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Abstract

In the context of the rapid development of autonomous vehicle technology and its increasing
influence on the global automotive industry, the ability to accurately forecast market trends has
become crucial for strategic decision-making. This study introduces the Hidden Mixture Gaussian
Markov Model (HMGMM), a novel probabilistic framework designed to enhance the precision
of market trend predictions in the autonomous vehicle sector. By addressing the limitations of
traditional Hidden Markov Models (HMMs), which struggle with high-dimensional continuous data
and dynamic market fluctuations, the HMGMM integrates Gaussian distributions to better capture
the complexities of market dynamics. Utilizing a sliding time window mechanism and an improved
algorithm for parameter dynamic updates, the HMGMM significantly improves response speed to
market changes. The research employs experimental analysis on real-world datasets to validate the
model’s effectiveness, demonstrating superior predictive performance with an accuracy of 0.892,
recall of 0.901, and reduced RMSE of 0.144. These results highlight the potential of HMGMM as
a reliable tool for market trend prediction, emphasizing the need for both the automotive industry
and market analysts to adopt advanced probabilistic models to anticipate future market shifts and
capitalize on the opportunities presented by autonomous vehicle technology.

Keywords: Autonomous driving car; Market forecasting; Hidden Markov Model; Accuracy;
RMSE

1 Introduction
The rapid development of the Autonomous Vehicles (AVs) market, propelled by a multitude of dy-

namic factors, presents significant challenges to predictive models due to its inherent complexity and
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uncertainty. Traditional forecasting methods, particularly the Hidden Markov Model (HMM), suffer
from substantial limitations when dealing with high-dimensional, continuous, and nonlinear market
data. HMMs, which assume discrete hidden states and static probability distributions of observed
values, struggle to capture the continuous dynamic features embedded in market data. Existing stud-
ies have identified several key issues with HMMs in the context of the AVs market. The modeling
of high-dimensional continuous data is problematic, as market indicators are essentially continuous
time series signals. HMMs must process such data through discretization or vectorization, leading to
information loss and the so-called "dimensional disaster" [1]. Moreover, the inadequate adaptability of
HMMs to dynamic fluctuations is a critical concern, given that the AVs market is highly susceptible
to sudden policy adjustments and technological breakthroughs [2]. Additionally, market data often
exhibit multi-modal distributions, which the single Gaussian observation hypothesis of HMMs can-
not effectively represent. Although recent research has attempted to enhance prediction performance
through deep learning or integrated approaches, significant shortcomings remain. While traditional
Gaussian mixture models can capture multi-modal distributions, they lack the capability to dynami-
cally model time series data [3, 4]. Current research has yet to effectively integrate time dependence
and probability distribution flexibility, making it difficult to achieve a balance between accuracy and
robustness in market predictions for the AVs industry [5]. To address these challenges, we propose
a Hidden Mixture Gaussian Markov Model (HMGMM). This innovative model can directly model
continuous market data by replacing the observation probability with a multi-Gaussian mixture dis-
tribution, thereby avoiding discrete information loss and accurately capturing multi-modal features.
The introduction of a sliding time window mechanism allows for the segmentation of long time se-
ries data, while an improved algorithm enables dynamic parameter updates, significantly enhancing
the model’s responsiveness to market changes. This research not only fills the technical gap between
continuous dynamic modeling and multi-modal characterization but also offers a new paradigm that
combines theoretical rigor with engineering practicality for high-precision predictions in more complex
market environments.

The proposed model is evaluated through a structured approach that includes four main com-
ponents. First, a comprehensive review of the literature on predictive models, probability theory,
and Big Data Analytics (BDA) is conducted, critically assessing the achievements and limitations of
prior research. Second, the proposed algorithm is constructed and analyzed in detail, with an em-
phasis on the introduction of an improved method that enhances the model’s capabilities. Third, the
performance of the model is rigorously verified through comparative experiments, demonstrating its
effectiveness and superiority over existing methods. Finally, the experimental results are summarized,
highlighting the study’s limitations and suggesting directions for future research. The meanings of all
mathematical symbols in the Paper are summarized in Table 1.

2 Literature review

2.1 Market Forecasting Models: models, challenges and limitations

The development of autonomous vehicle (AVs) represents a significant technological advancement in
the automotive industry, promising to transform transportation systems globally [6, 7]. The market for
AVs is a rapidly evolving and highly dynamic sector within the transportation industry, up to 13,632.4
billion dollars in 2030 [8]. As the AVs market continues to evolve, the ability to anticipate changes and
adapt to emerging trends becomes increasingly vital for maintaining competitive advantage [9] [10, 11].
Market forecasting for AVs is a critical area of research, given the potential transformative impact of
this technology on transportation systems, urban planning, and the environment, increasing road
capacity and mitigate traffic congestion [12, 13]. Effective market forecasting enables the authority
and companies to make informed strategic decisions, allocate resources efficiently, and mitigate risks
associated with market volatility [14]. However, Market forecasting for AVs is a complex task due to
the interplay of data, technological, regulatory, and consumer-driven factors.

Market forecasting for AVs is very complicated, influenced by regulatory and policy changes [16, 48],
consumer acceptance and trust, consumer behavior and preferences, technological and infrastructure
requirements, safety and ethical concerns, economic and environmental impacts. Rapid advancements
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Table 1: Summary of meanings of mathematical symbols
Mathematical symbol Implication

A A random sequence in a probability space
S The state
t Time

aij The transition probability from the current hidden state i
to the next hidden one j

A Transition moment probability matrix
S Homogeneous Markov chain
Q The set of all possible states
V The set of all possible observations
bij A transition possibility representing the likelihood from

states i at t to j at t + 1
A The transition probability matrix
B The observation probability matrix

bi(vt) The possibility of generating the observation value vt at time
t in state i

π The initial state probability distribution
πi The possibility at the initial moment t = 0 in the initial

state i

HMM Hidden Markov Model
St The hidden state at time t

O1:t Observed sequence from time 1 to time t

P (O1:t) The probability of observing a sequence
P (O1:t|St) The possibility of the observing sequence from O1:t when the

hidden state is St at time t

S1:t The hidden state sequence
P (O1:t, S1:t) The probability that the observation sequence and the hid-

den state sequence appear at the same time under the model
parameters

L(θ) The log-likelihood function of the probability
θ∗ The result of solving the L(θ) function

θ(k) The estimated parameter value obtained from the last iter-
ation

δt(i) The maximum possibility of the path with status i at time
t

in AI [10, 17], connectivity, and sensor capabilities are crucial for the growth of the AVs market. The
market for AVs is heavily influenced by regulatory and policy changes [13, 18]. Forecasting mod-
els must account for these external factors, which can be challenging due to their unpredictability.
[19] discusses the necessity of introducing autonomous trucks in logistics, highlighting the regulatory
challenges. [20] examines the life cycle greenhouse gas emissions of transitioning to an AVs fleet,
emphasizing the impact of policy changes. The widespread adoption of AVs depends on consumer
acceptance and trust [21]. Forecasting models must consider the impact of consumer attitudes, which
can be influenced by factors such as safety concerns and public perception [22, 23]. [23] explores the
psychological and socio-demographic influences on AVs adoption in Malaysia, highlighting the impor-
tance of consumer trust. Similarly, [24] examines the factors influencing the willingness to use public
AVs. However, consumer attitudes towards AVs are still evolving, and there is significant uncertainty
regarding their willingness to adopt this technology [25]. The successful deployment of AVs requires
significant technological and infrastructure advancements, including improvements in communication
systems, sensor technology, and road infrastructure. [26, 27] discuss the challenges and opportunities
of single-photon LiDAR systems for AVs, highlighting the technological requirements. Additionally,
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[28] proposes a dynamic queueing model for shared AVs, emphasizing the need for infrastructure
improvements. Safety and ethical concerns are major factors influencing consumer acceptance and
regulatory approval of AVs. [29] discusses the use of GAN-enhanced predictive frame synthesis for
AVs, emphasizing the importance of addressing safety concerns. Similarly, [30] constructs a robustness
benchmark for motion forecasting, highlighting the ethical considerations in model predictions. The
economic and environmental impacts of AVs are still being studied. These impacts, including changes
in transportation costs, energy consumption, and pollution levels, can influence market dynamics and
must be considered in forecasting models. [31] analyzes the reduction in urban air pollution due to
the expansion of eco-friendly vehicles, highlighting the environmental impacts of AVs. [20] examines
the life cycle greenhouse gas emissions of transitioning to an AVs fleet, emphasizing the economic and
environmental considerations.

Market forecasting is complex not only because of the above issues, but also because of models’
inherent uncertainty, limited historical data, dynamic market conditions, reliance on assumptions,
models’ own complexity. Market forecasting models have been widely researched, in spite of the
challenges and limitations.

Autonomous vehicles are a relatively new technology, and comprehensive historical data on their
market penetration is scarce [31, 32]. [14] highlights the challenges of establishing a reliable quan-
titative research approach for measuring AVs penetration due to data limitations. Similarly, [48]
emphasize the need for thorough analysis to forecast the penetration of electric vehicles (EVs), which
can be extrapolated to AVs. AVs-related data (e.g., sensor outputs, traffic patterns, and user behavior)
is highly heterogeneous, making it difficult to integrate and analyze. The market for AVs is rapidly
evolving, with continuous technological advancements and changing consumer preferences. Forecast-
ing models must adapt to these dynamic conditions, which can be challenging due to the need for
real-time data updates. [19? ] explores the determinants of personal concern about AVs, highlighting
the evolving nature of consumer attitudes. [34] discusses the growing trend of 4D scene perception
and prediction, emphasizing the need for continuous updates in forecasting models.

The future market penetration of AVs is inherently uncertain due to unpredictable technological
breakthroughs, regulatory changes, and consumer acceptance. Even the most sophisticated forecasting
models cannot account for all possible future scenarios. The review by [35] discusses the challenges
of motion prediction in autonomous driving, highlighting the uncertainties in forecasting future sce-
narios. Similarly, [36, 37] proposes a driving world model that aims to address these uncertainties
but acknowledges the inherent limitations. [38] predicts vehicle ownership growth using the Gompertz
model, highlighting the limitations in forecasting market penetration and emphasizing the need for
accurate forecasting models.

Forecasting models often rely on assumptions about future market conditions, technological progress,
and consumer behavior. If these assumptions are inaccurate, the reliability of the forecasts dimin-
ishes. [39] presents a method to predict EV market penetration and its impact on energy saving
and CO2 mitigation, but acknowledges the limitations due to assumptions about future technological
advancements. [36] categorizes techniques for future prediction and behavior planning, highlighting
the reliance on assumptions in these models.

Advanced forecasting models, such as those based on neural networks [40, 41], Markov chains or
deep learning [42, 43, 44], can be highly complex in model interpretation and validation. [45] intro-
duces a large-scale interactive motion dataset for developing joint prediction models, but acknowledges
the challenges in validating these complex models. Real-time forecasting demands low-latency pro-
cessing of high-dimensional data (e.g., traffic simulations, sensor fusion) [46], which strains traditional
models and requires significant computational resources. [42] discusses the computational challenges
of integrating deep learning models with AVs forecasting, particularly in handling large-scale data.
[47] highlights the limitations of deploying complex forecasting models on edge devices, which are often
used in AVs systems. [48] introduces a novel LiDAR perception task for occupancy completion and
forecasting, highlighting the rapid technological advancements in the field. Additionally, [49] discusses
the challenges of non-stationary spatio-temporal modeling, emphasizing the impact of technological
advancements on forecasting.
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2.2 HMM forecasting models

Hidden Markov Models (HMMs) have emerged as a cornerstone in sequential data analysis, lever-
aging their ability to model hidden states underlying observable sequences. HMMs applications have
expanded across diverse domains, including healthcare, predictive maintenance, market forecasting,
and big data analytics. However, inherent challenges and limitations persist, driving researchers to
innovate modified HMM architectures and hybrid methodologies.

In healthcare, HMMs have significantly enhanced medical imaging and diagnostics [4]. For instance,
a novel loss function integrating HMMs improved 3D medical image segmentation by penalizing im-
plausible anatomical predictions [50]. Similarly, combining Hidden Markov Random Fields (HMRF)
with the Whale Optimization Algorithm (WOA) optimized brain MRI segmentation accuracy, aiding
precise treatment planning [51]. Beyond imaging, HMMs like NeuroPeptide-HMMer (NP-HMMer)
advanced neuropeptide discovery in proteomics, particularly in understudied invertebrates [52].

Predictive maintenance systems benefit from HMMs’ temporal modeling capabilities. A multi-
channel fusion method combining HMMs with Bayesian theory enabled real-time remaining useful
life (RUL) predictions for industrial tools, facilitating proactive maintenance strategies [53, 54, 55,
56]. In machine condition monitoring, Hidden Semi-Markov Models effectively recognized operational
states [57, 58], while HMM-based frameworks optimized energy consumption in mobile fog computing
through dynamic computation offloading [47, 59].

Market forecasting has seen innovative HMM applications, such as nonparametric HMMs that
reduce modeling bias in stock price predictions by incorporating flexible emission models [60, 61].
Bitcoin price forecasting and multivariate Markov-switching models for crude oil markets further
demonstrated HMMs’ adaptability to volatile financial data [62, 63, 64]. Fraud detection in electronic
banking also leveraged HMMs to identify suspicious transactions in imbalanced datasets [65].

Despite their versatility, traditional HMMs face accuracy limitations in tasks like heart sound seg-
mentation and disease progression modeling. Standard HMMs struggled with noisy labels in named
entity recognition, prompting the development of Conditional HMMs (CHMMs) for unsupervised label
correction [54, 66]. Scalability remains another critical issue, as large state spaces strain computational
efficiency. Researchers addressed this via optimized regularization techniques and scalable architec-
tures [67]. Another challenge is computational complexity which hinders HMM integration with big
data analytics. Bayesian models scaling quadratically with data size demand specialized hardware
or parallel processing [68, 69]. Additionally, manual expertise dependency in risk management and
parameter tuning limits automation potential [70].

Modified HMM variants have emerged to tackle these challenges. Duration HMMs (DHMMs)
improved heart sound segmentation accuracy without relying on electrocardiogram data [66]. Tailored
HMMs (THMMs) and Evolving Connectionist Systems (ECoS) were designed for niche applications
like cellular map matching and tool wear monitoring [58, 71]. Hybrid frameworks integrating HMMs
with machine learning algorithms also gained traction. For instance, combining Pearson correlation,
exponential filters, and HMMs enhanced gaze-controlled object selection accuracy [72]. In big data,
graph-based HMM optimization algorithms improved time-series processing efficiency [73, 74].

The integration of HMMs with other techniques such as Bayesian networks, big data analysis
[75, 76], and machine learning algorithms has shown promising results in addressing complex problems.
One of the key applications of HMMs and big data analysis is in fault detection and prediction of
complex engineered systems [55]. Another significant application of HMMs and big data analysis is
in the optimization of big data processing using graph-based approaches [73]. One of the challenges
is the computational intensity of big Bayesian models that scale quadratically with the number of
observations [69, 77]. This computational complexity can limit the scalability of big data analysis
tasks and may require specialized hardware or parallel processing techniques to handle large datasets
efficiently. Another limitation of HMMs and big data analysis is the reliance on manual labor and
professional expertise for risk management tasks [70]. Thai H D et al. proposed a medical data
processing method in BDA [56]. Multiple data processing architectures were used to capture key data
such as pathology and distance, and analyze the captured data to build an application that provides
recommended solutions, while big data analysis can provide valuable insights into safety risks and
production activities



https://doi.org/10.15837/ijccc.2025.5.6911 6

This paper explores the potential of hybrid models, especially the implicit hybrid Gaussian Markov
model. By introducing Gaussian mixture model instead of the traditional single Gaussian distribution
hypothesis, the multi-modal characteristics of market data can be better captured and continuous
time series data can be effectively processed.

3 Research methodology

3.1 Hidden Markov Model (HMM)

HMM is typically composed of two random processes, which are based on a Markov chain observa-
tion sequence consisting of a series of potential hidden states. A Markov chain is characterized by its
memorylessness, where the probability of future states is entirely determined by the current state, in-
dependent of previous event sequences. HMM includes observable and unobservable states. The latent
states within an HMM do not have a direct one-to-one correspondence with the observed variables.
Consequently, only considering the order of observation results cannot determine the potential hidden
states that generate each observation result [78]. HMM lays the foundation for the proposed Hidden
Mixture Gaussian Markov Model (HMGMM), which aims to address the limitations of traditional
HMM in processing continuous data and improve the accuracy of predicting AVs market trends.

X0, X1, . . . represent a random sequence in a probability space, with values from countable or finite
sets. The random process is a Markov chain when it satisfies equation 1.

P {Xn+1 = in+1 |X0 = i0, X1 = i1, . . . , Xn = in } = P {Xn+1 = in+1 |Xn = in } (1)

i0, i1, . . . , in represents the state. Equation equation 1 is called non-aftereffect, which is a funda-
mental characteristic of Markov chains. This feature indicates that the state at time n is related to the
state at time n − 1, which is independent of the state before time n − 1. The conditional probability
is expressed as equation 2.

Pij(n) = P {Xn+1 = j |Xn = i} (2)

In equation 2, i, j ∈ I. Pij(n) is the transition probability from the current hidden state i to
the next hidden one j. The probability of the next hidden state is obtained after N different hidden
states, thereby obtaining an N × N transition moment probability matrix. This matrix can describe
the transition trajectory of implicit states in HMM, and each value in the matrix represents the
transition probability. For any m, n, if P {Xn = i} > 0 and P {Xm = i} > 0, then equation 3 holds.

P {Xn+1 = j |Xn = i} = P {Xm+1 = j |Xm = i} (3)

According to equation 3, {Xn : n ≥ 0} represents a homogeneous Markov chain. HMM extends the
concept of Markov chains by introducing unobservable states. Therefore, it is called "hidden". These
models generate sequences of hidden states following the probabilistic transitions inherent in Markov
chains. Subsequently, from these hidden state sequences, a corresponding set of observable sequences is
randomly produced. The state sequences delineate the interactions and transitions among the states,
while the observation sequence illustrates the probabilistic link between the hidden states and the
manifest observations, as governed by the observation probability distribution. This framework allows
the HMM to model complex systems where the intrinsic mechanisms are not directly observable but
can be inferred from the observable outcomes [79]. Assuming Z is the set of all possible states, while
G is the set of all possible observations, thus Z = {z1, z2, . . . , zN } and G = {g1, g2, . . . , gM }. A is the
transition probability matrix:

A = [aij ]N×N (4)

In equation 4, aij = P (st+1 = zj |st = zi), i = 1, 2, . . . , N , and j = 1, 2, . . . , N . aij is a transition
possibility representing the likelihood from states zi at t to zj at t + 1. The matrix B in equation 5 is
referred to as the observation probability matrix.

B = [bj(k)]N×M (5)
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In equation 5, bj(k) = P (ot = gk|st = zj), and k = 1, 2, . . . , M . bj(k) means the possibility of
generating the observation value gk at time t in state zj . The initial state probability distribution is
represented by equation 6.

π = (πi) (6)

In equation 6, πi = P (s1 = zi). π means the initial state probability distribution. πi refers to the
possibility at the initial moment t = 1 in the initial state. If HMM is set to λ, HMM is represented as
equation 7.

λ = (A, B, π) (7)

In equation 7, these three elements in HMM are the state transiting matrix, observing probability
matrix, and initial probability distribution. Markov chains and hidden states are determined by the
initial probability distribution and state transition matrix, and the generation of observing sequences
is determined by the observation matrix.

HMM has three fundamental challenges: probability computation, learning, and decoding. Prob-
ability calculation requires determining the conditional probability of the observed sequence given
specific model and sequence conditions. The learning problem involves estimating model parameters
from an observation sequence to maximize the likelihood of the observed data. In addition, the decod-
ing task is to identify the most likely hidden state sequences that may generate a given observation
sequence in the context of HMM. In terms of probability computation, the objective is to calculate the
likelihood of an observation sequence occurring under a particular HMM with its parameters. This
process can be approached using several algorithms, including direct computation, the forward algo-
rithm, and the backward algorithm. The direct calculation method first determines the probability
of a specific hidden state sequence, and then extends it to the corresponding observation sequence.
This method provides a simple but computationally intensive approach to evaluate the observational
likelihood of a given model parameter. The forward algorithm is represented by equation 8.

at(i) = P (o1, o2, . . . , ot, it = qi|λ) (8)

In equation 8, qi represents the hidden state. o1, o2, . . . , ot is an observed sequence from time 1 to
time t. at(i) refers to the probability of observing a sequence. There are N hidden probabilities at
time T . Each hidden state corresponds to a forward probability. The final probability can be obtained
by adding up each forward probability. The backward algorithm is represented by equation 9.

βt(i) = P (ot+1, ot+2, . . . , oT |it = qi, λ) (9)

In equation 9, βt(i) represents the possibility of the observing sequence from t + 1 to T when the
hidden state is qi at time t. At T , βt(i) = 1, i = 1, 2, . . . , N . HMM learning is a parameter opti-
mization problem that identifies the parameter that maximizes the possibility given a given observing
sequence. Supervised learning methods are used in situations where there are hidden state sequences
with complete annotations, and their training data requires high manual annotation requirements.
HMM has hidden state sequences that cannot be directly observed, so unsupervised learning methods
are generally used. EM is an algorithm that optimizes and iterates parameters based on given prior
parameters to find local optimal results. Firstly, the HH function is solved using equation 10.

Q(λ, λ) =
∑

I

log P (O, I|λ)P (O, I|λ) (10)

In equation 10, I represents the hidden state sequence. P (O, I|λ) represents the probability that
the observation sequence and the hidden state sequence appear simultaneously under the model pa-
rameter λ. log P (O, I|λ) represents the log-likelihood function of the probability. Q(λ, λ) represents
the result of solving the HH function. λ represents the estimated parameter value obtained from the
last iteration. Then, the Q function is maximized and the probability corresponding to the parame-
ters is estimated. The decoding problem is to estimate the maximum possible hidden state sequence
corresponding to a specific observation sequence, given the model parameters. The decoding problem
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usually uses approximation algorithms and Viterbi algorithms. The Viterbi algorithm solves the path
with the highest probability based on dynamic programming. The maximum possibility of the path
with status i at time t is represented by equation 11.

δt(i) = max
i1,i2,...,it−1

P (it = i, it−1, . . . , i1, ot, . . . , o1|λ) (11)

In equation 11, i = 1, 2, . . . , N . δt(i) represents the maximum possibility of the path with status i
at time t. Model parameters and observation sequences are inputted, and recursion is performed based
on the initial state parameters. When the maximum possibility condition is reached, the recursion
terminates. Finally, the optimal path is backtracked to find the optimal path.

3.2 Gaussian Mixture Model

The Gaussian Mixture Model (GMM) is a sophisticated probabilistic model that posits data points
are generated from a finite mixture of Gaussian distributions with unknown parameters [44]. These
distributions are convex combinations of various distributions. This model is particularly adept at
capturing the underlying structure of complex multi-modal data distributions, which traditional single
Gaussian models may not be able to meet. The Probability Density Function (PDF), or mixture
density, is typically a weighted sum of distribution PDFs. Strictly speaking, the sum of non-negative
weights is 1. Gaussian Mixture Model (GMM) is a concrete example of this mixture distribution,
which assumes that data points come from a mixture of a finite but unspecified number of Gaussian
distributions. The PDF of a GMM is articulated as a linear superposition of these constituent Gaussian
distributions, encapsulating the collective behavior of the mixture components:

N∑
k=1

πk = 1 (πk ≥ 0), p(x) =
N∑

k=1
πkN (x; µk, Σk) (12)

In equation 12, πk denotes the mixing coefficient for the k-th Gaussian component. N (x; µk, Σk) is
the density function of Gaussian distributions with mean µk ∈ RD and covariance matrix Σk ∈ RD×D.
x ∈ RD, and N, D ∈ N+.

3.3 The proposed autonomous vehicle market forecasting method based on prob-
abilistic big data analysis

This section details the probabilistic big data model for forecasting the AVs market. Firstly, the
limitations of HMM in handling continuous data are analyzed, and a Hidden Mixture Gaussian Markov
Model (HMGMM) is introduced to enhance predictive ability, which involves a dynamic training
method. Dynamic training has been applied in natural language processing [80, 81] and reinforcement
learning environments [82], etc. Dynamic training refers to a flexible and adaptive approach to model
training that allows for real-time adjustments based on the evolving characteristics of the data and
the performance of the model [83]. Dynamic training continuously evaluates and optimizes training
parameters, learning rates, and data inputs [85]. The core principle of dynamic training lies in its
ability to optimize the training process by integrating feedback mechanisms that inform adjustments,
thereby creating a more responsive and efficient learning environment. This adaptability enables
models to effectively capture new information and changing conditions, ultimately enhancing their
performance and accuracy, leading to more effective and precise outcomes [84].

The HMGMM integrates Gaussian models to address the shortcomings of HMM, handling con-
tinuous market data [85]. Based on the Expectation-Maximization algorithm, the model parameters
are optimized. Dynamic training pools are implemented to address the long-time spans and fluctua-
tions in market data, as a single training set may not effectively adapt to sudden changes and trend
turns in the market. The model utilizes a dynamic training pool to update the training set with
new market data. This process enhances prediction accuracy and response speed, ensuring the model
remains adaptable and predictive in rapidly changing market conditions. The continuous updating
of the training set enables the model to maintain efficiency in adapting to new market data. This
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results in improved predictive ability and response speed in dynamic market environments. Compara-
tive experiments showed that HMGMM outperformed HMM and other models in accuracy and recall,
providing a robust tool for market trend prediction in the AVs industry.

Market data are a typical time series data. The time attribute plays a crucial role in price changes
and price state transitions. HMM cannot represent high latitude continuous data in observation, and
vectorization of continuous data can lead to loss of data information. To address this issue, the study
proposes HMGMM to extract and predict continuous features. Fig. 1

T E S T E S S E T

St-1 St St+1

M1 M2 Mi
... M1 M2 Mi

... M1 M2 Mi
...

H
M

G
M

M

Multivariable 

Gaussian 

mixture mode

Hidden 

state

The i th Gaussian model

Figure 1: Structure of a Gaussian Mixture Model (GMM)

The study incorporates adjacent states into the market volatility prediction model. The state
St+1 at t + 1 is influenced by the adjacent state St, and a Gaussian mixture model is utilized to
derive the observation information Ot of the hidden state St at t + 1. HMGMM is represented as a
quintuple (S, O, A, B, π). S = {1, 2, . . . , n} represents the set of state probabilities. HMGMM utilizes
the EM algorithm to search for probability maximization parameters. In general, EM is used in a
single observing sequence. However, these market time series data are relatively long, and a longer
time span can affect the prediction performance. Modeling as a single observation sequence will lead
to lower recognition rates. The study proposes a dynamic training pool to re-estimate parameters, as
displayed in Fig. 2.

Original sequence

Time step

T1

T2

T3

Tn-2

Tn-1

Tn

Figure 2: Dynamic training cell

Fig. 2 is a schematic diagram of the dynamic training pool, where the raw data is divided into
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multiple segments. The data segments are divided into appropriate lengths and time intervals to
achieve the optimal window size. The complete HMGMM method operation process is shown in
Fig. 3.

Data preprocessing Model construction Parameter initialization Dynamic training

Inferred hidden stateMultimodal prediction
Verify prediction 

accuracy

Model deployment and 

application

Figure 3: Operation flow of HMGMM method

4 Results and discussion
The performance analysis of the AVs market prediction model based on probability theory BDA

is divided into two subsections. Firstly, the improvement effectiveness was verified. Then, it was
compared with other models to verify its superiority.

4.1 Effectiveness analysis of market forecasting models

The study selected AVs data from multiple automotive websites, with data sources spanning from
January 1, 2022 to January 1, 2023. After preprocessing, the data is divided into training set and
test set according to 7:3. The test set serves both testing and validation purposes. The laboratory
environment is set as shown in Table 2.

Table 2: Laboratory environment setup
Hardware and software configuration Version model
CPU Intel(R) Core i7-7700@3.6GHz
GPU GTX 1060
Operating system Ubuntu 18.04 LTS
RAM 32G
Display memory 6G
CUDA 9.1

Table 2 shows the laboratory environment settings. Indicators such as accuracy, recall, F1 Score,
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error
(MAPE) were selected to measure the predictive performance. MAE measures the average absolute
deviation between predicted and true values, which can reflect its prediction error. RMSE measures
the difference between predicted and true values, which is obtained by squared error and then squared
to evaluate the prediction accuracy. MAPE evaluates the percentage of prediction error in a model,
helping to understand the relative magnitude of error between predicted and actual values. HMM and
HMGMM were trained on the training set. Fig. 4 shows the training results.

Fig. 4 (a) presents the fitting effect of HMM, and Fig. 4 (b) shows the fitting effect of HMGMM.
The red line refers to the actual value, the green one refers to the fitted value, and the blue one refers
to the model residual value. The overall fitting effect of these two models on the data was good, and
the overall data trend was relatively synchronous. HMGMM demonstrated a better fitting effect at
turning points and stronger explanatory power at poles compared to HMM. HMM and HMGMM were
tested on the test set. Fig. 5 shows the accuracy and recall.

Fig. 5 (a) shows the accuracy comparison of the two models. From the results, the prediction
performance of HMM was medium, and the accuracy was roughly maintained at 0.8, while HMGMM
showed a high prediction accuracy, and the accuracy was stable at 0.9. This shows that HMGMM can
more accurately fit market trends, reduce forecast errors, and is especially adaptable under complex
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Figure 5: Comparison of accuracy and recall rate between HMM model and HMGMM model

market conditions. Fig. 5 (b) compares the recall between these two models. The recall of HMGMM
was significantly higher than HMM, indicating that HMGMM was better at identifying real changes
and trends in the market, and could capture more market fluctuations and important turning points.
This feature enables HMGMM to not only more accurately reflect the current market state, but also
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effectively predict potential future market changes and provide more valuable predictive information.
HMM and HMGMM are tested on the test set as displayed in Table 3.

Table 3: Experimental comparison between HMM model and HMGMM model
Index HMM HMGMM
Accuracy 0.796 0.892
Recall rate 0.814 0.901
F1 score 0.756 0.897
MAE 0.158 0.122
RMSE 0.169 0.144

Table 3 shows the comparison results between HMM and HMGMM experiments. HMGMM per-
formed better than HMM in various evaluation indicators. Compared to HMM, HMGMM had better
accuracy, recall, F1 score, MAE, and RMSE. Firstly, the accuracy of HMGMM was 0.892, which was
higher than HMM’s 0.796. In terms of recall rate, HMGMM was 0.901, which was significantly better
than HMM’s 0.814. In terms of F1 score, HMGMM was 0.897, which was also significantly higher than
HMM’s 0.756. In addition, the MAE and RMSE of HMGMM were 0.122 and 0.144, both lower than
the corresponding values of HMM. This indicates that HMGMM captures the changing trends of real
data more accurately in market forecasting, with smaller relative errors and more accurate and reliable
predictive performance of this model. Therefore, based on the performance of the above indicators,
HMGMM performs better than HMM in market forecasting models, with stronger predictive ability
and higher accuracy, making it more suitable for market trend prediction.

4.2 Performance analysis of market forecasting models

After verifying the effectiveness of the model improvement, the model performance was further
tested. This study compares the Autoregressive Integrated Moving Average model (ARIMA), Long
Short-Term Memory (LSTM), Prophet Forecasting Mode (Prophet), and Random Forest (RF) models
that can be used for market forecasting with the proposed HMGMM. ARIMA is a classic time series
analysis method that can capture the data trends and periodicity. RF is an ensemble learning method
that improves a model accuracy and generalization by randomly selecting subsets of the dataset and
feature set for training. Prophet can automatically process various complex time series patterns
and predict future trends and changes. LSTM can better capture long-term dependencies, avoid the
vanishing or exploding gradients, and better handle long-term memory in sequence data. Fig. 6 shows
the accuracy and recall of various models.
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Figure 6: Accuracy and recall rate results of multiple models under time series

Fig. 6 (a) presents the RMSE of various models. The RMSE of LSTM and Prophet were both high,
with values of 0.251 and 0.234, respectively. The RMSE of the proposed HMGMM was lower than
0.25 of ARIMA, indicating that the prediction error of HMGMM was smaller. Fig. 6 (b) compares
recall rates for various models. From the results, the LSTM model had the worst recall rate, while
HMGMM had the highest recall rate, reaching 0.901. This means that HMGMM is particularly good
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at capturing real movements and key turning points in the market. The higher recall rate makes
HMGMM more sensitive to identify potential changes and abnormal events in the market, able to
respond to major market fluctuations in a timely manner, and provide more accurate forecasting
results.

Fig. 7 presents RMSE and MAE values.
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Figure 7: Comparison results of RMSE and MAE of various models

Fig. 7 (a) presents the RMSE of various models. The RMSE of LSTM and Prophet were both high,
with values of 0.251 and 0.234, respectively. The RMSE of the proposed HMGMM was lower than 0.25
of ARIMA, indicating that the prediction error of HMGMM was smaller. Fig. 7 (b) shows the MAE
results of multiple models. LSTM, Prophet, and RF had significant MAE values, indicating that these
three models had significant prediction errors. The HMGMM error remained around 0.122, indicating
that this prediction error was small and its prediction effect was good. From the perspective of method
application, low RMSE and MAE are crucial for market forecasting models, especially in the rapidly
changing and highly uncertain environment such as the AVs market. Smaller errors can provide more
accurate market prediction for decision makers and help them make more accurate strategic decisions.
Fig. 8 shows the MAPE of multiple models.
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Figure 8: MAPE results for multiple models

Fig. 8 shows the MAPE comparison for multiple models. From the results, the MAPE value of
RF and Prophet was relatively close, maintaining around 15, while the MAPE value of LSTM and RF
was high, about 18. This indicates that there are significant errors in the prediction process, especially
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when there are significant changes in market dynamics, and their predictive ability is relatively limited.
In contrast, HMGMM had the lowest MAPE value, which was basically maintained at about 12, and
its average MAPE value was 12.77, which was the smallest among all models, indicating that HMGMM
had higher accuracy and smaller error in actual prediction. Through comparison, it can be found that
Prophet has the highest MAPE value and significant error, indicating that the model has a significant
deviation in the fitting process of market data, resulting in a large gap between the predicted results
and the actual values, and the fitting effect is poor. In contrast, HMGMM shows a more stable
prediction effect, and its lower MAPE value reflects the better adaptability to market fluctuations and
accurate prediction ability.

4.3 Discussion

The proposed application of HMGMM in AVs market forecasting shows that it has significant
advantages in processing high-dimensional continuous data and dynamic market fluctuations. The
innovation of HMGMM is that by introducing Gaussian mixture distribution, it can more accurately fit
complex market dynamics, especially in multi-peak distributions and nonlinear fluctuations, showing
stronger adaptability and interpretation ability. The experimental results showed that HMGMM was
significantly better than HMM and other comparison models in accuracy (0.892), recall rate (0.901),
F1 score (0.897), and other evaluation indicators. For example, compared with HMM, HMGMM
not only has a higher accuracy rate, but also can better identify important changes and trends in
the market. Therefore, faced with rapid market fluctuations, it is possible to respond and make
predictions in a timely manner. This feature makes the HMGMM more applicable and reliable in
AVs market prediction, especially under complex market conditions. From a practical application
perspective, HMGMM can provide effective predictive support in highly dynamic and uncertain market
environments. Especially for fast developing industries such as AVs, accurate market trend prediction
can provide valuable information for decision-makers and help them adjust strategies timely.

5 Conclusion
This study uses the advantage of Probabilistic Big Data Analysis (BDA) to apply HMGMM to

market forecasting in the field of AVs for the first time. The proposed model addresses the limita-
tions inherent in traditional HMM by integrating Gaussian distributions, handling high latitude and
continuous data and improving predictive accuracy.

The proposed HMGMM has undergone rigorous validation, demonstrating its effectiveness and
superiority over HMM and other predictive models through comparative experiments. The model
exhibits a higher overall fitting effect and stronger explanatory power, particularly at extreme points.
The accuracy and recall rates reached 0.892 and 0.901, respectively, with an F1 score of 0.897. The
proposed model outperforms other models, indicating its strong predictive ability and high accuracy in
predicting market trends. In terms of performance metrics, the proposed model achieved lower values
for RMSE, MAE, and MAPE, at 0.144, 0.122, and 12.77, respectively. These results underscore the
model ability to accurately predict the AVs market, meeting the demands of market forecasting with
higher precision compared to other models.

In conclusion, HMGMM is a reliable method for detecting hidden states in market predictions,
which is recommended for application in similar prediction tasks. The proposed model can meet the
needs of AVs market prediction and accurately predict the market. Although HMGMM demonstrates
excellent predictive performance in this study, there are still some limitations that need further im-
provement. For example, this study only uses monthly data for model validation, and future research
can attempt to apply the model to data with longer time spans to further examine its performance at
different time scales. In addition, the sensitivity and robustness of HMGMM to abnormal data still
need further research to improve its stability under extreme market conditions.
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