main contributions of this paper are: (1) The use of a complete nonlinear model of the
quadrotor UAV taking into consideration different nonlinearities. (2) The development of a novel
NUIO to simultaneously estimate actuator and sensor faults without any rank requirement in the
system model, even in the presence of uncertainties and external disturbances. (3) The solution of the
observer design problem using H∞ optimization through a linear matrix inequality (LMI) formulation.
(4) Design and implementation of an adaptive backstepping sliding mode FTC controller utilizing the
NUIO-based fault estimation. (5) The handling of parametric uncertainties, wind disturbances, noise,
and different types of time-varying additive and multiplicative actuator and sensor faults.

The remainder of this study is organized as follows: Section II provides a description of the
quadrotor nonlinear dynamic model. Various actuator and sensor fault types are modeled in this
section. In Section III, using the H∞ optimization, a NUIO is constructed to simultaneously estimate
the actuator and the sensor faults. Section IV provides a robust adaptive backstepping SMC (ABSMC)
strategy to handle system failure effects. Finally, Section V shows a validation of the proposed FTC
using MATLAB simulations.

2 Quadrotor Nonlinear Dynamical modeling

2.1 Quadrotor dynamical modeling

The quadrotor dynamical model can be derived using the Newton-Euler formalism. Let’s introduce
two reference frames: let E (O, X, Y, Z) designate an inertial frame, and B (o, x, y, z) designate a
frame permanently coupled to the quadrotor body, as illustrated in Figure 1. Both frames are assumed
to be at the center of gravity of the quadrotor UAV.

The absolute position of the quadrotor may be obtained by the three coordinates (x,y,z) and its
attitude by the three Euler’s angles, respectively roll ϕ, pitch θ, and yaw ψ.
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Figure 1: Quadrotor configuration

The quadrotor’s dynamic model, which considers the drag forces, aerodynamic friction torques,
and torques due to the gyroscopic effects, is given as in [17] by:

ϕ̈ = 1
Ix

(
θ̇ψ̇(Iy − Iz) −Kfaxϕ̇

2 − JrΩθ̇ + dU2
)

(1a)

θ̈ = 1
Iy

(
ϕ̇ψ̇(Iz − Ix) −Kfay θ̇

2 + JrΩϕ̇+ dU3
)

(1b)

ψ̈ = 1
Iz

(
θ̇ϕ̇(Ix − Iy) −Kfazψ̇

2 + U4
)

(1c)

ẍ = 1
m

((CϕSθCψ + SϕSψ)U1 −Kftxẋ) (1d)

ÿ = 1
m

((CϕSθSψ − SϕCψ)U1 −Kftyẏ) (1e)

z̈ = 1
m

(CϕCθU1 −Kftz ż) − g (1f)

where C is the trigonometrical function cosine, and S is the function sine, m is the total mass of the
quadrotor, g is the gravity acceleration constant, Ix, Iy, and Iz are the constants inertia, Kftx, Kfty,
and Kftz are the translation drag coefficients, Kfax, Kfay, and Kfaz are the coefficients of aerodynamic
friction around X, Y , and Z. d is the distance between the center of mass of the quadrotor and the
rotation axis of the propellers, Jr is the rotor inertia, Ω represents the disturbance caused by the rotor
unbalance, U1, U2, U3, and U4 represent the quadrotor control inputs.

Based on the angular speeds of the four rotors, the control inputs and the disturbance Ω are
expressed as follows: 

U1
U2
U3
U4

 =


Kp Kp Kp Kp

−Kp 0 Kp 0
0 −Kp 0 Kp

Kd −Kd Kd −Kd



ω2

1
ω2

2
ω2

3
ω2

4

 (2)

Ω̄ = ω1 − ω2 + ω3 − ω4 (3)

where Kp is the lift coefficient, Kd is the drag coefficient, and ωi for i ∈ {1, 2, 3, 4} are the angular
rotor speeds.

The control inputs remain restricted by the motors’ maximum rotational speeds ωmax, which are
illustrative of their physical constraints:

0 ≤ U1 ≤ 4Kpω
2
max

−Kpω
2
max ≤ U2 ≤ Kpω

2
max

−Kpω
2
max ≤ U3 ≤ Kpω

2
max

− 2Kdω
2
max ≤ U4 ≤ 2Kdω

2
max

(4)
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From equations (1d) to (1f), the expressions of the nonholonomic constraints can be extracted:

tan θ =
(ẍ+ Kftx

m ẋ)Cψ + (ÿ + Kfty

m ẏ)Sψ
z̈ + g + Kftz

m ż
(5a)

sinϕ =
(ẍ+ Kftx

m ẋ)Sψ − (ÿ + Kfty

m ẏ)Cψ√
(ẍ+ Kftx

m ẋ)2 + (ÿ + Kfty

m ẏ)2 + (z̈ + g + Kftz

m ż)2
(5b)

Nonholonomic constraints will be used to produce the desired pitch (θd) and roll (ϕd).

2.2 Disturbaces, uncertainties, and faults modeling

To simulate the effect of wind disturbances, the Von Karman model will be used in this paper
[18, 19, 20]. Wind disturbances will be noted d0(t) in the rest of this paper and given by:

d0 =
[
dϕ, dθ, dψ, dx, dy, dz,

]T
(6)

where dϕ, dθ, and dψ represents the disturbance affecting the quadrotor’s attitude. And dx, dy, and
dz are the disturbances along the X, Y and Z axes, respectively.

Additional parameter uncertainties in the quadrotor model are considered for the translation drag
coefficients Kftx, Kfty, and Kftz, and the aerodynamic friction coefficients Kfax, Kfay, and Kfaz.
Based on the system model given by (1), the uncertainties effect can be expressed as follows:

ξϕ = −∆Kfax

Ix
ϕ̇2, ξθ = −∆Kfay

Iy
θ̇2, ξψ = −∆Kfaz

Iz
ψ̇2,

ξx = −∆Kftx

m
ẋ, ξy = −∆Kfty

m
ẏ, ξz = −∆Kftz

m
ż

(7)

where ∆Kfax, ∆Kfay, ∆Kfaz, ∆Kftx, ∆Kfty, and ∆Kftz represent the uncertainties of Kfax, Kfay,
Kfaz, Kftx, Kfty, and Kftz respectively. The uncertainty vector will be noted ξ(x, t) and given by
ξ =

[
ξϕ, ξθ, ξψ, ξx, ξy, ξz

]T
.

Common actuator faults include Bias fault, Loss of Effectiveness fault, and Actuator Stuck fault
[21, 22]. The combined equation for these faults can be described using:

fa(t) = −ϵu(t) + fa0(t) (8)

where fa is the actuator fault, u denotes the system control input, ϵ ∈ [0, 1] denotes the actuator gain
variation coefficient, and fa0 is an actuator fault function, and fa =

[
fa1, fa2, fa3, fa4

]T
.

Common sensor faults include bias fault, drift fault, loss of effectiveness fault, and stuck sensor
fault [23, 24]. The combined equation for these faults can be described using:

fs(t) = −ρy(t) + fs0(t) (9)

where fs is the sensor fault, y denotes system output, ρ ∈ [0, 1] denotes the sensor gain variation
coefficient, and fs0 is a sensor fault function, and fs =

[
fs1, fs2, fs3, fs4, fs5, fs6

]T
.

2.3 Complete nonlinear quadrotor dynamic model

Let’s define the system’s state vector given by:

x = [x1, . . . , x12]T = [ϕ, ϕ̇, θ, θ̇, ψ, ψ̇, x, ẋ, y, ẏ, z, ż]T (10)

The system output vector is given by:

y = [x1, x2 − fs1, x3, x4 − fs2, x5, x6 − fs3, x7, x8 − fs4, x9, x10 − fs5, x11, x12 − fs6]T (11)
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From equations (1) and considering uncertainties, disturbances, actuators, and sensor faults mod-
eled above, the following state-space model is obtained:

ẋ1 = x2

ẋ2 = a1x4x6 + a2x
2
2 + a3Ω̄x4 + b1U2 + fa1 + dϕ + ξϕ

ẋ3 = x4

ẋ4 = a4x2x6 + a5x
2
4 + a6Ω̄x2 + b2U3 + fa2 + dθ + ξθ

ẋ5 = x6

ẋ6 = a7x2x4 + a8x
2
6 + b3U4 + fa3 + dψ + ξψ

ẋ7 = x8

ẋ8 = a9x8 + Ux
U1
m

+ dx + ξx

ẋ9 = x10

ẋ10 = a10x10 + Uy
U1
m

+ dy + ξy

ẋ11 = x12

ẋ12 = a11x12 − g + cos(x1) cos(x3)
m

U1 + fa4 + dz + ξz

(12)

where

a1 = Iy − Iz
Ix

, a2 = −Kfax

Ix
, a3 = −Jr

Ix
, a4 = Iz − Ix

Iy
, a5 = −Kfay

Iy

a6 = Jr
Iy
, a7 = Ix − Iy

Iz
, a8 = −Kfaz

Iz
, a9 = −Kftx

m
, a10 = −Kfty

m

a11 = −Kftz

m
, b1 = d

Ix
, b2 = d

Iy
, b3 = 1

Iz
.

3 NUIO-based FE design
The following state-space form can be employed to represent the complete model (12):

ẋ(t) = Ax(t) +Bu(t) + Φ(x, t) + Fafa(t) +Dd(t)
y(t) = Cx(t) + Fsfs(t)

(13)

where x ∈ R12 and given by (10), y ∈ R12 and given by (11), the control input vector is given by
u = [U1, U2, U3, U4]T . Fa ∈ R12×4 and Fs ∈ R12×6 are known constant distribution matrices. d ∈
R6 represent lumped uncertainty that includes both external disturbances and system uncertainties.
Φ ∈ R12 is a continuous known nonlinear function vector. A ∈ R12×12, B ∈ R12×4, C ∈ R12×12, and
D ∈ R12×6 are known constant matrices.

For the development of the considered observer, the following conditions must be satisfied [16]:
Assumption 1 : The pair (A,C) is observable, the pair (A,B) is controllable, and rank(B,Fa) =

rank(B).
Assumption 2 : The unknown input disturbances d is bounded with unknown upper bounds such

that d ∈ L2[0,∞).
Assumption 3 : The faults fa and fs belong to L2[0,∞), and fa and fs are continuously smooth

with bounded first-time derivatives.
Assumption 4 : Φ(x, t) satisfies the Lipschitz property with respect to x, such that:

∥Φ(x, t) − Φ(x̂, t)∥≤ Lf∥x− x̂∥ ∀x, x̂ ∈ R12 (14)

where Lf is a positive constant.
For our system, assumptions 1 to 4 are satisfied, and as a consequence, the developement of the

cited observer is feasible.
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The following augmented system state space is obtained by considering actuator and sensor faults
as auxiliary states.

˙̄x = Āx̄+ Φ̄(A0x̄, t) + B̄u+ D̄d̄

y = C̄x̄
(15)

where

x̄ =

 xfa
fs

 , Ā =

A Fa 0
0 0 0
0 0 0

 , B̄ =

B0
0

 , D̄ =

D 0 0
0 I4 0
0 0 I6



C̄ =
[
C 0 Fs

]
, Φ̄(A0x̄, t) =

[
Φ(x, t)

0

]
, d̄ =

 dḟa
ḟs

 , A0 =
[
I12 0 0

]
A NUIO estimates the augmented state x̄ as follows:

ż = Mz +Gu+N Φ̄(A0 ˆ̄x, t) + Ly

ˆ̄x = z +Hy
(16)

where z ∈ R22 is the observer system state and ˆ̄x ∈ R22 is the estimate of x̄. The matrices M ∈
R22×22, G ∈ R22×4, N ∈ R22×22, L ∈ R22×12, and H ∈ R22×12 are to be designed.

The estimation error is stated as e = x̄− ˆ̄x, it’s time derivetive is given by:

ė = (TĀ− L1C̄)e+ (TĀ− L1C̄ −M)z + (TB̄ −G)u

+
[
(TĀ− L1C̄)H − L2

]
y + T Φ̄(Ā0x, t) −N Φ̄(Ā0x̂, t) + TD̄d̄

(17)

where T = I22 −HC̄ and L = L1 + L2. The observer matrices M , G, N , and L2 are given by:

M = TĀ− L1C̄, N = T, G = TB̄, L2 = (TĀ− L1C̄)H (18)

Substituting (18) into (17), and assuming the effect of system nonlinearity on the FE observer
is negligible, since this simplification allows for a more tractable analysis without significant loss of
accuracy, the error dynamics become:

ė = (TĀ− L1C̄)e+ TD̄d̄

ze = Cee
(19)

where ze is the measured output used to verify the observer performance and Ce ∈ R22×22.
In contrast to studies [11]-[15], this work addresses the attenuation of disturbance, without any

rank requirement in the system model, using resilient design, rather than complete decoupling.
A sufficient requirement for the existence of a NUIO (16), is given by Theorem 1 below:

Theorem 1. Given a positive scalar γ, the system error (19) is asymptotically stable with H∞ per-
formance ∥Gzed̄

∥∞< γ, if there exists a symmetric positive definite matrix P ∈ R22×22, and matrices
M1 ∈ R22×12 and M2 ∈ R22×12 such that [

Ω1 Ω2
ΩT

2 −γ2I16

]
< 0 (20)

where Ω1 = He[PĀ − M1C̄Ā − M2C̄] + CTe Ce and Ω2 = (P − M1C̄)D̄. And He(V ) = V + V ⊤ for a
given matrix V .

Proof. Let’s consider the following Lyapunov function

Ve = eTPe (21)
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where e is given by (19) and P is a symmetric positive definite matrix, then

V̇e = ėTPe+ eTP ė

= eTHe[P (TĀ− L1C̄)]e+He[eTPTD̄d̄]
(22)

The H∞ performance ∥Gzed̄
∥∞< γ is given by

J =
∫ ∞

0

(
zTe ze − γ2d̄T d̄

)
dt < 0 (23)

Under zero initial conditions, (23) becomes

J =
∫ ∞

0

(
zTe ze − γ2d̄T d̄+ V̇e

)
dt−

∫ ∞

0
V̇e dt

=
∫ ∞

0

(
zTe ze − γ2d̄T d̄+ V̇e

)
dt− (Ve(∞) − Ve(0))

≤
∫ ∞

0

(
zTe ze − γ2d̄T d̄+ V̇e

)
dt

(24)

To satisfy (23), the following sufficient condition is required

J1 = zTe ze − γ2d̄T d̄+ V̇e < 0 (25)

Substituting (22) into (25) yields

J1 = zTe ze − γ2d̄T d̄+ eTHe[P (TĀ− L1C̄)]e+ He[eTPTD̄d̄] < 0 (26)

By defining M1 = PH and M2 = PL1, the condition (26) is satisfied if[
Ω1 Ω2
ΩT

2 −γ2I16

]
< 0 (27)

where Ω1 = He[PĀ−M1C̄Ā−M2C̄] + CTe Ce and Ω2 = (P −M1C̄)D̄.

The matrices P , M1, M2, and L1 are obtained by solving the Linear Matrix Inequality (LMI) given
in equation (27). The LMIs were solved using CVX, a MATLAB-based modeling system for convex
optimization. From these, the matrices H and L1 are computed as:

H = P−1M1, L1 = P−1M2 (28)

Matrices H and L1 are then used to derive the matrices T , M , N , G, and L through the equations
provided in equation (18).

4 Backstepping Sliding Mode Fault-Tolerant Controller Design
The proposed control approach is based on two loops, the internal loop has four control laws (U1,

U2, U3, and U4), and the external loop has two virtual control laws (Ux and Uy). The synoptic scheme
(Figure 2) below illustrates this control strategy.

The synthesized stabilizing control laws are as described in the following:

U2 = 1
b1

[
ϕ̈d − a1x4x6 − a2x

2
2 − a3Ω̄x4 − k1ė1 −A1ṡ1 − s1 −A2s2 − f̂a1 − ˙̂

fs1 − Γ̂1sign(s2)
]

(29a)

U3 = 1
b2

[
θ̈d − a4x7x9 − a5x

2
8 − a6Ω̄x7 − k3ė3 −A3ṡ3 − s3 −A4s4 − f̂a2 − ˙̂

fs2 − Γ̂2sign(s4)
]

(29b)

U4 = 1
b3

[
ψ̈d − a7x7x8 − a8x

2
9 − k5ė5 −A5ṡ5 − s5 −A6s6 − f̂a3 − ˙̂

fs3 − Γ̂3sign(s6)
]

(29c)

Ux = m

U1

[
ẍd − a9x10 − k7ė7 −A7ṡ7 − s7 −A8s8 − ˙̂

fs4 − Γ̂4sign(s8)
]

(29d)

Uy = m

U1

[
ÿd − a10x11 − k9ė9 −A9ṡ9 − s9 −A10s10 − ˙̂

fs5 − Γ̂5sign(s10)
]

(29e)

U1 = m

cx1cx2

[
z̈d − a11x12 + g − k11ė11 −A11ṡ11 − s11 −A12s12 − f̂a4 − ˙̂

fs6 − Γ̂6sign(s12)
]

(29f)
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Figure 2: Synoptic scheme illustrating the control strategy.

Proof. Let’s demonstrate the expression of U2, considering the following roll subsystem:{
ẋ1 = x2

ẋ2 = Φ1 + b1U2 + fa1 + dϕ + ξϕ
(30)

where Φ1 = a1x4x6 + a2x2
2 + a3Ω̄x4.

The output subsystem vector is given by [y1 y2 −fs1] = [x1 x2 −fs1], where fs1 is a sensor fault.
Step 1: Define the control error as e1 = y1 − y1d = x1 − x1d. The sliding surface equation is:

s1 = e1 + k1

∫
e1 dt k1 > 0 (31)

The Lyapunov function chosen is:
V1 = 1

2s
2
1 (32)

The time derivative of V1 is:

V̇1 = s1ṡ1 = s1(ė1 + k1e1)
= s1(y2 + fs1 − ẋ1d + k1e1)

(33)

The virtual control input is chosen as (y2)d = α1 = ẋ1d − k1e1 −A1s1 − f̂s1 − αs1. Where αs1 is a
nonlinear damping remains to be determined.

Substituting the virtual control value of (y2)d, V̇1 becomes:

V̇1 = −A1s
2
1 − s1(αs1 − f̃s1) (34)

where f̃s1 = fs1−f̂s1. Choosing αs1 = ks1 sign(s1), where sign(·) denotes the sign function and ks1 > 0.
Equation (34) becomes:

V̇1 = −A1s
2
1 − s1

(
ks1 sign(s1) − f̃s1

)
≤ −A1s

2
1 − |s1|

(
ks1 − |f̃s1|

) (35)

Suppose there exists a positive constant ks1, such that |f̃s1|≤ ks1.
Finally, the equation (35) becomes

V̇1 ≤ −A1s
2
1 ≤ 0 (36)

Step 2: The second sliding surface is:

s2 = y2 − α1 = y2 − ẋ1d + k1e1 +A1s1 + f̂s1 + αs1 (37)

The derivative of s2 over time is:

ṡ2 = Φ1 + b1U2 + fa1 + dϕ + ξϕ − ḟs1 − ẍ1d + k1ė1 +A1ṡ1 + ˙̂
fs1 + α̇s1 (38)
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Based on the principle of certain equivalence, fa1 and dϕ are replaced by their estimates. Using
the sliding surface in equation (38), the input control U2 is given by:

U2 = 1
b1

[
ϕ̈d − Φ1 − k1ė1 −A1ṡ1 − s1 −A2s2 − f̂a1 − ˙̂

fs1 − Γ̂1sign(s2)
]

(39)

where ˙̂Γ1 = β1|s2|, and β1 is a positive constant. Replacing U2 in equation (39), ṡ2 becomes
ṡ2 = f̃a1 + dϕ + ξϕ − ḟs1 − α̇s1 − s1 − Γ̂1sign(s2) −A2s2 (40)

The presence of the terms f̃a1, dϕ, ξϕ, ḟs1, and α̇s1 in the expression of ṡ2 does not assert the
system stability. To overcome this obstacle, the Lyapunov function is increased by adding a square
term involving Γ̃1.

V2 = 1
2(s2

1 + s2
2) + 1

2β2
Γ2

2̃ (41)

where Γ̃1 = Γ1 − Γ̂1, and Γ̂1 is the estimate of Γ1 (assuming Γ̇1 ≈ 0). Its derivative is

V̇2 = s1ṡ1 + s2ṡ2 + 1
β1

Γ̃1
˙̃Γ1

= s1(s2 −A1s1) + s2ṡ2 − (Γ1 − Γ̂1)|s2|
≤ −A1s

2
1 −A2s

2
2 + Γ̂1(|s2|−s2sign(s2)) + |s2|(f̃a1 + d1 + ξ1 − ḟs1 − α̇s1 − Γ1)

≤ −A1s
2
1 −A2s

2
2 + |s2|(|f̃a1 + dϕ + ξϕ − ḟs1 − α̇s1|−Γ1)

(42)

Assumption 5: There exists an unknown parameter Γ1 > 0, such that:
|f̃a1 + dϕ + ξϕ + ḟs1 − α̇s1|≤ Γ1 (43)

Thus, V̇2 ≤ 0 if |f̃a1 + dϕ + ξϕ + ḟs1 − α̇s1|≤ Γ1.
The same steps are followed to extract U3, U4, Ux, Uy and U1.
To avoid non-differentiability and chattering phenomena, the sign function will be replaced by a

smooth function.
sign(s, δ) = s

∥s∥+δ (44)

where δ is a small positive constant.

5 Simulation Results and Analysis
To evaluate the performance of the proposed FTC, simulations were executed in the MATLAB-

SIMULINK® environment across three conditions. Condition 1 involved trajectory tracking with
wind disturbances and model uncertainties. Condition 2 introduced actuator faults alongside these
disturbances and uncertainties. Condition 3 further expanded to include both actuator and sensor
faults in addition to wind disturbances and uncertainties.

The quadrotor subject of our study is the Draganfly IV manufactured by “Draganfly Innovations”.
Parameter identification is studied in [25] and summarized below:

Table 1: Quadrotor Model Parameters

Parameter Value
m 400 g
g 9.81 m/s2

d 20.5 cm
KP 2.9842 × 10−5 N/rad/s
Jr 2.8385 × 10−5 N.m/rad/s2

Kd 3.232 × 10−7 N.m/rad/s
Ix, Iy, Iz (3.8278, 3.8278, 7.1345) × 10−3 N.m/rad/s2

Kftx,Kfty,Kftz (3.2, 3.2, 4.8) × 10−2 N/m/s
Kfax,Kfay,Kfaz (5.567, 5.567, 6.354) × 10−4 N/rad/s
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For the Observer design purpose, choosing Ce = I22, γ = 0.5, and Lf = 35.
Condition 1: Trajectory tracking with only wind disturbances and uncertainties
In Simulink, the "Von Karman Wind Turbulence Model" block was used to produce time-varying

wind gusts as output. In our model, the mean wind speeds are of 5 m/s for attitude and 8 m/s for
position. The figure 3 illustrates the varying velocity of wind disturbances over time.

Figure 3: Wind disturbances velocity profile using Von Kármán model.

It is assumed that Kftx, Kfty, and Kftz, as well as Kfax, Kfay, and Kfaz, are subject to a
parametric uncertainty of 15% (∆Kftx = 0.15Kftx).

Figure 4 display excellent tracking accuracy and stability despite wind disturbances and uncertain-
ties, showing the efficiency of the suggested approach under complicated environmental and parametric
conditions.

Figure 4: Attitude and position tracking in the presence of uncertainties and wind disturbances.

Condition 2: Trajectory tracking in the presence of wind disturbances, uncertainties,
and actuator faults

The actuator fault profile is resumed in table 2. Where W (t) = ∑5
k=0 0.4k cos(3kπt) is the Weier-

strass function-type fault that is smooth but non-differentiable.

Table 2: Actuator faults fa1 and fa4 profile

fa1(ϕ) fa4(z) Occurrence time Fault type
0 0 0 ≤ t < 10 s Fault free
5 5 10 ≤ t < 20 s Bias fault

−0.4U2(t) −0.3U1(t) 20 ≤ t < 30 s Loss of effectiveness fault
−U2(t) + 5 −U1(t) + 5 30 ≤ t < 40 s Actuator Stuck
−U2(t) − 5 −U1(t) − 5 40 ≤ t < 50 s Actuator Stuck

2W (t) 1W (t) 50 ≤ t < 60 s Weierstrass function
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Gaussian noise is applied to the actuator faults to test the robustness of the system. Specifically,
a Gaussian noise Na1(0.05, 0.052) is added to fa1, and Na4(0.005, 0.0052) is introduced to fa4.

The corresponding FE of fa1 and fa4 in each actuator is shown in Figure 5. It demonstrates good
FE accuracy with RMSE (Root Mean Square Error) for fa1 and fa4 hovering around 10−14.

Figure 5: Actuator fault estimation.

Condition 3: Trajectory tracking in the presence of wind disturbances, uncertainties,
actuator and sensor faults

In addition to the actuator faults previosly tested, sensor faults detailed in Table 3 were introduced.
Furthermore, Gaussian noise N(0.01, 0.012) is added to fs4 and fs5.

Table 3: Sensor faults fs1 (ϕ), fs4 (x), fs5 (y) profile

fs1(ϕ) fs4(x) fs5(y) Occurrence time Fault type
0 0 0 0 ≤ t < 10 s Fault free
1 5 5 10 ≤ t < 20 s Bias fault

0.1t 0.6t 0.6t 20 ≤ t < 30 s Drift fault
−0.6ϕ̇(t) −0.25ẋ(t) −0.25ẏ(t) 30 ≤ t < 40 s Loss of effectiveness fault
−ϕ̇(t) + 1 −ẋ(t) + 5 −ẏ(t) + 5 40 ≤ t < 50 s Stuck Sensor fault
0.4W (t) 4W (t) 4W (t) 50 ≤ t < 60 s Weierstrass function fault

Sensor fault estimation of fs1, fs4, and fs5 is shown in Figure 6. It illustrates the precise estimation
of sensor faults. The results highlight the robustness of the capability of the developed NUIO to
accurately estimate these faults without being significantly impacted by these disturbances, with
RMSE for fs1, fs4, and fs5 remaining close to zero.

Figure 6: Sensor FE of fs1, fs4, and fs5

Figure 7 illustrates the system’s tracking performance in the presence of actuator and sensor faults.
Despite the presence of some fluctuations in the states, particularly in ϕ, x, and y, the tracking remains
robust, showcasing the effectiveness of the proposed FTC strategy.
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Figure 7: Trajectories along attitude and position in the presence of actuator and sensor faults

The global trajectory of the quadrotor in 3D along the (X, Y , Z) axis, as depicted in Figure 8,
demonstrates a stable and accurate flight path despite the presence of actuator and sensor faults.

Figure 8: Global trajectory of the quadrotor in 3D in presence of actuators and sensor faults.

The plots in Figure 9 show that the tracking errors for θ, ψ, and z remain small under all conditions.
In contrast, the errors for ϕ, x, and y exhibit noticeable increases when both actuator and sensor faults
are present. Despite that, the attitude mean error stays below 10−5 rad, and the position mean error
remains under 10−3 m.

Figure 9: Tracking errors in the presence of actuator and sensor faults.

The control inputs U1, U2, U3, and U4 of the system, as shown in Figure 10, demonstrate the effec-
tiveness of the proposed FTC approach in the presence of actuator and sensor faults. The generated
control signals are both physically realizable and robust, highlighting the practicality of the strategy.
Furthermore, small control inputs ensure low energy consumption is maintained.
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Figure 10: Control inputs of actuators in presence of actuator and sensor faults.

The Table 4 comparing the RMSE for the three different conditions provides valuable insights into
the quadrotor’s performance.

Table 4: RMSE values for attitude (on rad) and position (on m) in different scenarios.

Condition RMSE (ϕ) RMSE (θ) RMSE (ψ) RMSE (x) RMSE (y) RMSE (z)

Condition 1 1.38 × 10−3 1.45 × 10−3 4.66 × 10−3 1.22 × 10−3 1.24 × 10−3 2.44 × 10−2

Condition 2 1.38 × 10−3 1.45 × 10−3 4.66 × 10−3 2.80 × 10−2 2.75 × 10−2 2.66 × 10−2

Condition 3 3.38 × 10−3 1.45 × 10−3 4.66 × 10−3 0.15 0.16 2.80 × 10−2

Under the first condition, where the system faces only external disturbances and uncertainties,
there is minimal deviation in the RMSE for both attitude and position. In the second condition,
with the introduction of actuator faults, the RMSE values show little change, demonstrating the
robustness of the control strategy. In the third condition, which includes both actuator and sensor
faults, the attitude RMSE values closely resemble those from the previous condition. However, there
is an increase in the RMSE for the x and y coordinates, while the z coordinate RMSE continues to
mirror the second condition’s values.

6 Conclusion
This study begins with a short description of the quadrotor’s nonlinear dynamic model, which

takes into consideration the nonlinearities and high-order nonholonomic constraints of the system. In
the presence of uncertainties and external disturbances, a novel NUIO is proposed to simultaneously
estimate actuator and sensor faults, without requiring certain system matrices to have a specific rank
to ensure that faults or disturbances can be isolated without ambiguity; the FE unit design problem
is formulated as an observer-based robust control problem and solved using H∞ optimization in an
LMI formulation. An adaptive backstepping sliding mode FTC controller using the NUIO-based FE
is constructed.

To evaluate the performance of the proposed controller, we conducted simulations in MATLAB
under three conditions. The simulation results clearly demonstrate the effectiveness of the adopted
strategy, enabling precise fault estimation while ensuring stability and trajectory tracking. The highest
RMSE for attitude in the presence of actuator faults is below 10−3 rad, and the highest RMSE for
position is below 10−2 m. Additionally, in conditions involving both actuator and sensor faults,
the highest RMSE for attitude remains below 10−3 rad, while the position RMSE is below 0.2 m.
The proposed FTC techniques demonstrate robust performance in mitigating wind disturbances and
uncertainties, maintaining acceptable tracking accuracy in various scenarios, and effectively addressing
different environmental challenges.

Future research will advance extend this study toward real-world implementation and extreme
operational conditions, including scenarios with severe environmental disturbances and rapid multiple
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fault occurrences. Additionally experimental validation through hardware implementation will be
conducted to evaluate the method’s performance under realistic operating conditions with actual
sensor noise and hardware constraints.
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