
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
Online ISSN 1841-9844, ISSN-L 1841-9836, Volume: 20, Issue: 6, Month: December, Year: 2025
Article Number: 6928, https://doi.org/10.15837/ijccc.2025.6.6928

CCC Publications 

Late Adapter Tuning: A Cost-Effective Approach to
Parameter-Efficient Fine-Tuning for Large Language Models

Z. Gao, R. Li, Y. Fan, M. Liao, X. Song

Zhengjie Gao*
School of Electronic and Information Engineering
Geely University of China, Chengdu 641423, Sichuan, China
*Corresponding author: gaozhengjie@guc.edu.cn

Rongcheng Li
School of Computer Science
Chengdu University of Information and Technology
Chengdu 610225, Sichuan, China
lrch137@163.com

Yuxin Fan
School of Electronic and Information Engineering
Geely University of China, Chengdu 641423, Sichuan, China
lu.alex275104@gmail.com

Min Liao
School of Electronic and Information Engineering
Geely University of China, Chengdu 641423, Sichuan, China
liaomin@guc.edu.cn

Xinyu Song
School of Electronic and Information Engineering
Geely University of China, Chengdu 641423, Sichuan, China
songxinyu@guc.edu.cn

Abstract
Fine-tuning large language models (LLMs) is computationally prohibitive for individual re-

searchers, especially in resource-constrained scenarios. While parameter-efficient fine-tuning (PEFT)
methods address this challenge, existing approaches suffer from inefficiencies due to long backprop-
agation paths and hidden vector distortion. To overcome these limitations, we propose Late
Adapter Tuning (LAT), a novel PEFT method that optimizes training costs by fine-tuning only
a single hidden layer near the model’s output. LAT integrates a customized adapter architec-
ture with hard prompting to preserve hidden vector dimensions and shorten gradient propagation
paths. Experiments on four classification datasets demonstrate that LAT reduces training time by
2.4×, decreases GPU memory usage by 76.5%, and improves accuracy by 4.31% compared to full-
parameter fine-tuning. Our work provides a practical solution for deploying LLMs in low-resource
environments while advancing the theoretical understanding of gradient-efficient adaptation strate-
gies.

Keywords: Large Language Models, Parameter-Efficient Tuning, Adapter Tuning, Text Clas-
sification, Computational Efficiency



https://doi.org/10.15837/ijccc.2025.6.6928 2

1 Introduction
Pre-trained Language Models (PLM) [1, 2, 3, 4, 5] are the cornerstone of Natural Language Pro-

cessing (NLP) to solve downstream tasks, and full-parameter fine-tuning has always been the default
method to adapt pre-trained language models to downstream tasks [6, 7, 8, 9]. In the training stage,
it is a general consensus in the industry that the higher the number of parameters of the benchmark
model, the stronger its ability to solve downstream tasks [10]. Therefore, within a certain training
cost, choosing a model with a higher number of parameters often means having better performance
in downstream tasks. However, with the increasing number of parameters of pre-trained language
models, the cost of fine-tuning all parameters is difficult for individual researchers to bear. At the
same time, the computing power in some scenarios is very limited, for example, the computing power
in the edge computing scenarios itself is very limited [11]. Therefore, it is necessary to find a low-cost
method to adapt pre-trained language models to downstream tasks.

Parameter-Efficient Fine-Tuning (PEFT) [12, 13] is one of the mainstream low-cost methods to
adapt pre-trained language models to downstream tasks. This method performs well in simple classifi-
cation tasks and is mainly used in few-shot learning. The main idea is to first cancel the gradient of all
parameters of the original pre-trained language model, and then select some of the specific parameters
for gradient update. As shown in Figure 1, in the process of multi-task training, the parameter-efficient
fine-tuning method gets rid of the dilemma that a pre-trained language model needs to be fine-tuned
for a task in the past [14], and only needs to fine-tune a small number of specific parameters of the
pre-trained language model to complete the adaptation to downstream tasks. In the PEFT method,
specific parameters only account for about 1% of the parameters of the original model [15, 16]. This
makes the PEFT method not only optimize the training cost, but also optimize the storage cost, which
is more suitable for multi-task learning.

Traditional Methods

Task 1 Pretrained 

Language Model

Task 2 Pretrained 

Language Model

Task n Pretrained 

Language Model
Task 1 Pretrained 

Language Model

Task 2 Pretrained 

Language Model

Task n Pretrained 

Language Model

Pretrained Language 

Model

Task 1 Parameters

Task 2 Parameters

Task n Parameters

Parameter-Efficient Methods

Pretrained Language 

Model

Task 1 Parameters

Task 2 Parameters

Task n Parameters

Parameter-Efficient Methods

Traditional Methods

Task 1 Pretrained Task 1 Pretrained 

Language ModelLanguage Model

Task 2 Pretrained Task 2 Pretrained 

Language ModelLanguage Model

Task n Pretrained Task n Pretrained 

Language ModelLanguage Model
Task 1 Pretrained 

Language Model

Task 2 Pretrained 

Language Model

Task n Pretrained 

Language Model

Pretrained Language 

Model

Task 1 Parameters

Task 2 Parameters

Task n Parameters

Parameter-Efficient Methods

Pretrained Language Pretrained Language Pretrained Language Pretrained Language 

ModelModelModelModel

Task 1 ParametersTask 1 ParametersTask 1 ParametersTask 1 Parameters

Task 2 ParametersTask 2 ParametersTask 2 ParametersTask 2 Parameters

Task n ParametersTask n ParametersTask n ParametersTask n Parameters

Figure 1: Multitasking Storage Form

Traditional parameter efficiency methods pay more attention to the type of updating parameters
and only consider the maximization of performance, ignoring the impact of other factors on cost.
In the process of updating, the increase of the length of the backpropagation [17] path will make
the calculation of gradient updating larger and time-consuming, and the storage gradient will be
too much and occupy high GPU memory usage. LPT (Late Prompt Tuning) [18] was keen to spot
this problem and for the first time limited the selected parameters to areas close to the input. SPT
(Selective Prompt Tuning) [19] further optimizes the problem of the number of layers. However, the
above methods directly concatenate additional parameters on the hidden vector in the middle of the
model, which destroys the dimension of the original hidden vector, and changes the dimension of



https://doi.org/10.15837/ijccc.2025.6.6928 3

the subsequent hidden vector in the forward reasoning process, making its performance no advantage
compared with other PEFT methods. Black-box tuning [20] adopts the idea of soft prompt, and
changes the parameter to gradient-free optimization [21, 22, 23] to reduce the training cost. However,
the performance effect of gradient-free optimization on full data is very different from that of other
parametric high efficiency methods. At present, it is only applicable to the model of GPT-3 [3], which
is a large model to provide services to the outside.

In order to consider the calculation cost and feasibility, this paper continues to follow the idea of
LPT, optimizes the impact of backpropagation on the cost, and proposes a new PEFT method. The
main contributions are as follows:

(1) Combine the neural network and the hidden vector within the model to solve the problem of
LPT destroying the hidden vector dimension. A parallel adapter method was used to perform
downstream task adaptation for hidden vectors near the model’s output. A new parameter-
efficient method called LAT (Late Adapter Tuning) is proposed.

(2) Combined with the hard prompt method, solve the problem of the mismatch between the model
in the pre-training stage and the downstream task training stage, so as to improve the perfor-
mance of the model.

(3) A new adapter architecture is proposed to make it more suitable for the update of hidden vectors,
and found that it further shortens the distance of the backpropagation path during the gradient
update, and improves the performance while reducing the training cost.

2 Related Work
The parameter-efficient methods are divided into three methods according to the different specific

parameter processing methods: (1) Add additional parameters to the original model, and only fine-
tune the parameters of the added part. (2) Selectively fine-tune some parameters in the original model.
(3) Reparameterize some parameters in the original model. (4) Further improve the performance of
fine-tuning in downstream tasks by mixing several previous different types of fine-tuning methods.

2.1 Additive PEFT

The new parameter method is to cancel the gradient of the parameters of the original pre-trained
language model, and add the parameters with the gradient to the original model for subsequent
training update. According to the location of adding parameters, it can be divided into two types:
adding parameters on the architecture and adding parameters on the hidden vectors. The most
typical method of adding parameters to the architecture is Adapter [13, 24, 25, 26, 27], which adds a
bottleneck architecture network to the Transformer [28] of each layer of the model. This bottleneck
structure consists of a down-projection, a non-linear transformation, and an up-projection, which
allows for the injection of task-specific information with minimal additional parameters. In contrast,
the most typical method of adding parameters to the hidden vector is Soft Prompt [29], which splicing
a randomly initialized word vector with gradient directly next to the word vector, and then updates
the word vector with gradient in the update. This approach has been further explored and refined in
subsequent studies [30, 31, 32]. Both Adapter and Soft Prompt techniques are designed to maintain
the vast majority of the original model’s parameters static, thereby preserving the extensive knowledge
encoded during pre-training. By doing so, these methods not only enable PEFT but also facilitate
efficient transfer learning, allowing the model to quickly adapt to new tasks and domains with minimal
computational overhead. Furthermore, these techniques have been shown to mitigate the risk of
overfitting to the target task, as the additional parameters are few in number and do not disrupt the
pre-trained model’s core representations.

2.2 Selective PEFT

Selective PEFT strategies involve finetuning only a select few parameters of the pre-trained model,
while the majority of the parameters remain frozen. This approach allows for a more targeted update



https://doi.org/10.15837/ijccc.2025.6.6928 4

that can be computationally efficient and reduce the risk of overfitting. Liu, et al. [33] introduced
a novel parameter-efficient fine-tuning method called (IA)3, which involves scaling the activations
using learned vectors, thereby achieving enhanced performance with a minimal number of additional
parameters. Additionally, they proposed a recipe based on the T0 model that requires no task-specific
tuning or modifications, demonstrating its effectiveness on a variety of unseen tasks. Bitfit [34] is
another example of selective PEFT, where only the bias terms of the network are updated during
training, while all other weight parameters are kept frozen. This method surprisingly shows that
updating a small fraction of the parameters can lead to significant performance gains. Lee, et al. [35]
found that only updating the last two Transformer layers of the model in the training process can
achieve 80% of the performance of full parameter fine-tuning. In summary, selective PEFT methods
offer a balance between the flexibility of fine-tuning and the efficiency of parameter usage, making
them attractive for scenarios where resources are limited or where rapid adaptation to new tasks is
required.

2.3 Reparameterized PEFT

The original reparameterization of parameters is to use two low rank matrices to replace the change
of parameters. This method originated from the study of the intrinsic dimension [16] of the pre-trained
language model, which found that the model can be learned in low-dimensional space when adapting
to downstream tasks. Low Rank Adapter (LoRA) [36] decomposes the matrices Q and V in the
attention mechanism [28] to low rank, and the two low-rank matrices are used to simulate the updates
of the original matrices. Building upon the foundation laid by LoRA, QLoRA [37] emerges as a variant
that further optimizes memory usage during fine-tuning of large language models. QLoRA employs
model quantization, which significantly reduces the GPU memory peak usage by approximately 75%
compared to LoRA, making it particularly advantageous in environments with memory constraints.
Moreover, QLoRA supports larger batch sizes, which is beneficial for training efficiency. While LoRA
is known for its faster training speed due to fewer trainable parameters, QLoRA strikes a balance by
offering similar performance with the added benefit of substantial memory savings. In addition to
LoRA, QLoRA, there are several variants based LoRA. Such as, DyLoRA [38], ERAT-DLoRA [39],
MELoRA [40].

2.4 Hybrid PEFT

Hybrid PEFT combines elements from different PEFT methods to optimize the trade-off between
performance and parameter efficiency. Karimi Mahabadi, et al. [15] propose Compacter, Compacter
accomplishes a better trade-off between task performance and the number of trainable parameters
by building on top of ideas from adapters, low-rank optimization, and parameterized hypercomplex
multiplication layers. Specifically, Compacter inserts task-specific weight matrices into a pretrained
model’s weights, which are computed efficiently as a sum of Kronecker products between shared slow
weights and fast rank-one matrices defined per Compacter layer. Different parameter-efficient fine-
tuning methods may perform rather differently on the same task, making it nontrivial to select the
most appropriate method for a specific task, especially considering the fast-growing number of new
parameter-efficient fine-tuning methods and tasks. Mao, et al. [41] propose a unified framework called
UniPELT, which incorporates different parameter-efficient fine-tuning methods as submodules and
learns to activate the ones that best suit the current data or task setup via gating mechanism.

3 Method
The method of PEFT is to change the adaptation of the model in the downstream task from

full parameter adaptation to a few parameters adaptation. As shown in Figure 2, the newly proposed
PEFT method Late Adapter Tuning (LAT) model first needs to freeze other irrelevant parameters,
and the key steps are divided into three modules.

(1) Prompt template construction. Convert the classification task into cloze filling, modify the
original sentence to sentences with [MASK] symbols, and mark the position of [MASK].



https://doi.org/10.15837/ijccc.2025.6.6928 5

(2) Adapter layer design. Send the hidden vectors obtained through the k-layer coding layer into the
custom Adapter structure for update, and then send the new hidden vectors obtained through
the residual connection into the next coding layer.

(3) Answer mapping. Extract the word vector at [MASK] position in the hidden vector passing
through the z-th coding layer, and then send it to the word mapping layer to map the answer
to the custom dictionary.

P
re

tr
ai

n
ed

 L
an

g
u
ag

e 
M

o
d
el

 

L
ay

er
 1

~
k
 

Adapter

layer

P
re

tr
ai

n
ed

 L
an

g
u
ag

e 
M

o
d
el

 

L
ay

er
 k

~
z 

Word 

Verbalizer

Embedding 

layer re
su

lt

O
ri

g
in

al
 t

ex
t

H
ar

d
 p

ro
m

p
t

P
ro

m
p

t 
te

m
p
la

te
 x

Prompt template 

construction
Adapter Answer mapping

Hidden vector [MASK] position 

vector
Tunable parameters Frozen parameters

Figure 2: The basic structure of the LAT model, where k is the location of the specified hidden layer
and z is the number of coding layers of the model.

3.1 Prompt Template Construction

In the mask language model, it is unsupervised in the pre-training stage with words that predict the
mask position. When using a mask language model to adapt to downstream classification tasks, the
last layer of hidden layer is often used to complete the classification task directly through the softmax
classifier. In order to narrow the gap between the downstream task and the model pre-training stage,
prompt learning [42] was proposed.

Table 1: Hard prompt template

Dataset
Hard prompt template X

S represents original sentence)

MPQA[43] S. It was [mask].

MR[44] S. It was [mask].

SUBJ[44] S. It was [mask].

TREC[45] [mask]:S.

The core idea of hard prompt is to modify the original sentence into prompt text marked with
[MASK], that is, to modify the traditional classification task to a cloze task that predicts the words in
the [MASK] position, so as to make full use of the ability learned by the pre-trained language model
in the pre-training stage. Table 1 shows the different hard prompt templates X on the four categorical
datasets. As shown in the table 1, X consists of the original sentence S connected with the [MASK]



https://doi.org/10.15837/ijccc.2025.6.6928 6

marked prompt P and can be represented by the following formula.

S = [s1, s2, . . . , sm] (1)
P = [p1, . . . , [MASK], . . . , pn] (2)
X = [S, P ] (3)

Where m represents the original sentence length, n represents the length of the prompt text,
si(1 ≤ i ≤ m) represents the token in the sentence S, and pj(1 ≤ j ≤ n) represents the token in the
prompt text.

It can also be seen from the table that the hard prompt template adds some contextual information
related to the problem compared to the original input, which helps the model adapt to downstream
tasks to a certain extent.

3.2 Adapter Layer Design

The adapter layer uses customized adapters to adapt to different downstream tasks. This module
modifies the traditional multiple downstream tasks corresponding to multiple large language models
into multiple downstream tasks corresponding to one large language model and multiple adapter
layers. It not only optimizes the storage cost for multi-tasks, but also proposes a new PEFT method
for pre-training language model adaptation to downstream tasks. The method is divided into two
parts: selection of update hidden vectors and adapter network design.

3.2.1 Layer Selection

First of all, you need to confirm the position of the adapter. In order to avoid the problem that
the backpropagation path distance is too long, the range of hidden vectors is limited to the hidden
vectors inside the model. For the sake of performance and cost, the original adapter [13] was modified
to act between two coding layers within each coding layer of the model. The process of the whole
model after the change is as follows:

As with the original input information, the hard prompt template X obtained in § 3.1 and the
position information Xpos are put into the word embedding layer trained by the pre-trained language
model to obtain the word embedding vector V , as shown below:

V = WordEmbedding(X, Xpos) (4)

Location information is used to identify the location of a word. Then, the obtained word embedding
vector is fed into the coding layer of the first k layer of the language model to obtain the hidden vector
H that needs to be updated, as follows.

H = Encoder1∼k(V ) (5)

where Encoder is the original coding layer that comes with the model, and k is the number of layers
that need to be customized. After the hidden vector is passed through a custom adapter, residual
concatenation is performed to obtain an updated hidden vector Hnew, which is put into the remaining
coding layers to obtain a final hidden vector Hlast, as shown below.

Hnew = H + Adapter(H) (6)
Hlast = Encoderk∼z(Hnew) (7)

Where z is the number of layers encoded by the language model, H, Hnew and Hlast have the same
dimension, and H ∈ R(m+n)×d, where d is the dimension of the hidden vector of the model.



https://doi.org/10.15837/ijccc.2025.6.6928 7

3.2.2 Adapter Architecture

This paper has further modified the network architecture in the Adapter method. As shown in
Figure 3, the difference between the new adapter and the original is that it actually updates the
hidden vector in higher dimensions, and adds the normalization in the input and the non-linear layer
in the output. The reason for this is that the original Adapter structure first reduces the input hidden
vector dimension (down projection) and then rises to the same dimension as the model dimension (up
projection). This order causes information loss because the down projection drops a portion of the
information. The proposed LAT method first raises the input hidden vector dimension to a higher
dimension than the model dimension (up projection), and then decreases to the same dimension as the
model dimension (down projection). This order can retain more information because the up projection
does not lose information and only adds dimensionality. However, with the number of parameters, to
solve this problem, the LAT method adds a normalization layer to the input. The normalization layer
can effectively reduce the number and computational parameters because it can scale and offset the
input data to reduce the size of the parameters. Moreover, the normalization layer can also speed up
the model training and improve its stability.

Down projection

Up projection

+

Gelu

Down projection

Up projection

+

Gelu

Gelu

Normalization

Down projection

Up projection

Down projection

Up projection

++++++

GeluGelu

Down projection

Up projection

Down projection

Up projection

++++++

GeluGelu

GeluGelu

NormalizationNormalization

Figure 3: The left picture shows the original architecture of the adapter, and the right picture shows
the improved adapter

Adapter(H) = Gelu(wdownGelu(wupNorm(H))) (8)

where Norm is the normalization of vectors and Gelu is the Gaussian error linear unit activation
function. wup ∈ Rd×u, wdown ∈ Ru×d, where d is the hidden layer dimension of the pre-trained
language model and u is the upward projected dimension.



https://doi.org/10.15837/ijccc.2025.6.6928 8

3.3 Answer Mapping

The answer mapping layer limits the final output of the model, so that the model can make
predictions on the custom word list, and selects the word with the highest probability as the final
prediction result. Table 2 shows the answer label D set on the four datasets in this paper.

Table 2: The labels of each answer on the dataset

Dataset Label

MPQA positive, negative

MR positive, negative

SUBJ subjective, objective

TREC abbr., entity, description, human, loc., num.

Let Hlast = [h1, h2, . . . , hmask, . . . , hd], the last layer hidden vector obtained in § 3.2.1, and d be
the dimensions of the model hidden vector. Extract the word vector hmask of the last hidden vector
corresponding to [MASK] in the hard prompt template. The mask language model header (MLMhead)
trained by the pre-trained language model maps the hidden vector hmask to the thesaurus dimension
of the pre-trained language model, as follows:

Yv = MLMhead(hmask) (9)

In this case, Yv = [y1, y2, y3, . . . , yv], where v is the vocabulary length of the pre-trained language
model. Hv is the probability of each word appearing at [MASK] in the vocabulary. Extract the word
probability value corresponding to the answer label in Yv to form the probability distribution Y of the
final answer. The vector in Y comes from the vector in Yv corresponding to the answer mapping D,
and the length is consistent with D. The word with the highest probability within the answer label
range is extracted as the final prediction result y, as shown below:

y = argmax(Y ) (10)

LAT algorithmic details are provided in Algorithm 1.

Algorithm 1: LAT Training
1. Input: Pre-trained model M , dataset D.
2. Freeze all parameters of M .
3. Insert Adapter at layer k.
4. Construct Prompt: Convert S ∈ D to X = [S; P ].
5. Forward Pass: Compute Hlast .
6. Backward Pass: Update adapter parameters via gradient descent.
7. Output: Fine-tuned adapter weights.

4 Experiment and Result Analysis

4.1 Experimental Dataset

In order to evaluate the effectiveness of the method in this paper, this experiment was conducted
on the publicly available datasets MPQA, MR, SUBJ, TREC datasets, and the distribution of the
data is shown in Table 3. The four datasets are uniformly distributed in training set, validation set
and test set, among which MPQA is the binary opinion dataset, including 3311 positive texts and
7293 negative texts. MR is the dichotomy emotion analysis dataset. SUBJ is the binary emotion
polarity dataset. TREC is the sixth problem classification dataset.



https://doi.org/10.15837/ijccc.2025.6.6928 9

Table 3: Dataset split details

Dataset Training set Validation set Test set

MPQA 7606 1000 2000

MR 7662 1000 2000

SUBJ 7000 1000 2000

TREC 4952 500 500

4.2 Experimental Parameter Setting and Evaluation

The experiment in this paper uses the Ubuntu20.04.5 operating system, equipped with a 3090
GeForce RTX 3090 24GB graphics card, using the PyThon3.7 development environment and PyTorch
1.13.1 development framework, as well as the development framework of HuggingFace [46]. The
experimental hyperparameters are the same on the four datasets, as shown in Table 4.

Table 4: Experimental setting

Hyperparameters Value

pre-trained language model RoBERTa-large[2]

learning rate 1.00E-03

maximum sentence length 256

weight decay 0.1

hidden layer 20

project dimensions upward 4096

learning rate warmup 0.06

epoch 10

batch size 16

We use accuracy as the evaluation metric and record it with IACC , and the number of correctly
classified samples is recorded as T , and the total number of data samples is recorded as N . The
evaluation indicators are calculated as follows:

IACC = T/N (11)

4.3 Results and Analysis

To verify the performance of the designed parameter efficient method, we compare it with other
mainstream parameter efficient methods as follows.

• Adapter[13]: The adapter is connected inside each coding layer of the pre-trained language
model, which only updates the parameters of the adapter.

• AdapterDrop[47]: To pruned them on the basis of Adapter.

• Prompt Tuning[29]: Stitch a soft prompt to the input data, and only update the soft prompt
during training.

• P-tuning V2[48]: Soft prompts are added as input at each layer of the Transformer network, and
only soft prompts are updated during training.

• S-IDPG-PHM[49]: The soft prompts are re-parameterized and connected to each hidden layer of
the pre-trained language model. Only the soft prompts are updated during the training process.

• Bitfit[34]: Only the weights in the network are updated during training.



https://doi.org/10.15837/ijccc.2025.6.6928 10

• LoRA[36]: The Q and V matrices in each layer of attention mechanism in the pre-training
language model are updated and reparameterized for low-rank decomposition, and the training
process only updates the reparametric parameters.

• LPT[18]: The re-parameterized soft cues are connected to the hidden vectors obtained after
passing a single encoding layer inside the model, and only the soft cues are updated during the
training process.

4.3.1 Training Cost Comparison

To verify the effect of the distance from backpropagation on cost, Table 5 compares the computa-
tional efficiency of LAT against full-parameter fine-tuning and state-of-the-art PEFT methods. It can
be seen from the table that the number of parameters involved in training and the training cost are
not a simple linear relationship. Even though the parameter quantity of LAT is not superior to other
parameter efficient methods, its training speed and GPU memory consumption are significantly supe-
rior to other methods. LAT achieves a 2.4× faster training speed (27.8 tokens/ms vs. 11.6 tokens/ms
for full tuning) and reduces GPU memory usage by 76.5% (5.46 GB vs. 23.3 GB). This efficiency
stems from two key design choices:

(1) Shortened Backpropagation Path. By limiting gradient updates to the final hidden layer (layer
20 in RoBERTa-large), LAT avoids redundant gradient calculations for frozen parameters. This
aligns with theoretical analyses showing that gradient computation scales linearly with propa-
gation depth [17, 18].

(2) Lightweight Adapter Architecture. LAT’s inverted bottleneck adapter (up → down projection)
introduces only 8.4M trainable parameters (2.4 of the model size), significantly reducing memory
overhead compared to methods like Adapter (1.6M parameters but higher memory usage due to
multi-layer tuning).

These improvements enable LAT to operate on edge devices with limited GPU resources (e.g., IoT
systems [11]), making large-scale LLM deployment feasible in real-world scenarios.

Table 5: Comparison of training costs for efficient mainstream parameters

Method Trainable Parameters
Training Speed

(tokens/ms)

GPU Memory Usage

(GB)

Model Tuning 355M 11.6 23.3

Adapter 1.6M 15.5 16.5

AdapterDrop 811K 21.6 9.5

Prompt Tuning 21K 16.9 17.8

P-tuning V2 985K 19.2 16.8

S-IDPG-PHM 114K 12.0 16.8

Bitfit 273K 16.5 15.7

LoRA 788K 16.4 16.2

LPT 792K 23.2 10.285

LAT 8.4M 27.8 5.455

4.3.2 Comparative Experiment and Result Analysis

All methods were run with 3 random seeds, and the variance of mean results is in parentheses.
Except LPT, other methods were all from literature [19]. As shown in Table 6, the LAT method
proposed in this paper achieves better classification performance than other comparison methods on all
four datasets. LAT method has a large gap with other methods on MR and MPQA datasets, reaching
98.1% and 99.9% respectively, and 7.9% and 8.6% compared with other second place performance,
while maintaining high stability. It can also be seen from the table that the performance of a series of



https://doi.org/10.15837/ijccc.2025.6.6928 11

methods such as Prompt Tuning, P-tuning V2, S-IDPG-PHM, LPT, etc., which add soft hints to the
hidden vector dimension, is lower than that of the remaining methods without destroying the hidden
vector dimension. LAT solves the problem of destroying the hidden vector dimension of LPT to give
full play to the basic ability of the original model.

Table 6: Performance of Methods on Different Datasets

Method MPQA MR SUBJ TREC

Model Tuning 90.2 91.3 96.8 97.6

Adapter 89.2(0.5) 91.6(0.4) 96.8(0.4) 97.0(0.3)

AdapterDrop 89.1(0.7) 91.0(0.5) 95.3(0.6) 95.7(0.5)

Prompt Tuning 88.8(0.8) 89.6(0.5) 93.9(0.6) 86.4(0.7)

P-tuning V2 89.9(0.6) 91.4(0.4) 96.5(0.2) 95.8(0.6)

S-IDPG-PHM 89.5(0.6) 90.8(0.5) 95.9(0.6) 89.3(0.4)

Bitfit 89.2(0.9) 91.8(0.5) 96.9(0.1) 96.2(0.3)

LoRA 90.1(0.3) 92.0(0.1) 97.1(0.4) 96.8(0.6)

LPT 90.9(0.3) 91.2(0.2) 96.2(0.1) 94.7(0.5)

LAT 98.1(0.1) 99.9(0.1) 97.3(0.3) 97.9(0.3)

To further verify the effectiveness of the new adapter architecture, ablation experiments were
performed on the adapter model architecture, as shown in Table 7. As you can see from the table, in
the newly designed architecture, the most beneficial thing for the model is to change the downward
projection and upward projection of the original adapter to the upward projection and downward
projection, and normalization also has a great impact on the result. In the experiment, the optimal
number of layers of the original downward projection type adapter LAT-down is located at the 18th

layer of the hidden layer, while the optimal number of layers of the improved LAT is located at the 20th

layer of the hidden layer. This phenomenon indicates that LAT not only has superior performance
compared to the pre-improved adapter, but also further reduces the cost. Compared with LAT-down
method of the original adapter architecture, LAT training memory consumption is reduced by 1%.
due to the large number of upward projection parameters, the calculation amount is increased, and
the training speed is completely consistent. The validity of the new architecture adapter is further
verified.

Table 7: Results of ablation experiments

Method MPQA MR SUBJ TREC

LAT 98.1(0.1) 99.9(0.1) 97.3(0.3) 97.9(0.3)

LAT-down 92.2(0.3) 92.5(0.2) 96.6(0.3) 97.0(0.2)

Without normalization 97.1(0.2) 99.0(0.1) 97.2(0.2) 97.9(0.1)

Without nonlinear layer 97.8(0.1) 99.2(0.6) 97.2(0.1) 97.8(0.4)

4.3.3 Hidden Layer Selection

Since the LAT method updates the hidden layer, this method needs to confirm the number of
layers using hidden vectors. The closer the hidden vector is to the output, the shorter the length
of the backpropagation path, and the smaller the training cost of the corresponding model will be.
Therefore, to ensure performance as much as possible, choose the hidden vector close to the output.
The results are shown in Figure 4. The performance of the last two layers has a great impact. Due to
comprehensive considerations of performance and training cost, the 20th layer was finally selected as
the number of layers of this method.



https://doi.org/10.15837/ijccc.2025.6.6928 12

Number of hidden layers

P
er

fo
rm

an
ce

/%

Number of hidden layers

P
er

fo
rm

an
ce

/%

Figure 4: Performance of hidden vectors with different layers

5 Discussion
The experimental results demonstrate that LAT achieves significant improvements in computa-

tional efficiency and task performance compared to both full-parameter fine-tuning and existing PEFT
methods. Below, we interpret these findings from theoretical and practical perspectives.

5.1 Theoretical Implications

Gradient Propagation Efficiency. LAT’s design restricts parameter updates to the final hidden
layer, shortening the backpropagation path from z layers (full tuning) to z − k layers (where k ≈ z).
This aligns with the theoretical insight that gradient computation costs grow linearly with path length
[17, 18]. By minimizing the propagation distance, LAT reduces redundant gradient calculations for
frozen parameters, explaining its 2.4× faster training speed and 76.5% lower GPU memory usage
(Table 5).

Task-Pre-training Alignment. The integration of hard prompts (e.g., “It was [MASK]”)
bridges the gap between pre-training (mask prediction) and downstream tasks (classification). This
aligns with the theoretical framework of prompt-based learning [42], where task reformulation enhances
parameter efficiency by leveraging pre-trained capabilities.

5.2 Practical Implications

Resource-Constrained Deployment. LAT’s 76.5% reduction in GPU memory usage (5.455
GB vs. 23.3 GB for full tuning) enables deployment on edge devices with limited computational
resources, such as IoT systems [11]. For example, LAT could power real-time sentiment analysis on
mobile platforms without requiring cloud-based infrastructure.

Cost-Effective Multi-Task Adaptation. By freezing 99% of parameters and storing only
lightweight adapters (8.4M trainable parameters), LAT optimizes storage costs for multi-task scenarios.
This is critical for applications like customer service chatbots, where models must handle diverse tasks
(e.g., intent detection, emotion classification) without prohibitive hardware upgrades.



https://doi.org/10.15837/ijccc.2025.6.6928 13

6 Conclusion
LAT method is an efficient and high-performance approach for parameter-efficient fine-tuning of

pre-trained language models. By focusing on fine-tuning a single hidden layer near the model’s output,
LAT significantly reduces the number of training parameters, leading to lower training costs in terms
of training time and GPU memory usage. Experimental results across four classification datasets
demonstrate that LAT achieves a 2.4x reduction in training time, a 76.5% decrease in GPU memory
usage, and a 4.31% improvement in accuracy compared to full-parameter fine-tuning. These findings
highlight LAT as a cost-effective and high-performance solution for downstream task adaptation in
large language models.

However, LAT also has some limitations. It is primarily suitable for downstream tasks that require
fewer parameters for fine-tuning, and its performance may not be as good as other PEFT methods
for tasks requiring a large number of parameters, such as machine translation. Additionally, the
performance of the LAT method is affected by the choice of pre-trained language models, and choosing
suitable pre-trained language models can improve the performance of the LAT method.

Future research can further explore the application scenarios and improvement directions of the
LAT method. One direction is to explore the use of other deep learning neural network models to
construct the Adapter layer, such as convolutional neural networks, recurrent neural networks, and
others, to further enhance the model’s expressive power. Another direction is to apply the LAT
method to other pre-trained language models, such as those with open-source code, and verify its
performance on different models. Additionally, the LAT method can be applied to other downstream
tasks, such as question-answering systems [50], text summarization [51], and others, and explore its
performance on different tasks.

Funding

The APC was funded by Dazhou key Laboratory of Government data security (No.ZSAQ202313),
Foundation of Geely University of China (No.2024JG30063, 2024xzkzd011).

Author contributions

Zhengjie Gao provided the research idea and resources for this work, and revised the manuscript for
multiple times. Rongcheng Li and Yuxin Fan conducted the experiments and wrote the manuscript.
Min Liao and Xinyu Song provided comments and guided experiments for the revised version. All
authors reviewed the manuscript.

Conflict of interest

The authors declare no conflict of interest.

References
[1] Devlin J, Chang M W, Lee K, et al. (2019). Bert: Pre-training of deep bidirectional transformers

for language understanding, Proceedings of the 2019 conference of the North American chapter of
the association for computational linguistics: human language technologies, volume 1 (long and
short papers). pp. 4171–4186.

[2] Liu, Y. (2019). Roberta: A robustly optimized bert pretraining approach, arXiv preprint
arXiv:1907.11692, vol. 364.

[3] Gao, T.; Fisch, A.; Chen, D. (2021). Making Pre-trained Language Models Better Few-shot
Learners, In Proceedings of the 59th Annual Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pp. 3816–3830.



https://doi.org/10.15837/ijccc.2025.6.6928 14

[4] Raffel, C.; et al. (2020). Exploring the limits of transfer learning with a unified text-to-text
transformer, Journal of Machine Learning Research, vol. 21, no. 140, pp. 1–67.

[5] Chowdhery, A.; et al. (2023). Palm: Scaling language modeling with pathways, Journal of Ma-
chine Learning Research, vol. 24, no. 240, pp. 1–113.

[6] Canchila, S.; Meneses-Eraso, C.; Casanoves-Boix, J.; Cortés-Pellicer, P.; Castelló-Sirvent, F.
(2024). Natural language processing: An overview of models, transformers and applied practices,
Computer Science and Information Systems, no. 00, pp. 31–31.

[7] Menta, A.; Garcia-Serrano, A. (2024). Reaching quality and efficiency with a parameter-efficient
controllable sentence simplification approach, Computer Science and Information Systems, no.
00, pp. 17–17.

[8] Liu, H., Ma, Y., Gao, C., Qi, J. & Zhang, D. (2023). Chinese Named Entity Recognition Method
for Domain-Specific Text. Tehnički vjesnik, 30 (6), 1799-1808.

[9] Cheng, Y., Wan, Y., Sima, Y., Zhang, Y., Hu, S. & Wu, S. (2022). Text Detection of Transformer
Based on Deep Learning Algorithm. Tehnički vjesnik, 29 (3), 861-866.

[10] Kaplan, J.; et al. (2020). Scaling laws for neural language models, arXiv preprint
arXiv:2001.08361.

[11] Muntean, I.; Mois, G. D.; Folea, S. C. (2021). Development and Analysis of Low-Cost IoT Sensors
for Urban Environmental Monitoring, International Journal of Computers Communications &
Control, vol. 16, no. 5.

[12] Ding, N.; et al. (2023). Parameter-efficient fine-tuning of large-scale pre-trained language models,
Nature Machine Intelligence, vol. 5, no. 3, pp. 220–235.

[13] Houlsby, N.; et al. (2019). Parameter-efficient transfer learning for NLP, In International Confer-
ence on Machine Learning, PMLR, pp. 2790–2799.

[14] Peters, M. E.; Ruder, S.; Smith, N. A. (2019). To Tune or Not to Tune? Adapting Pretrained
Representations to Diverse Tasks, In Proceedings of the 4th Workshop on Representation Learning
for NLP (RepL4NLP-2019), pp. 7–14.

[15] Karimi Mahabadi, R.; Henderson, J.; Ruder, S. (2021). Compacter: Efficient low-rank hypercom-
plex adapter layers, Advances in Neural Information Processing Systems, vol. 34, pp. 1022–1035.

[16] Aghajanyan, A.; Gupta, S.; Zettlemoyer, L. (2021). Intrinsic Dimensionality Explains the Ef-
fectiveness of Language Model Fine-Tuning, In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers), pp. 7319–7328.

[17] Rumelhart, D. E.; Hinton, G. E.; Williams, R. J. (1986). Learning representations by back-
propagating errors, Nature, vol. 323, no. 6088, pp. 533–536.

[18] Liu, X.; Sun, T.; Huang, X.-J.; Qiu, X. (2022). Late Prompt Tuning: A Late Prompt Could
Be Better Than Many Prompts, In Findings of the Association for Computational Linguistics:
EMNLP 2022, pp. 1325–1338.

[19] Zhu, W.; Tan, M. (2023). Improving Prompt Tuning with Learned Prompting Layers, arXiv
preprint arXiv:2310.20127.

[20] Sun, T.; Shao, Y.; Qian, H.; Huang, X.; Qiu, X. (2022). Black-box tuning for language-model-as-
a-service, In International Conference on Machine Learning, PMLR, pp. 20841–20855.

[21] Hansen, N.; Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution strate-
gies, Evolutionary Computation, vol. 9, no. 2, pp. 159–195.



https://doi.org/10.15837/ijccc.2025.6.6928 15

[22] Hansen, N.; Müller, S. D.; Koumoutsakos, P. (2003). Reducing the time complexity of the deran-
domized evolution strategy with covariance matrix adaptation (CMA-ES), Evolutionary Compu-
tation, vol. 11, no. 1, pp. 1–18.

[23] Rios, L. M.; Sahinidis, N. V. (2013). Derivative-free optimization: a review of algorithms and
comparison of software implementations, Journal of Global Optimization, vol. 56, no. 3, pp.
1247–1293.

[24] Lei, T.; et al. (2023). Conditional adapters: Parameter-efficient transfer learning with fast infer-
ence, Advances in Neural Information Processing Systems, vol. 36, pp. 8152–8172.

[25] Pfeiffer, J.; Kamath, A.; Rückle, A.; Cho, K.; Gurevych, I. (2021). AdapterFusion: Non-
Destructive Task Composition for Transfer Learning, In Proceedings of the 16th Conference of the
European Chapter of the Association for Computational Linguistics: Main Volume, pp. 487–503.

[26] Zhao, H.; Fu, J.; He, Z. (2023). Prototype-based HyperAdapter for Sample-Efficient Multi-task
Tuning, In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 4603–4615.

[27] Chronopoulou, A.; Peters, M. E.; Fraser, A.; Dodge, J. (2023). AdapterSoup: Weight Averaging
to Improve Generalization of Pretrained Language Models, In Findings of the Association for
Computational Linguistics: EACL 2023, pp. 2054–2063.

[28] Vaswani, A. (2017). Attention is all you need, Advances in Neural Information Processing Systems.

[29] Lester, B.; Al-Rfou, R.; Constant, N. (2021). The Power of Scale for Parameter-Efficient Prompt
Tuning, In Proceedings of the 2021 Conference on Empirical Methods in Natural.

[30] Li, J.; Aitken, W.; Bhambhoria, R.; Zhu, X. (2023). Prefix Propagation: Parameter-Efficient
Tuning for Long Sequences, In Proceedings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pp. 1408–1419.

[31] Zhang, Z.-R.; Tan, C.; Xu, H.; Wang, C.; Huang, J.; Huang, S. (2023). Towards Adaptive Prefix
Tuning for Parameter-Efficient Language Model Fine-tuning, In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1239–
1248.

[32] Liu, X.; et al. (2024). GPT understands, too, AI Open, vol. 5, pp. 208–215.

[33] Liu, H.; et al. (2022). Few-shot parameter-efficient fine-tuning is better and cheaper than in-
context learning, Advances in Neural Information Processing Systems, vol. 35, pp. 1950–1965.

[34] Zaken, E. B.; Goldberg, Y.; Ravfogel, S. (2022). BitFit: Simple Parameter-efficient Fine-tuning
for Transformer-based Masked Language-models, In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1–9.

[35] Lee, J.; Tang, R.; Lin, J. (2019). What would elsa do? Freezing layers during transformer fine-
tuning, arXiv preprint arXiv:1911.03090.

[36] Hu, E. J.; et al. (2021). Lora: Low-rank adaptation of large language models, arXiv preprint
arXiv:2106.09685.

[37] Dettmers, T.; Pagnoni, A.; Holtzman, A.; Zettlemoyer, L. (2024). Qlora: Efficient finetuning of
quantized LLMs, Advances in Neural Information Processing Systems, vol. 36.

[38] Valipour, M.; Rezagholizadeh, M.; Kobyzev, I.; Ghodsi, A. (2023). DyLoRA: Parameter-Efficient
Tuning of Pre-trained Models using Dynamic Search-Free Low-Rank Adaptation, In Proceedings
of the 17th Conference of the European Chapter of the Association for Computational Linguistics,
pp. 3274–3287.



https://doi.org/10.15837/ijccc.2025.6.6928 16

[39] Luo, D.; Zheng, K.; Wu, C.; Wang, X.; Wang, J. (2025). ERAT-DLoRA: Parameter-efficient
tuning with enhanced range adaptation in time and depth aware dynamic LoRA, Neurocomputing,
vol. 614, p. 128778.

[40] Ren, P.; et al. (2024). Melora: Mini-ensemble low-rank adapters for parameter-efficient fine-
tuning, In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 3052–3064.

[41] Mao, Y.; et al. (2022). UniPELT: A Unified Framework for Parameter-Efficient Language Model
Tuning, In Proceedings of the 60th Annual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 6253–6264.

[42] Liu, P.; Yuan, W.; Fu, J.; Jiang, Z.; Hayashi, H.; Neubig, G. (2023). Pre-train, prompt, and pre-
dict: A systematic survey of prompting methods in natural language processing, ACM Computing
Surveys, vol. 55, no. 9, pp. 1–35.

[43] Wiebe, J.; Wilson, T.; Cardie, C. (2005). Annotating expressions of opinions and emotions in
language, Language Resources and Evaluation, vol. 39, pp. 165–210.

[44] Pang, B.; Lee, L. (2005). Seeing Stars: Exploiting Class Relationships for Sentiment Categoriza-
tion with Respect to Rating Scales, In Proceedings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05), pp. 115–124.

[45] Voorhees, E. M.; Tice, D. M. (2000). Building a question answering test collection, In Proceed-
ings of the 23rd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 200–207.

[46] Wolf, T.; et al. (2020). Transformers: State-of-the-art natural language processing, In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demon-
strations, pp. 38–45.

[47] Rücklé, A.; et al. (2021). AdapterDrop: On the Efficiency of Adapters in Transformers, In Pro-
ceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 7930–
7946.

[48] Liu, X.; et al. (2022). P-Tuning: Prompt Tuning Can Be Comparable to Fine-tuning Across
Scales and Tasks, In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pp. 61–68.

[49] Wu, Z.; et al. (2022). IDPG: An Instance-Dependent Prompt Generation Method, In Proceedings
of the 2022 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 5507–5521.

[50] Zaib, M.; Zhang, W. E.; Sheng, Q. Z.; Mahmood, A.; Zhang, Y. (2022). Conversational question
answering: A survey, Knowledge and Information Systems, vol. 64, no. 12, pp. 3151–3195.

[51] Alshammari, A.; Alzaidi, S. A.; SK, K. (2024). Enhancing Text Summarization with Linguistic
Prompting and Reinforcement Learning: A Human-Centered Approach, Tehnički Vjesnik, vol.
31, no. 5, pp. 1431–1437.



https://doi.org/10.15837/ijccc.2025.6.6928 17

Copyright ©2025 by the authors. Licensee Agora University, Oradea, Romania.
This is an open access article distributed under the terms and conditions of the Creative Commons
Attribution-NonCommercial 4.0 International License.
Journal’s webpage: http://univagora.ro/jour/index.php/ijccc/

This journal is a member of, and subscribes to the principles of,
the Committee on Publication Ethics (COPE).

https://publicationethics.org/members/international-journal-computers-communications-and-control

Cite this paper as:

Zhengjie, Gao.; Rongcheng, Li.; Yuxin, Fan.; Min, Liao.; Xinyu, Song. (2025). Late Adapter
Tuning: A Cost-Effective Approach to Parameter-Efficient Fine-Tuning for Large Language Models,
International Journal of Computers Communications & Control, 20(6), 6928, 2025.

https://doi.org/10.15837/ijccc.2025.6.6928


	Introduction
	Related Work
	Additive PEFT
	Selective PEFT
	Reparameterized PEFT
	Hybrid PEFT

	Method
	Prompt Template Construction
	Adapter Layer Design
	Layer Selection
	Adapter Architecture

	Answer Mapping

	Experiment and Result Analysis
	Experimental Dataset
	Experimental Parameter Setting and Evaluation
	Results and Analysis
	Training Cost Comparison
	Comparative Experiment and Result Analysis
	Hidden Layer Selection


	Discussion
	Theoretical Implications
	Practical Implications

	Conclusion

