INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL
Online ISSN 1841-9844, ISSN-L 1841-9836, Volume: 20, Issue: 3, Month: June, Year: 2025
Article Number: 6919, https://doi.org/10.15837/ijccc.2025.3.6919

communication

R RN
[uni]

cc PUincationS UNIVERSITY PRESS

{ computing

Early detection of current faults in a squirrel cage motor using
Discrete Wavelet Transform (DWT)

[. Garcia-Martinez, M. Pena-Cabrera, R. Osorio-Comparén,
I. Lopez-Juarez, O. Molotla, G. Lefranc

Irving Garcia-Martinez
Engineering Faculty, National Autonomous University of Mexico (UNAM)
Circuito Escolar S/N, Ciudad Universitaria, CDMX, México. enrique.bin.v@gmail.com

Mario Pena-Cabrera*

Department of Computer Systems Engineering and Automation

IIMAS, National Autonomous University of Mexico (UNAM)

Circuito Escolar S/N, Ciudad Universitaria, CDMX, México. mario.penia@iimas.unam.mx

Roman Osorio-Comparan

Department of Computer Systems Engineering and Automation

IIMAS, National Autonomous University of Mexico (UNAM)

Circuito Escolar S/N, Ciudad Universitaria, CDMX, México. roman@unam.mx

Ismael Léopez-Juarez

Robotics and Advanced Manufacturing, Center for Research and Advanced Studies (CINVESTAV)
Av Ind Metalurgica 1062, P Ind Saltillo-Ramos Arizpe, Coah. México.

Department of Mechatronics, Autonomous University of Yucatan (UADY)

Av. Ind. No Contaminantes S/N, Mérida, Yuc. México.

ismael.lopez@{cinvestav.mx; correo.uady.mx}

Oscar Molotla
Engineering Faculty, National Autonomous University of Mexico (UNAM)
Circuito Escolar S/N, Ciudad Universitaria, CDMX, México. oscar.molotla85@gmail.com

Gaston Lefranc*®
Facultad de Ingenieria, Pontificia Universidad Catélica de Valparaiso
Avda. Brasil 2950, Valparaiso, Chile. gaston.lefranc@pucv.cl

Abstract

This paper presents a new method for early detection of broken rings and bars in induction
motors operating in steady state. The approach uses multispectral analysis based on the Discrete
Wavelet Transform (DWT) applied to stator current analysis. A comparison is made between the
results obtained using Daubechies wavelets of levels 44 and 45 (db44 and db45). The method focuses
on the energetic analysis of the high-level signal decomposition coefficients to detect the presence
of left sideband components, which indicate rotor faults. The experimental results demonstrate the
effectiveness of the method in distinguishing between healthy and faulty motor conditions, even
under light load conditions where conventional techniques often struggle.

Keywords: Fault detection, Discrete Wavelet Transform, Induction motor, Squirrel cage rotor, Motor
current signature analysis, Multispectral analysis, Rotor faults
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1 Introduction

In the field of signal analysis for fault detection, a variety of monitoring techniques and methods have been
employed [2, 16, 21], with recent advancements incorporating Al-based approaches [8], [7]. However, when
it comes to current and voltage analysis, the widely recognized Motor Current Signature Analysis (MCSA)
[1, 6, 17] stands out as the most commonly used method. Its popularity can be attributed to its non-invasive
nature and the simplicity of data collection, making it an effective and accessible choice for fault detection.

By exploring the types of electrical signals used for current analysis in electric motors, a new area of research
emerges to find methods and tools that are better suited to today’s requirements. So far, several methods have
used discrete wavelet transforms, which have demonstrated the ability to work with signals generated from
faulty AC induction motors.

A new method based on multispectral analysis using the Discrete Wavelet Transform (DWT) has been
developed for the analysis of steady-state stator currents. A comparison has been made between the results
obtained using Daubechies wavelets of levels 44 and 45 (db44 and db45). The method focuses on the study of
the energy of the coefficients resulting from the decomposition of the high-level signal as a means of detecting
the presence of left sideband components. The energy of these coefficients shows a clear increase when the rotor
rings or bars have been broken (Figure 1).

Figure 1: Example of a 400 hp induction motor failure due to constant starting and stopping.

Since the beginning of the 20th century, it has been known that the asymmetrical winding of the rotor of
an induction motor will produce an interruption of the electric current in a conductor due to the effects of the
induction phenomenon and will induce a voltage in the stator winding at a specific frequency, consequently
driving a current at that frequency in the stator [6, 17].

The failure of a broken rotor bar produces a torque variation at twice the slip frequency, resulting in a speed
variation that is a function of driveshaft inertia.

The slip (s) is the relative difference between the speeds of the stator magnetic flux (synchronous) and the
rotor (mechanical), expressed by the following relationship in equation 1.

Failure of a broken rotor bar produces a torque variation at twice the slip frequency, resulting in a speed
variation that is a function of the drive shaft inertia. Slip is the relative difference between the stator (syn-
chronous) and rotor (mechanical) magnetic flux velocities, expressed by the following relationship in equation
1 [18, 20]:

ny—n

S = (1)

ni

where ny is the synchronous speed and n is the rotor speed.

The current flowing at that frequency in the stator typically causes a decrease in the magnitude of the
current component f(1—2s) (left sideband) and the appearance of a new current component at f(1+ 2s) (right
sideband). The magnitude of this new component can be amplified by modulating the third harmonic flow with
respect to time in the stator.

The higher the power train inertia, the greater the resistance to torque and speed oscillation at 2sf and
consequently the smaller the magnitude of the right sideband (+2sf) compared to the left sideband (—2sf)
around the fundamental frequency "f'. This indicates that faults in the cage or rotor winding produce two
sidebands on either side of the fundamental line or frequency as illustrated in Figure 2.

According to [9], the magnitude of the supply frequency component can be 20 to 1000 times greater than
the magnitude of the sidebands.

Variations in the electromagnetic field in the air gap generated by a rotor fault create sideband harmonic
components in the stator current spectrum. The stator is traversed by a balanced system of three-phase currents
which, according to Ferraris’ Theorem, establishes a rotating magnetic field with a synchronous speed (ns).
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Figure 2: Representation of sidebands and line frequency.

Some Predictive Maintenance has been proposed [12].
This speed is calculated from the linear or fundamental frequency (f1) of the stator currents and the number
of pole pairs (p) using equation 2:

- 120f; )

p

The rotating field of the stator in squirrel-cage induction motors generates electromotive forces (e.m.f.) in
the rotor winding. When this winding is short-circuited, currents appear that generate another magnetic field.
The interaction between this field and the synchronous field causes the rotor to move at a speed close to, but
always lower than, the synchronous speed. This speed is known as the mechanical speed of the motor (nm).
The general expression for this type of machine is given by the equation 3:

Nm * P

= fi - 3
f2=H-—5 (3)
Substituting the expression (2) in (1) we have equation 4.
12041 _
__»p
$= T f (4)
P

If the reference point of the rotor conducting bars is changed, we can observe the synchronous magnetic
field rotating with a relative velocity nr as shown in equation 5:

Ny = Ng — Ny, = S % Ny (5)

Thus, since this magnetic field has p pairs of poles, a rotor conductor bar sees 60nr magnetic cycles pass
through it in one minute (where one pole pair constitutes one cycle of the magnetic field wave in the air gap).
Each magnetic cycle induces one period of the electromotive force time wave as it rotates through a rotor
conductor. This causes the rotor phases to induce electromotive forces with a frequency of 60nr cycles per
minute, or Hz, as shown in Equation 6:

120% f1,
) —p *P
_ _ 6
fr= g = sl (6)

Considering equation (2), it can be deduced that the frequency in the rotor phases is given by equation 7:

fR:s*fL (7)

An important advantage of this method, which has been tested in a comparative manner, is that it allows
diagnosing the motor condition with less uncertainty under no load and loaded conditions. The faults in these
situations are more difficult to distinguish. The experiments were carried out with a squirrel-cage induction
motor on a test bench built for diagnostic purposes. A data acquisition system based on an embedded board
and an analog-to-digital converter module with programmable gain and high resolution was developed.
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2 Continuous wavelets transform

The Continuous Wavelet Transform (CWT) is a signal analysis technique that uses variable-sized windows,
allowing for greater precision in time-frequency analysis compared to the Short-Time Fourier Transform (STFT)
[13, 15]. In this paper, the CWT is applied to detect faults in induction motors, leveraging its advantages in
analyzing non-stationary signals. Smaller regions where high-frequency information is required, as can be seen
in the works [3]-[5], [9]-[11], [19] for the detection of failures in induction motors. The idea is shown in Figure 3.

TW
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Figure 3: Continuous Wavelet Transform

Key aspects of the application:

1. We use the mother wavelet function +(¢), which satisfies the finite energy and zero average

condition:
[u=o0 ®)
R

2. The CWT of a continuous signal x(t) is defined by eq. 9:

T,(a,b) = w(a) / (b0

)dt 9)
R a

Where:

w(a) is a weight function, and generally, w(a) is taken as 1/4/a to have conservation of energy.

a: scale factor

b: translation factor

1, © complex conjugate of the mother wavelet

3. This transform allows us to analyze the signal at different scales and time positions, which
is crucial for detecting specific fault characteristics in motors. Therefore, the wavelet transform is

written by eq. 10.
1 t—1>
Tofah) = 7= [ atyu(— D (10)

4. In the analysis, the focus is on scales and positions that correspond to the characteristic
frequencies of rotor faults. The normalized wavelet function can be written in a compact form
given by equation 11.

ualt) = Z=0(

5. The CWT results are compared with those obtained using traditional Fourier-based methods,
evaluating their effectiveness in early failure detection under different loading conditions.

) (11)

This application of CWT enables more accurate and robust fault detection in induction motors, especially
under varying operating conditions or fluctuating loads.

3 Discrete wavelets transform

To apply the Wavelet Transform to a series of numerical data, it is necessary to implement a Discrete
Transform [14, 19]. Consider the Wavelet Transform of a continuous signal x(¢), but with discrete translation
and scaling parameters ¢ and b. A common way to sample the parameters a is by using logarithmic discretization
of the scale and linking it to the step size of b, that is, moving in discrete steps to each location of b which is
proportional to the scale a. This discretization of the Wavelet has the following equation (12):

)= e () (12)
0
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where, m,n € Z and control the scaling and translation respectively, a¢ is the fixed expansion step size
greater than 1, and by is the location parameter that must be greater than zero.

From equation (12), the translation step size bgaj)® is directly proportional to the wavelet scale afj*. Therefore,
the Wavelet Transform of the continuous signal x(t) using discrete Wavelets of the form (12) is given by equation
(13):

Do) = /R (L) 2(t) 75 (a5 ™t — mbo) (13)
Qg

The most common values of ag and by are 2 and 1 respectively. The logarithmic scaling in powers of two
of the translation and dilation step sizes is known as a dyadic grid array. Substituting ag = 2 and by = 1 in
equation (13), the wavelet of the dyadic grid is written as equation (14):

P (t) = \/%mw (t —(Z)So%) (14)
0

Simplifying the expression, it becomes eq. (15):

Ymn(t) =272 (27 — n) (15)

Discrete Wavelet Transform has an associated dilation equation and its scaling function, which contains

information about the smoothness of the signal, as well as having an expression analogous to the wavelet
function:

—m

Gma(t) =272 ¢(27™t —n) (16)

which meets

/R doo(t)dt = 1 (17)

where ¢ (t) and is called the scaling function. The scaling function is orthogonal to translations but not
to dilations. If the scaling function is convolved with the signal, then we obtain the approximation coefficients.
Eq. 18:

S = /R () thn ()t (18)

The approximation coefficients to the m scale are known as the discrete approximation of the signal on that
scale. It is possible to generate a continuous approximation of the signal through series according to the form
shown in eq. 19:

oo
Zm(t) = D Smnbma(t) (19)
n=—oo
where 2, (t) is a smooth version that depends on the signal scaling function z(¢) to scale m. It can represent
the signal z(t) by an expansion in a combined series of approximation coefficients and detail coefficients as
follows, eq. 20:

xm(t): Z Sm,n¢m,n(t)+ Z Z Tm,nd)m,n(t) (20)

n=—oo m=—0o0 N=—0o0
This original continuous signal equation is decomposed as an approximation of itself, to an arbitrary scale
myg, adding to it a succession of details that are below the mg scale. The m-scale detail signal is defined in eq.
21:

n=—oo

So, equation (21) can be rewritten as eq. (23):

0odm, (t)
T =Tmo () + D (22)
Tm-1(t) = Tm(t) + dm (1) (23)

That is, if we add the detail signal at an arbitrary scale m to the approximation at equal scale, then we
obtain the approximation of the signal at a higher resolution. This process is called multi-resolution rendering.
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4 Method and multi-spectral analysis

4.1 First approach: Conventional analysis based on the Discrete Wavelet Trans-
form.

The initial analysis employs the conventional 1-D Discrete Wavelet Transform (DWT) to examine the spec-
trum of the study signal. After data acquisition, the raw signal is processed using the MATLAB Wavelet
Analyzer DWT-1D application to obtain spectra at different levels, also known as multispectral or multiresolu-
tion analysis. To identify differences in rotor conditions, the resulting spectrum is used. In addition, the energy
of the detail coefficients is calculated, focusing on the level containing the characteristics indicative of the fault
condition. Due to the specific nature of this study, this is level four (cD4).

4.2 Second approach: Analysis with new method and Discrete Wavelet transform.

A second analysis is performed using the 1-D Discrete Wavelet Transform, but with prior signal preprocess-
ing. This preprocessing removes signals that may interfere with the analysis and sets a threshold to isolate the
signals of interest. (Figure 4).

SCP5-15B

s Al
o Triple Apply Post- Energy

Figure 4: Data acquisition and processing.

After signal conditioning, multi-resolution or multispectral analysis is applied using the fast wavelet trans-
form algorithm. Several important aspects are considered:

1. Choice of mother wavelet: Two wavelets from the same family but of different levels (Daubechies-44 and
Daubechies-45) are used for comparison, considering their correlation with the study signals.

2. Determination of decomposition levels: This is calculated using an expression that varies based on the
sampling frequency. Some software tools, like MATLAB, use their own expressions to calculate the
decomposition level limit.

The equation (24) chosen to calculate the decomposition levels or branches is:

log( L=

where f; is the sampling frequency and f; is the fundamental frequency.

For this work, with a fundamental frequency of 60H z and a sampling rate of 720H z, the calculation yielded
4 levels of decomposition.

It is important to note that the decomposition tree has a decimated dyadic structure, which optimizes the
system characteristics by avoiding redundancy in the output data (coefficients). Figure 7 illustrates the four
levels of the multilevel decomposition tree, showing the respective outputs of the detail coefficients and the
approximation coefficients for level four.

The choice of higher-level mother wavelets (such as db44 and db45) provides more accurate signal details
with lower harmonics. At higher levels, the wavelets are less localized in time and oscillate less due to the
natural dilation of the wavelet transform, behaving more like ideal filters. While db-45 might work better in
theory, correlation with the study signal remains a crucial factor in wavelet selection.

5 Methodologies

The project is divided into four main parts:

1. Preprocessing Validation: In this initial phase, the resulting analyzed signal is compared to the Fourier
transform, as it is the most commonly used tool currently for this type of signal analysis. This step serves
to validate the effectiveness of our preprocessing technique.

2. Signal Comparison with and without Preprocessing: In this phase, we compare the signals resulting from
the analysis with and without our preprocessing method. This comparison helps to evaluate the impact
and benefits of the preprocessing step.
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3. Multi-Resolution Analysis: We perform an analysis and comparison of the signal using multi-resolution
techniques. This approach allows us to examine the signal at different scales and resolutions, potentially
revealing features that might be hidden in a single-resolution analysis.

4. Optimization and Fault Detection: In this final phase, we focus on optimizing the signal to the level of
interest for comparison. We apply three different criteria and use an appropriate index along with signal
energy analysis to determine fault detection. This step aims to improve the accuracy and reliability of
our fault detection method.

By structuring the project in this way, we aim to systematically evaluate our proposed method against
established techniques, demonstrate the benefits of our preprocessing approach, leverage the advantages of
multi-resolution analysis, and ultimately develop a robust fault detection system for the motor under study.

6 Experiment and Tests

The validation of the method was carried out through a series of tests on a 4-pole, 2 Hp squirrel cage
induction motor. (Fig. 5). The experimental procedure is as follows:

Figure 5: Healthy rotor, ring and bar failure simulation, broken rotor.

1. Initial Testing: The motor was first tested in its healthy state.

2. Fault Simulation: Failure simulation: After performing healthy state tests, the motor was disassembled
to access the rotor. Rotor ring and bar breakages were artificially simulated in the laboratory by carefully
removing material to create perforations in the rings and bars. (Fig. 5).

3. Motor Specifications: The motor, a WEG model 00218ET3EM145TCW, was connected in a star config-
uration with a supply voltage of 220 V. Key specifications include:

- Nominal voltage: 230 V - Nominal primary current: 5.52 A - Rated power: 2Hp - Number of poles: 4 -
Rated speed: 1755rpm - Service factor: 1.25 - Insulation class: F

4. Data Acquisition: Signal data were acquired from Phase 2, selected for its superior stability among the
three lines. Primary current measurements were taken during steady state, with samples collected 10
seconds after motor start.

5. Equipment: For data capture, an analog-digital converter was used with a theoretical sampling frequency
of 860 samples/s, programmable gain and 16-bit resolution.

6. Analysis: Data acquisition was performed using Python, while Discrete Wavelet Transform (DWT) anal-
ysis was performed in MATLAB. A 4-level decomposition using Daubechies-44 and Daubechies-45 mother
wavelets was implemented for analysis and comparison.

This comprehensive testing approach allows for a thorough evaluation of the proposed fault detection method
under various motor conditions, from a healthy state to simulated faults.
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7 Comparative DB-44, DB-45 Methods

The methodology employed in this study used MATLAB as the primary analytical tool. Our approach
encompassed several key components:

Wavelet transform analysis: We applied wavelet transform techniques to process the motor signals.
Multi-resolution analysis: This allowed us to examine the signal at various scales and frequencies.

Signal optimization: We refined the signal to improve the detection of fault features.

= e o=

Comparative criteria: Three different criteria were applied and compared to evaluate their effectiveness
in fault detection.

o

Energy calculation: We calculated the energy of the signals to apply fault detection indices.

6. Validation: To confirm the results obtained through MATLAB, we performed controlled practical tests
using additional tools.

7.1 Analysis and comparison of the signal.

Table 1 presents the bandwidth distribution for each decomposition level, showing both high-frequency
(detail) and low-frequency (approximation) signal components. This analysis revealed that our area of interest
is mainly concentrated in the fourth level of detail, where signals indicative of motor failures are more prominent.

Table 1: Frequency bands in Hz for TWD with Fs = 720H z
Level | Approximation Details

1 A1:[0,360] | D1: [360, 720]
2 A2:[0,180] | D2: [180 , 360]
3 A3: [0, 90] D3 : [90 , 195]
4 A4: [0, 45] D4:[45,90]

L1L2L3

| SIGHAL
PREPROCESSING
y vy

ANALYSIS
DWT 1D

ANALYSIS STATE
HEALTHY VS FAIL

INDEX CALCULATIO
DETECTION STATE

VAL KMt

DATA ACQUISTION SIGHAL AMNALYSIS

Figure 6: Data acquisition and processing.

This comprehensive approach allows for a robust comparison between Daubechies-44 (DB-44) and Daubechies-
45 (DB-45) wavelets, allowing us to assess their relative performance in motor fault detection. The combination
of theoretical analysis and practical validation ensures the reliability and applicability of our findings in real-
world scenarios.

Figure 7 shows the multi-level decomposition tree. Figure 8 shows the no-load signal analysis for a healthy
motor, while Figure 9 shows the same for a motor with a broken bar and ring.

In both cases, variations in the coefficients at the level of interest (cD4) are observed. Although these
variations increase with the present fault, they may not definitively indicate an incipient fault, as they could be
due to other effects on the motor.

Preprocessed signal analysis: Figure 10 presents the analysis of a preprocessed signal for a healthy motor
without load. This preprocessing focuses on detecting early or incipient rotor failures. Compared to the raw
signal analysis (figure 11), the preprocessed signal shows smaller variations in the c¢D4 level, although with a
lower amplitude.

The variations increase with current fault, which could indicate a fault at the cD5 level. However, this level
does not mean early faults as it is outside the range. The cD4 level shows a higher signal variation, which could
suggest a rotor fault, but is not definitive. This behavior could be due to other motor effects.
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Figure 7: Multilevel decomposition tree

Figure 9: Raw signal fault empty engine.

Figure 8: Raw signal healthy empty engine.

Figure 10 presents the preprocessed signal to detect early rotor faults in healthy motors. The analysis
shows a lower variation in ¢D4 values compared to the raw signal in figure 8, despite a higher amplitude. This
preprocessing is designed to highlight incipient faults, making signal changes more apparent. Stability at cD4
levels is crucial for accurate energy calculations.

Figure 11 shows the analysis of the preprocessed signal for a faulty motor under no-load conditions, main-
taining stability at the c¢D4 level. This consistency is vital for accurate mean calculations and reliable fault
diagnoses. Non-uniform data can negatively impact the results, potentially leading to uncertainty or misdiag-
nosis of the motor’s operating state. The accuracy of the method depends on minimizing outliers and signal
oscillations.

Signal refinement: Figures 12 and 13 reveal a noticeable difference in coeflicient levels at cD4, where rotor
fault indicators are located.

Fourteen points from both ends of the signal range have been excluded to improve the results and ensure
high-value uniformity. This refinement helps mitigate deviations in coefficient results that could arise from
outliers or large magnitude variations.

This refined approach significantly improves the method’s ability to detect subtle changes indicative of
incipient rotor failure, increasing the overall accuracy and reliability of the diagnostic process. By focusing on

5
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Figure 10: Signal SCPS-1SB healthy empty. Figure 11: Signal SCPS-1SB fault empty
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the most relevant and stable parts of the signal, we improve the method’s sensitivity to early-stage failures while
simultaneously reducing the potential for false positives or negatives due to artifacts or signal extremes.

7.2 Applying new method to detect incipient failures.

The new approach to detecting incipient failures in squirrel cage rotor bars and rings focuses on minimizing
deviation and eliminating uncertainty caused by subtle differences between motor states. This method improves
our ability to detect early stage failures with greater accuracy.

Energy calculation methodology:

The energy of the coefficients is calculated using three different approaches:

1. Energy 1: Calculation using the full range of the level 4 detail signal.

2. Energy 2: Calculation excluding the convolution kernel length from the signal range.

inenumerate

3. Energy 3: Calculation excluding both the convolution kernel length and 14 additional points, determined
through experimental results.

To establish precision and bias metrics, we used a measure of central tendency in all tests, calculating the
energy concentrated in each spectrum in the selected range using MATLAB.

Analysis Procedure:

1. Signal conditioning: First, we preprocess the motor signal to improve the fault-related features.
2. Discrete Wavelet Transform: We apply the 1-D Discrete Wavelet Transform to the conditioned signal.

3. Decomposition tree: The signal is then processed through a decomposition tree based on the fast wavelet
transform algorithm.

4. Wavelet selection: We use Daubechies-44 (db-44) and Daubechies-45 (db-45) mother wavelets for com-
parison, considering their correlation with the study signals.

5. Decomposition levels: The number of decomposition levels is determined based on the sampling frequency
used.

6. Energy calculation: After signal decomposition, we calculate the energy of the level of interest (cD4),
where signals indicative of rotor faults are found (Figure 14).

This comprehensive approach allows us to detect subtle changes in the rotor state, which could indicate the
onset of faults before they become more severe. By comparing the results of different wavelet types and energy
calculation methods, we can optimize the accuracy and reliability of fault detection.

8 Results

The analysis shows that signals treated with preprocessing present greater stability and less variations
compared to those without preprocessing. Furthermore, the results show a clear distinction in magnitudes
between the fault-free and faulty states at the level of interest (cD4).
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Figure 14: Coefficient signals level 4 (cD4).

8.1 Tests

In the analysis performed at the level of interest for this study (c¢D4), and when applying the elimination
of the signal edges for the different tests performed, among the three ways of performing the signal analysis, a
greater stability is presented in the results of energy 3, this characteristic being of great importance to reduce
the uncertainty in the detection of incipient faults in the squirrel cage rotor, this can be observed in the results
obtained in tables 2 to 5, where the results are shown between the three selected ways of calculating the energy
of level 4, as well as when comparing the results obtained between the analysis performed with the mother
wavelet DB-44 and DB-45, both the graphs in Figure 12 to 15 indicate greater stability for the calculation of
energy when eliminating the kernel length and the extra points, this is confirmed by the average results of the
tables that show the lowest level of deviation.

Three different signal analysis methods are applied at the cD4 level, with a particular focus on edge removal.
Among them, the Energy 3 calculation method (which excludes both the convolution kernel length and additional
points) showed the highest stability. This feature is crucial for reducing uncertainty in the detection of incipient
faults in squirrel cage rotors.

Key Findings:

1. Stability Comparison: Tables 2 through 5 present the results of the three energy calculation methods.
Energy 3 consistently demonstrated the highest stability across all tests.

2. Wavelet Comparison: We compared the analyses using Daubechies-44 (DB-44) and Daubechies-45 (DB-
45) mother wavelets. The results highlight the differences in performance between these two wavelets.

3. Graphical Representation: Figures 15,16 visually confirm the superior stability of the Energy 3 calculation
method, which removes the core length and extra points from the signal edges.

4. Statistical Validation: The average results in the tables show the lowest level of deviation for the Energy
3 method, further supporting its effectiveness.

This improved stability and reduced drift in the Energy 3 method significantly improve our ability to detect
incipient rotor faults with increased confidence. The clear differentiation between fault-free and faulty states at
the ¢D4 level provides a solid foundation for early fault detection in squirrel-cage induction motors.

These findings underscore the importance of proper signal preprocessing and energy calculation methods to
improve the accuracy and reliability of motor fault detection systems.

Tests were performed on an induction motor under various conditions, using Daubechies-44 (db-44) and
Daubechies-45 (db-45) wavelets for signal analysis. Our results demonstrate the effectiveness of different energy
calculation methods for detecting motor faults.

1. Healhy Motor, No-Load Condition (db-44 Analysis):
Table 2 presents the absolute deviation results for a good engine under no-load conditions, analyzed with db-44.
Using a measure of central tendency as a reference, we calculate the average absolute deviations: Energy 1:
40.2%; Energy 2: 61.02%; Energy 3: 11.8%. The Energy 3 method shows the lowest deviation, indicating its
superior stability.

2. Faulty Motor (Broken Bar and Ring), No-Load Condition (db-44 Analysis):
Table 3 shows the results for a faulty motor under no-load conditions, analyzed with db-44. Average absolute
deviations: Energy 1: 19.2%; Energy 2: 35.8%; Energy 3: 13.09%. Again, the Energy 3 method demonstrates
the lowest deviation and maintains its effectiveness regardless of the motor condition.
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Figure 15: (a)Motor at idle without failure db-44 (b) Motor at idle with failure db-44
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Table 2: Absolute deviation engine in empty non-fault DB-44

Number of Test | Dev. Test Energy 1 | Dev. Energy 2 | Dev. ABS Energy 3
10 27.0127 95.4137 23.4482
20 15.4113 15.4113 0.6896
30 27.7632 3.30569 37.2413
40 60.0867 59.3823 6.2068
50 6.7053 29.1866 8.2758
60 80.9629 108.2676 15.1724
70 30.3361 94.4955 4.1379
80 12.3141 41.3805 0.6896
90 85.6309 111.7450 13.7931
100 55.8259 52.5289 8.9655

Table 3: Absolute deviation engine in empty fault DB-44

Number of Test | Dev. Test Energy 1 | Dev. Energy 2 | Dev. ABS Energy 3
10 18.1415 27.0949 11.4546
20 42.1134 97.5832 7.2382
30 37.7641 68.8925 5.4111
40 6.7083 48.1040 3.3028
50 14.0838 14.3827 23.4012
60 47.4215 21.4249 23.4012
70 1.9328 3.5821 28.6015
80 0.0158 68.8579 6.8165
90 11.7936 0.0004 10.3302
100 12.5114 8.5331 11.0330

3. Healthy Motor, No-Load Condition (db-45 Analysis):
Table 4 presents the results for a healthy motor under no-load conditions, analyzed with db-45. Average absolute
deviations: Energy 1: 34.8%; Energy 2: 41.7%; Energy 3: 11.8%. The Energy 3 method consistently shows the
lowest deviation in the different wavelet analyses.

Table 4: Absolute deviation engine in empty non-fault DB-45

Number of Test | Dev. Test Energy 1 | Dev. Energy 2 | Dev. ABS Energy 3
10 12.9780 32.9205 23.5023
20 2.3204 9.0224 0.4608
30 31.0811 41.4120 37.3271
40 35.3413 50.8000 6.9124
50 0.5845 4.1685 7.8341
60 87.5784 77.4172 15.2073
70 27.9249 10.6538 4.1474
80 0.4917 32.4465 0.4608
90 85.8663 83.4248 13.3640
100 63.8917 74.9040 9.6774

4. Faulty Motor (Broken Bar and Ring), No-Load Condition (db-45 Analysis):
Table 5 shows results for a faulty motor under no-load conditions, analyzed using db-45. Average absolute
deviations: Energy 1: 24.04%; Energy 2: 15.3%; Energy 3: 11.1%

These results consistently demonstrate that the Energy 3 calculation method provides the most stable and
reliable results under different motor conditions and wavelet types. This stability is crucial for the accurate
detection of incipient faults in squirrel cage rotors, thereby reducing uncertainty in fault diagnosis.
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Table 5: Absolute deviation engine in empty fault DB-45 in percentage

Number of Test | Dev. Test Energy 1 | Dev. Energy 2 | Dev. ABS Energy 3
10 58.1918 51.7871 11.4877
20 24.1447 0.8292 6.7796
30 36.5059 9.7479 5.4613
40 24.9554 4.4233 2.6365
50 1.4057 2.9663 23.7288
60 20.1569 42.6885 22.787
70 8.4249 13.4931 28.0602
80 24.1321 19.5553 7.3446
90 23.3965 0.2140 10.1694
100 19.1571 7.4274 11.1111

8.2 Approach for the new method for the detection of incipient faults.

The new method for fault detection in squirrel cage rotor bars and rings focuses on specific features that
allow identifying incipient faults with greater precision, reducing the uncertainty caused by subtle differences
between motor states. The analysis employs the 1-D Discrete Wavelet Transform, applying a decomposition
tree based on the Fast Wavelet Transform algorithm after signal conditioning. The mother wavelets db-44 and
db-45 are used to compare results, considering their correlation with the study signals. The decomposition
levels are determined according to the sampling frequency used.

9 Conclusions

This paper presents a new method for detecting faults in squirrel cage rotor bars and rings that focuses on
specific features that allow for more accurate identification of incipient faults, reducing the uncertainty caused
by subtle differences between motor states. The analysis employs the 1-D Discrete Wavelet Transform, applying
a decomposition tree based on the Fast Wavelet Transform algorithm after signal conditioning. The mother
wavelets db-44 and db-45 are used to compare results, considering their correlation with the study signals. The
decomposition levels are determined according to the sampling frequency used.

After analysis through the decomposition tree, the energy of the level of interest cD4 is calculated, where
signals indicative of the presence or absence of rotor faults are found. This approach allows for earlier and more
accurate detection of incipient rotor faults.

In today’s fast-paced world, predictive and early maintenance have become increasingly crucial, especially
for industries that rely on induction motors. This paper presents a new method for early detection of ring
and bar breakage in steady-state induction motors. Experiments performed on star-connected squirrel-cage
induction motors demonstrate that this method reduces uncertainty in determining the rotor state and provides
greater stability regardless of the rotor state or the mother wavelet used, thus increasing certainty in identifying
incipient faults.

The method is based on proper signal conditioning and the application of a special filter. This filter has
two purposes: to remove the line or fundamental frequency and to perform anti-aliasing. It is designed based
on widely studied frequencies known to indicate rotor damage. This filter, combined with signal acquisition
elements, forms the single-sideband signal conditioning preprocessing system (SCPS-1SB).

The process continues with the calculation of levels of the decomposition tree for multi-resolution analysis
based on the discrete wavelet transform. In this case, four levels are used, with special attention to the detail
coefficients of the fourth level. These coefficients are post-processed, including energy calculation using an
appropriate index and removal of extreme coefficients. This optimization reduces the core length to 14 points,
resulting in lower deviations compared to analyses without SCPS-1SB.

The results indicate that the proposed signal preprocessing method produces more stable and consistent
results compared to analysis without preprocessing. The “Energy 3” calculation method, which removes edge
coefficients and optimizes the core length, shows the lowest deviation and highest stability, clearly differentiating
between healthy and faulty motor conditions.

This method significantly reduces uncertainty and improves detection of incipient faults in broken rings
and cranks compared to conventional DWT analysis. It performs consistently regardless of the original wavelet
used, although conventional DWT analysis shows notable differences between db-44 and db-45 wavelets. The
proposed approach can more clearly diagnose various conditions, even under light load conditions where state
distinction is often challenging. By focusing on the frequencies of interest and refining the signal characteristics,
this method increases the accuracy in squirrel cage rotor fault detection and diagnosis.
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