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Abstract

The study explores the effectiveness enhancement of depth-first search with control graph edge
dynamic removal technique for software vulnerability detection in graph neural networks. The re-
search methods include constructing code attribute graphs, applying depth-first search algorithm to
optimize the structure of code attribute graphs, dynamically removing redundant control-dependent
edges, and integrating different natural language processing models to vectorize the code attribute
graphs. The results of the study indicated that the proposed algorithm achieved 96.89% accuracy,
95.12% precision, 97.76% recall, and 96.40% F1 score on Software Assurance Reference Dataset
and National Vulnerability Database datasets, which significantly outperformed the other models.
On the FFMPeg and Qemu datasets, the Bidirectional Encoder Representations from Transformers
version also exhibited the best performance. The accuracy was 92.19%, precision was 86.64%, re-
call was 91.73%, and F1 score was 89.10%. These results suggest that integrating the Bidirectional
Encoder Representations from Transformers Bidirectional Encoder Representations from Trans-
formers model is beneficial. The method proposed in the study provides practical help to software
security professionals and developers through innovative code graph modeling and deep feature
learning mechanisms: first, it significantly improves the efficiency of real-time vulnerability detec-
tion; second, it greatly reduces the false alarm rate, which can help developers accurately locate
real vulnerabilities, reduce ineffective troubleshooting work, and effectively enhance the security
protection effectiveness in the software development life cycle.

Keywords: software vulnerability detection, graph neural networks, DFS, control graph edge
dynamic removal, natural language processing models.

1 Introduction

With the rapid development of information technology, the complexity of computer systems is
increasing and the problem of software security vulnerabilities is becoming more and more serious [1].
According to the latest statistics, cyber-attacks and software vulnerabilities have become important
factors leading to losses, affecting the daily operations of individual users and organizations. Tradi-
tional software security detection methods, including static code analysis and dynamic testing, are
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able to detect potential vulnerabilities to some extent, but these methods usually have limitations
[2, 3]. For example, static analysis often leads to a significant reduction in the reliability of the de-
tection results due to false positives and omissions, while dynamic testing may not be able to cover
all execution paths, resulting in some hidden vulnerabilities not being detected [4]. In this context,
graph neural networks (GNN)-based vulnerability detection methods are gradually gaining attention.
Such methods can effectively capture the features of complex data structures in programs, instead of
relying only on traditional linear analysis. However, existing GNN-based vulnerability detection still
faces many challenges, mainly including how to efficiently handle redundant information in the code,
insufficient dynamic performance, and lack of interpretability [5, 6]. These problems limit the wide
application of GNN in vulnerability detection, especially in real development environments, where
developers need to obtain reliable security feedback quickly. Meanwhile, with the development of
artificial intelligence technology, it has become a new research challenge to apply advanced machine
learning techniques to software vulnerability detection to improve the automation and intelligence of
detection [7]. Therefore, the study proposes a GNN model based on depth-first search (DFS) algorithm
with control graph edge dynamic removal technique to optimize the existing vulnerability detection
framework. DFS is a graph traversal algorithm for systematically exploring nodes and edges in a
graph. The control graph edge dynamic removal technique, on the other hand, dynamically removes
redundant edges from control flow graph (CFG) during program analysis. It optimizes the program
structure and thus improves the performance and accuracy of the vulnerability detection framework.
The innovation of the research is the introduction of a new method that combines multi-task learning
and attention mechanism to effectively recognize and correct important features in the code. It also
reduces the interference of redundant information on the detection results in order to enhance the ef-
fectiveness of existing vulnerability detection techniques, especially in terms of accuracy and efficiency.
It is expected that these innovations can provide better feedback support for developers.

2 Related works

Many research teams have proposed a series of innovative approaches for path planning and vul-
nerability detection problems in different fields. Zhang S et al. addressed the localization problem
of robot exploration in a global positioning system (GPS)-free environment, and realized global path
search by improving Dijkstra's algorithm and proposing a cost function that takes into account the
localization uncertainty. In addition, this study proposed a hybrid filter based on Lie groups for online
estimation of the planner's state information. Experimental results demonstrated that the efficiency
of this method in exploring GPS-free environments was better than existing methods [8]. Jovanovi¢,
V et al. conducted a study on the axial bearing load of the slewing platform drive mechanism of a
hydraulic excavator, aiming to analyze the factors that affect its load. By constructing a mathemat-
ical model of the excavator, and using static and dynamic simulation programs, they analyzed three
different kinematic chain configurations of a 100,000 kg crawler hydraulic excavator. The study clar-
ified the influence of each factor, which, like the graph neural network detection method, helps solve
specific engineering problems [9]. Guo H et al. explored the problem of path planning in dynamic
environments, especially the effect of changing obstacle locations or access costs on path effectiveness.
The study comparatively analyzed the path planning performance of A and its dynamic variants by
constructing a simulation environment. It also examined the effects of factors such as grid type, size,
and varying obstacle proportions on the performance of the algorithm [10]. In order to monitor and
evaluate the degradation of concrete structures, Bani Mustafa A et al. conducted experiments using
three deep learning models: ResNet-50, Xception, and SONN. Among them, ResNet-50 and Xception
are based on transfer learning, while SONN is a customized sequential convolutional neural network
architecture. The results show that the SONN model has the highest accuracy of 90.2%, while Xcep-
tion and ResNet-50 are 86.3% and 70%, respectively. This is similar to the depth-first traversal and
dynamic edge removal methods in graph neural network vulnerability detection, both of which improve
performance by optimizing network structure or model parameters [11].

In the field of software vulnerability detection, Do Xuan et al. proposed a novel detection method
integrating source code embedding, feature learning, data resampling and classification in order to im-
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prove the detection efficiency. Experiments on the Verum dataset indicated that the method achieved
excellent results in all the metrics, which was the current state-of-the-art research result in the field of
source code vulnerability detection. This could be of great significance in improving the efficiency of
analyzing and detecting source code vulnerabilities [12]. For the full fuzzy data envelopment analysis
(DEA) problem, Stanojevi¢ B et al. proposed a processing method based on the extension princi-
ple. The Monte Carlo simulation algorithm was used to visualize the fuzzy efficiency shape of the
decision-making unit (DMU) in the full fuzzy DEA. The results show that the algorithm can verify
whether the solution conforms to the extension principle and reveal the fuzzy shape of the weight.
This method is similar to the idea of optimizing the algorithm structure to improve efficiency in graph
neural network vulnerability detection [13]. Garcia-Gastelum et al. focused on the issue of attracting
foreign investment in countries, aiming to explore how to use reasonable methods to evaluate the
ease of doing business in various countries. Using the ELECTRE-III method in multi-criteria decision
making (MCDM), 190 countries were evaluated according to the World Bank's business indicators
based on the preferences of decision makers. The results show that the rankings obtained by this
method can better position countries compared with the World Bank report. This is like a specific
graph neural network detection method to improve efficiency and help optimize related evaluations
[14]. Zhang J et al. proposed an efficient software vulnerability detection method by CFG decom-
position and pre-training code models. The experimental results showed that the method improved
22.30%, 42.92%, and 32.58% in precision, recall, and F1 score, respectively, over the existing baseline.
The analysis further confirmed the effectiveness of the method [15]. While methods proposed by Lin
et al. (2023) and Zhang et al. (2023) have improved vulnerability detection accuracy, their approaches
lack the capability for dynamic edge removal and multi-task learning, limitations that our approach
specifically addresses.

To summarize, many experts have conducted research on deep learning algorithms for software
vulnerability detection and the application of GNN in security. Despite prior efforts, current GNN-
based vulnerability detection techniques still face limitations in accurately identifying critical control
flow paths due to redundant or misleading edges, which our study specifically addresses through
dynamic edge removal and integration with advanced Natural Language Processing(NLP) models.
Therefore, a novel GNN model is studied and developed, which is based on the improved code property
graph (CPG), incorporating DFS and control graph edge dynamic removal techniques. This can
overcome the limitations of existing vulnerability detection models in terms of accuracy, information
retention, and dynamic environment adaptation. It is expected that the proposed model of the research
can help to enhance the security and reliability of software systems.

3 Research Method

3.1 VDCPG Modeling

Graph attention networks (GAT) enables each node to dynamically assign weights based on the
importance of neighboring nodes during feature updates by introducing a self-attention mechanism
[16, 17]. When performing DFS; GAT can efficiently traverse each node of the graph, thus dynamically
evaluating the features of each node during the traversal process. Through the attention mechanism,
the algorithm is able to identify key neighbor nodes during traversal and optimize feature aggregation
for node classification or regression tasks. Meanwhile, the dynamic removal of control graph edges
can be realized by the attention mechanism of GAT [18]. During the evolution of the graph, if some
edges are no longer important, GAT can naturally ignore these edges by a lower attention score. The
self-attention mechanism of GAT is shown in Fig. 1.

In Fig. 1, the network contains self-attention and multi-attention mechanisms. Among them, the
self-attention mechanism calculates the attention coefficient through a specific formula to achieve the
effective integration of node features and the dynamic adjustment of neighbor weights. The specific
formula is shown in Equation (1).

eij=a(Wh; +Vt;, Wh; + V't;) (1)
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Figure 1: Self-attention mechanism of GAT

In Equation (1), e;; denotes the un-normalized attention coefficient between node i and node j.
a is a learnable activation function. W is a learnable weight matrix. ¢; indicate the corresponding
vulnerability type embedding vector. V' rmbedding Matrix for Types. By introducing type sensitive
attention calculation, the model can dynamically adjust the edge weights of different vulnerability
types. The application of Softmax function to all choices of node j helps to normalize the coefficients
between nodes as shown in Equation (2).

exp (€i5)
> exp(er) @

keEN;

a;; = softmax; (e;;) =

In Equation (2), a;; denotes the attention coefficient of node i to node j, softmax j is a normal-
ization function. N; denotes the set of neighbor nodes of node i. The study proposes the VDCPG
model, which is a GNN-based function-level vulnerability detection method that can help to solve the
problem of loss of syntactic and semantic information during the conversion process that exists in the
existing vulnerability detection models. The workflow of the VDCPG model is shown in Fig. 2.

SARD&NVDFD . /\4 e
&Qmeu datasets “ ! Optimized CPGS MLP classification
CPGs / GAT /

Figure 2: Workflow of the VDCPG model

In Fig. 2, initial CFGs are first constructed using SARD, NVDFMP and Qmeu datasets, followed
by an optimization process to enhance the accuracy of CPGs. The optimized CPGs are fed into GAT
to further extract and learn graph structure features of the code. Eventually, the GAT-processed
features are fed into the MLP for classification to enable the detection of software vulnerabilities.
After completing this series of workflows, the optimized CPG is vectorized using the Word2Vec model.

Due to the advantages of simple and efficient MLP structure and low computational cost, when
validating the core innovations of VDCPG models (such as graph structure construction, feature
extraction mechanism, etc.), using MLP can focus on the effectiveness of the model subject in a
lightweight manner, avoiding the introduction of additional variables such as Transformers or loop
architectures that may interfere with the validation of the model's core logic. Meanwhile, as the basic
classification unit, MLP is more conducive to comparing and analyzing the impact of front-end graph
processing modules on vulnerability detection performance. Therefore, MLP is adopted as the final
vulnerability detection classifier in the VDCPG model.

In this, CBOW model is used to predict the target words based on the context. Eventually, the
data is converted into vector form, and then these vectorized data are deeply learned and analyzed
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using GNN, and then the learned features are comprehensively evaluated by MLP. The CBOW model
is shown in Fig. 3.

QL O

Figure 3: CBOW model

In the example CBOW model illustrated in Fig. 3, the model input is the context vector of a
certain word ¢; . In the setting of the study, the context of word ¢; consists of ¢ words before and
after it, totaling 2c¢ words. The vectors of these words are denoted as wvi,v9,...,v9. € R™, where
m represents the length of the vector. Each word ¢; is represented by a fixed-length vector of real
numbers, i.e., the word vector. The output of the model is the result of the projection layer, as shown
in Equation (3).

2c
1
ve = 5o > (v i) € BT (3)
k=1
In equation (3), pr is the position encoding vector based on trigonometric functions, where
P(pos,2i) = Sin ( pos2i>, and P(pes2i+1) = cos( posgi), with pos being the position of the word,
10000°d 10000d

i as the dimension index, and d as the dimension of position encoding [19]. The tree has N leaf nodes
corresponding to N — 1 non-leaf nodes. Each word ¢; has a unique path from root to leaf in the tree,
denoted as P; . The path D contains /; nodes, the j th node is denoted as n; ; and its vector is denoted
as Qi,j.divj is the binary encoded value of the node n;; . The left branch is encoded as 1 . where the
left branch is encoded as 1 and the right branch is encoded as 0 . The d; ; sequence of each path P;
constitutes the Huffman encoding of the word ¢; . For each path from root to leaf in the tree, the left
and right branching probabilities of the non-leaf node n; ; are calculated by Equation (4).

P (dz‘,j | Teys 0ij—1) = [U <.%'Z;0i7j_1)]1*di,j . [1 s ($0Ti€i7j_1)}d¢,j (@)

In Equation (4), P(di; | x¢;,0ij—1) is the conditional probability of the encoded value d;; of
node nh;; given the context vector X, and the vector representation 6; ;1 of the previous node.

o ($:ﬁcuf1) is the sigmoid function. {1 -0 (JEZGiJ,l)} is the complement of the sigmoid function.
x! is the transpose matrix. o represents the sigmoid function. In the CBOW model, for the unique

Ci
path P; of the target word ¢;, there are [; — 1 decision points on the path. Each decision point involves
two choices and thus can be considered as a binary classification problem. The required conditional

probability is the cumulative product of these binary classification probabilities as shown in Equation

(5).

I
P (¢; | context (¢;)) H dij | @e;,0i5-1) (5)

In Equation (5), P (c; | context (c;)) is the conditional probability of the target word ¢; given
l
the context context (¢;). ] P(di; | z¢;,0i—1) is the product of the conditional probabilities of all
=2

branches from the second node to the last node of the path P; [20, 21]. The study first converts CFG
node types to one-hot coding for processing by machine learning algorithms. Next, the inter-node
relationships are represented using an adjacency matrix, where different values correspond to different
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types of edges. When performing DF'S, each node can be accessed efficiently and feature extraction can
be performed based on its one-hot encoding. Combined with the attention mechanism, the importance
of neighbors can be dynamically evaluated during traversal to optimize feature aggregation. The
dynamic removal of graph edges can be controlled during traversal to eliminate those edges with lower
weights, thus reducing redundant information and improving model efficiency. Finally, in order to
improve the feature representation capability, the study introduced a hierarchical attention mechanism
and a Transformer based encoding module. The hierarchical attention mechanism includes two levels:
node level and subgraph level, which can more comprehensively capture information in the graph
structure. Meanwhile, the Transformer encoding module utilizes a multi head self attention mechanism
to effectively handle long-distance dependencies in the code.

3.2 Integration of NLP models

After the description of the VDCPG model has been developed, in further research, the DFS
algorithm is considered to be able to play a role in optimizing the CPG structure to improve the
accuracy and efficiency of software vulnerability detection [22]. By applying DFS, it is possible to
deeply explore the execution path of the code, identify critical nodes and edges, and construct more
accurate CFGs [23]. The differences between differentNatural Language Processing (NLP) techniques
are shown in Table 1.

Table 1: Differences between different NLP technologies
Technique  Accuracy Complexity Training Efficiency

Word2Vec  Moderate Low High
GloVe Moderate Medium Medium
ELMo High High Low
BERT Very High  Very High Low

Therefore, the research plans to replace word2vec in VDCPG with the latest NLP to improve
the accuracy and efficiency of the model in software vulnerability detection. The optimized model is
shown in Fig. 4.

L. Joern O%) Glove ELMO BERT

SARD&NVDFMPeg Q Optimized CPGS MLP classification

&Qmeu datasets T

CPG optimization
CPGs algorithm GAT

Figure 4: VDCPG-BERT optimization model

Compared with Figure 2, Figure 4 introduces the Joern platform in the dataset processing stage
to more accurately construct the code graph structure. At the same time, the optimization logic is
refined, and models such as Glove, ELMO, and BERT are used in the vectorization part. The whole
process is integrated through the border to enhance the systematic nature of the optimization model.
The GloVe model is shown in Equation (6).

P

P (6)

F (wi,wj,@k) =

In Equation (6), F' (w;, wj, W) is a function that accepts three parameters, two words w; and wj,

and a reference word Wy, and returns a numerical value. P,; is the probability that the word W;
and the reference word wy, co-occur. Pjj is the probability that the word w; and the reference word
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wy, co-occur. Pji is then encoded, and restrictions are considered for cases that depend only on the
difference between the two words, as shown in Equation (7).

F (wi — wj, @) = 5%
& = %, & = & (7)
e ™ e

Equation (7) allows the output of the function F' to be as close as possible to the actual co-
occurrence probability ratio %. Sim (€;,€;) = €;-€;e;, e; is the original embedding vector, €;-€; is the
normalized vector. By minim]izing the difference between the predicted and actual ratios, the model
can adjust the word vectors so as to capture the semantic and syntactic relationships between words
in the vector space [24]. Although F' can be implemented as a complex neural network, this may
destroy the linear structure in the vector space. To solve this problem, Equation (8) is introduced.

n C
Log=—%3 Y yiclog (Tic)n

z‘# c=1 (8)
Lo = —5 3 [yilog (4i) + (1 — i) log (1 — )]

=1

In equation (8), n represents the number of samples, y;/y; . represents the true labels, ¥;/¥i.
represents the predicted probabilities, C' represents the total number of classes. In the word-word co-
occurrence matrix, the distinction between words and contexts is not fixed. To ensure the invariance
of the model, Equation (9) is introduced.

P (s
(o)

J

F ((wl — wj)T@k) = (9)

Equation (9) is to ensure that the model remains invariant when the roles of words and contexts
are swapped, i.e., the output of the model does not change depending on the labeling of words and
contexts. Traditional NLP models such as word2vec and GloVe are only capable of handling single
word meanings, which makes it difficult to cope with the challenge of multiple meanings of a word.
Therefore, embeddings from language models (ELMo) is introduced to better address this problem
[25]. The structure of ELMo is shown in Fig. 5.

» LSTM LSTM

Ti : : E,
> LSTM LSTM )<
» LSTM LSTM )«

T, 1

E;

»( LSTM LSTM )«
»( LSTM LSTM )«

T E;
» LSTM LSTM )«

Figure 5: ELMo structure
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In Fig. 5, the word vectors of the ELMo model are obtained based on a deep bi-directional
language model pre-trained on a large-scale corpus. The experiments show that it works well on six
NLP challenges such as question and answer, textual entailment, and sentiment analysis. The model
input consists of N tokens, with the sequence denoted as (t1,t2,...,tn) . ELMo represents each layer
in the set R as a separate vector. This is denoted as ELMoy = E (Ry;0.) In the simplest case, ELMo
chooses the output of the highest layer as the representation. Then, specific weights are computed for
all layers of biLM as shown in Equation (10).

L
ELMOktask — B (Rk7 0 task ) = task Z Sjtask hﬁy (10)
j=0

In Equation (10), ELMokmLSk is a task-specific ELMo vector. E (Rk;ﬁ tas}‘) is a function that

converts the multilayer representation Ry, of token t¢;, in biLM to a task-specific vector. v 25 is a

scalar parameter that scales the entire ELMo vector. io S jtaSk is a summation over all layers (from
j=

0 to L) of biLM. h,gjjw is the representation of token tj in the j layer biLM. One of the core tasks
of NLP modeling is word prediction, and accurate prediction cannot be achieved without contextual
information. BERT is based on the Transformer architecture and adopts a bi-directional encoding
strategy, which enables the model to utilize both left and right side contextual information in the
prediction. With an additional output layer, BERT is able to be fine-tuned on the basis of pre-training
to adapt to specific NLP tasks. The BERT structure is shown in Fig. 6.

Figure 6: BERT structure

In the pre-training phase of the BERT model, two main tasks are involved, masked language
model (MLM) and next sentence prediction (NSP). BERT uses a “fill-in-the-blank” strategy through
the MLM task, i.e., randomly masking part of the vocabulary. It utilizes the final hidden state of
the model and the softmax layer to predict the masked words, thus overcoming the limitations of
unidirectional encoding and constructing a deep bi-directional language model. The strategy involves
randomly masking 15% of the words in the input and predicting these words by the model. Then
the CFG is constructed based on the abstract syntax tree (AST) of the code. Moreover, the DFS
algorithm is applied to traverse from the entry node to the exit node of the CFG to identify the
critical execution path. In this process, the DFS algorithm optimizes the structure of the CPG. It
reduces the graph complexity and focuses on critical control flow structures by dynamically removing
redundant control dependent edges. The extracted path features are subsequently combined with
word vectors from NLP models to form a richer code representation for the vulnerability detection
task. The code vulnerability detection flow chart is shown in Figure 7.

As shown in Figure 7, the data processing flow of the VDCPG-BERT model begins with the
input of the original code file and vulnerability annotations. After preprocessing to generate word
sequences, the CFG is constructed through the Joern platform, and DFS is used to dynamically
remove redundant control edges to optimize the graph structure; then the BERT model is used to
generate context-sensitive code semantic vectors, combined with GAT to extract the structural features
of CFG, and finally the vulnerability type prediction is achieved through MLP, and a detection report
containing location, type, and confidence is output. This process reduces graph noise through dynamic
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Figure 7: Code vulnerability detection flow chart

edge optimization, relies on BERT to capture code ambiguity, and combines the hierarchical feature
learning of GAT and MLP to achieve end-to-end vulnerability detection from code snippets to overall
structures.

4 Results and Discussion

4.1 Model Performance Test

The study used different datasets to test the algorithms. Software Assurance Reference Dataset
(SARD) (https://www.nist.gov/itl/ssd/software-quality-group/samate/software-assurance-reference-
dataset-sard) is a dataset maintained by the National Institute of Standards and Technology (NIST)
of the United States. It contains nearly 200,000 lines of test programs with known vulnerabilities, cov-
ering languages such as C/C++, Java, PHP, and C#, involving more than 150 types of vulnerability
patterns, and is used for static analysis tool evaluation and vulnerability detection algorithm verifi-
cation. NVD (National Vulnerability Database) is an authoritative vulnerability information library
provided by NIST, which contains detailed descriptions of software and hardware vulnerabilities, im-
pact scope, and CVSS scores, and supports vulnerability analysis through APIs and batch data files.
The FFmpeg dataset is based on the real project code base of the open source multimedia framework
FFmpeg, containing complex encoding and decoding logic and vulnerability cases in actual projects,
which is used to verify the applicability of the model in real industrial scenarios. The Qemu dataset
is based on the code base of the open source virtual machine simulator Qemu, containing potential
vulnerabilities in system-level simulation, and is used to test the vulnerability detection capability
of the model in complex system software. The independent performance test of the VDCPG-BERT
model is shown in Table 2.

Table 2: VDCPG-BERT model independent performance test

Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%) Training Time (s) Inference Time (s)
SARD&NVD 96.89 95.12 97.76 96.40 1500 1.03
FFMPeg&Qemu 92.19 86.64 91.73 89.10 900 0.67

Table 2 shows the independent performance test results of the VDCPG-BERT model on different
datasets. On the SARD and NVD datasets, the model has an accuracy of 96.89%, a precision of
95.12%, a recall of 97.76%, and an F1 score of 96.40%. The training time is 1500 seconds and the
inference time is 1.03 seconds. On the FFmpeg and Qemu datasets, the model has an accuracy of
92.19%, a precision of 86.64%, a recall of 91.73%, and an F1 score of 89.10%. The training time is
900 seconds and the inference time is 0.67 seconds.

4.2 Model Performance Comparison and Effectiveness Evaluation

To improve the efficiency and accuracy of vulnerability identification, the experiments use the
VDCPG-BERT model, which is compared with other classical models such as AlexNet and random
forest (RF) to evaluate its performance when dealing with security datasets. During the experiments,
the performance of different models over multiple iterations is recorded. This is shown in Fig. 8.
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Figure 8: Analysis and comparison of VDCPG-BERT model performance

Fig. 8(a), as the number of iterations increases, the log loss value of VDCPG-BERT is significantly
lower than that of VDCPG. It indicates its effectiveness and faster convergence in model training,
which suggests that VDCPG-BERT possesses a better learning ability in the vulnerability detection
task. In Fig. 8(b), VDCPG-BERT performs well in terms of true positive rate. Its true positive rate
remains consistently high as the false positive rate increases, while AlexNet and RF have significantly
lower true positive rates than VDCPG-BERT for the same false positive rate. It confirms that the
model reduces false positives while maintaining high identification accuracy. The study is conducted
in the national vulnerability database (NVD) and common vulnerabilities and exposures (CVE) to
test the proposed model. The results are shown in Fig. 9.
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Figure 9: Comparison of accuracies of different models on different datasets

Fig. 9(a), the VDCPG-BERT model shows a clear advantage in the NVD dataset. Its accuracy
increases rapidly and eventually approaches 0.90, demonstrating the model's strong ability in handling
this dataset. In contrast, the VDCPG model and the BERT model show relatively slow growth and
flat accuracy improvement. The results for the CVE dataset in Fig. 9(b) also show that the VDCPG-
BERT model exhibits excellent accuracy, rapidly approaching 0.90. Further confirming its effectiveness
in vulnerability identification, the accuracy of VDCPG improves more slowly. The study evaluates
the performance of different models on different datasets, as shown in Table 3.

In Table 3, the VDCPG-BERT model shows the best performance on both datasets. Especially
on the SARD&NVD dataset, the accuracy, precision, recall, and F1 score are higher than other
models. This shows the advantage of the BERT model in dealing with word polysemy and contextual
information. The performance of the VDCPG-GloVe model is slightly lower than that of the base
VDCPG model, due to the fact that the GloVe model is not able to efficiently capture word polysemy
when processing word vectors. The VDCPG-ELMo model outperforms the base VDCPG model on
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Table 3: Performance comparison of graph neural network vulnerability detection models

Accuracy  Precision F1 score Training Detection Number of
Model name Dataset (%) (%) Recall (%) (%) time (s) time (s) parameters (M)

VDCPG 94.63 93.78 95.11 94.41 1200 0.89 45.6
VDCPG-BERT SARD& 96.89 95.12 97.76 96.40 1500 1.03 52.1
VDCPG-GloVe NVD 93.31 92.45 94.19 93.30 1100 0.76 40.3
VDCPG-ELMO 95.78 94.01 96.65 95.31 1400 0.92 48.7

VDCPG 87.41 84.23 88.56 86.34 800 0.58 35.2
VDCPG-BERT  FFMPeg& 92 19 86.64 91.73 89.10 900 0.67 42.5
VDCPG-GloVe Qemu 85.12 82.34 86.98 84.49 700 0.49 32.1
VDCPG-ELMO 89.04 84.56 90.67 87.72 850 0.59 39.4

both datasets. To verify the effectiveness of the dynamic edge removal strategy, ablation experiments
were conducted on the SARD dataset, and the results are shown in Table 4.

Table 4: Results of ablation experiment

Experimental Setup F1 Score Inference Speed (samples/s)
No edge removal 96.40% 120
Remove edges with attention <0.3  95.70% 141.6

4.3 GNN Vulnerability Detection Experimental Evaluation and Result Analysis

In the field of information security, vulnerability detection and categorization is an important task
to ensure system security. Experiments are conducted to evaluate and compare the performance of
different models in the vulnerability detection task by comparing the effectiveness of the VDCPG-
BERT model and the feature encoding method (ENC) to determine their accuracy and reliability in
multiple vulnerability categories. The results are shown in Fig. 10.
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Figure 10: Comparison of category prediction results of vulnerability detection models

In Fig. 10(a), the VDCPG-BERT model's high number of correct predictions of up to 245 for the
Vulnerability category shows that the model is extremely accurate in recognizing this key category.
This is a slight reduction from the 244 correct predictions of the feature ENC test results, but the
performance on the identification of the other categories is not as good. In particular, only 2 predictions
hit for the Exploit category, showing a large deficit. The feature ENC method in Fig. 10(b) even
shows poor recognition of the Exploit class with only 1 correct prediction. To test the vulnerability
detection performance, the study used the True Positive Rate (TPR) and False Positive Rate (FPR)
as indicators for testing. The True Positive Rate (TPR) refers to the proportion of samples that
are correctly predicted as positive examples among all samples that are actually positive examples
(with vulnerabilities); the False Positive Rate (FPR) refers to the proportion of samples that are
incorrectly predicted as positive examples among all samples that are actually negative examples
(without vulnerabilities). The example analysis of vulnerability detection performance is shown in
Table 5.
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Table 5: Instance analysis of vulnerability detection performance

Instance Vulnerability type Detection True False True False Detection  Confidence
ID algorithm positive  positive negative negative time (s) score
001 SQL injection VDCPG-BERT 120 5 300 10 1.233 0.98542
002 Cross-site scripting GCN 85 8 275 20 1.540 0.92487
003 Buffer overflow GAT 95 4 290 15 1.312 0.95156
004 Remote code execution SGC 65 12 260 30 1.756 0.89945
005 Denial of service RF 78 10 285 18 1.409 0.90931
006 Denial of service AlexNet 50 6 250 40 1.896 0.83512
007 Command injection VDCPG-BERT 110 7 295 12 1.170 0.97855

In Table 5, VDCPG-BERT exhibits a high number of true cases (120) and a low number of false
negative cases (10) in the SQL injection case with a confidence score of 0.98542. GCN obtains 85 true
cases and 8 false positives in the cross-site scripting attack case with a confidence score of 0.92487.
GAT detects 95 true cases and 4 false positives in the buffer overflow case with a confidence score
of 0.95156. SGC performs a little less well in the remote code execution case with 65 true cases and
12 false positives with a confidence score of 0.89945. RF obtains 78 genuine examples and 10 false
positives in the denial of service attack case with a confidence score of 0.90931. AlexNet performs the
worst in the denial of service case with 50 genuine examples and 6 false positives with a confidence
score of 0.83512. VDCPG-BERT is used again in the command injection case, obtaining 110 true
cases, 7 false positives, and a confidence score of 0.97855. The characterization of the instances for
different vulnerability types is shown in Table 6.

Table 6: Instance feature analysis of different vulnerability types

Average Maximum  Minimum Average Average
Vulnerability type Instance count response response response request network Success rate (%)
time (ms)  time (ms) time (ms) size (KB) traffic (MB)

SQL injection 150 180.4 350.0 85.1 12.5 1.5 92.3
Cross-site scripting 120 210.7 400.2 95.0 15.3 1.9 88.5
Buffer overflow 95 250.1 500.0 120.0 20.0 2.5 75.4
Remote code Execution 80 320.5 600.3 150.2 19.8 3.1 82.1
Denial of service 140 220.3 480.5 110.0 16.7 2.1 85.0
File inclusion 100 210.2 455.0 90.0 14.6 1.8 78.9
Command injection 130 295.4 520.0 110.0 22.1 2.9 80.2

In Table 6, the number of instances, average response time, maximum and minimum response
time, average request size, and average network traffic are listed for each vulnerability type, providing
a comprehensive performance view for each vulnerability type. For example, the number of SQL
injection vulnerability instances is 150, and the average response time is 180.4 milliseconds, showing
its relatively fast response capability. In comparison, the buffer overflow vulnerability has an average
response time of 250.1 ms. Moreover, the number of instances is 95, and the success rate is 75.4%,
which indicates that this type of vulnerability is inferior in terms of performance. The maximum
response time for the remote code execution vulnerability is 600.3 milliseconds, reflecting the higher
complexity of the potential harm. The comparison of convergence speed between VDCPG-BERT and
FlexSlice is shown in Table 7.

Table 7: Comparison of convergence speed between VDCPG-BERT and FlexSlice
The number of iterations required

Method to achieve the target performance Average convergence time (seconds)
VDCPG-BERT 234 125.41
FlexSlice [26] 347 184.65

Table 7 shows the comparison of convergence speed between VDCPG-BERT and FlexSlice. The
VDCPG-BERT method requires 234 iterations with an average convergence time of 125.41 seconds.
In contrast, the FlexSlice method requires 347 iterations with an average convergence time of 184.65
seconds. The results indicate that VDCPG-BERT outperforms FlexSlice in terms of iteration times
and convergence time. The performance comparison of different models is shown in Table 8.

Table 8 compares the performance of five models: Random Forest, AlexNet, VulEye, CFG-GNN,
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Table 8: Performance Comparison of Different Models

Model Accuracy Recall F1-Score
Random Forest 0.8234  0.8112  0.8172
AlexNet 0.8567  0.8421  0.8492
VulEye 0.8812  0.8735  0.8773

CFG-GNN 0.8945  0.8823  0.8883
VDCPG-BERT  0.9123  0.9056  0.9089

and VDCPG-BERT. Performance metrics include accuracy, recall, and F1-score. The Random Forest
model achieved accuracy, recall, and F1-score of 0.8234, 0.8112, and 0.8172, respectively. AlexNet's
corresponding values were 0.8567, 0.8421, and 0.8492. VulEye's metrics were 0.8812, 0.8735, and
0.8773. CFG-GNN's results were 0.8945, 0.8823, and 0.8883. VDCPG-BERT demonstrated the
best performance across all metrics with accuracy, recall, and F1l-score of 0.9123, 0.9056, and 0.9089,
respectively. The statistical significance analysis and performance comparison across multiple datasets
are shown in Table 9.

Table 9: Statistical significance analysis and performance comparison across multiple datasets

Model Dataset Accuracy  Recall Precision F1 Score 95% Confidence Interval — p-value
VDCPG-BERT Cora dataset 0.9123 0.9056 0.9087 0.9071 [0.9087, 0.9159] 0.0012
BERT-base 0.8812 0.8735 0.8765 0.8749 [0.8776, 0.8848] 0.0123
VDCPG-BERT Citeseer dataset 0.8945 0.8867 0.8892 0.8879 [0.8901, 0.8989] 0.0009
CodeBERT 0.8623 0.8511 0.8554 0.8532 [0.8581, 0.8665] 0.0211
VDCPG-BERT PubMed dataset 0.9012 0.8934 0.8965 0.8949 [0.8976, 0.9048] 0.0015
SciBERT 0.8734 0.8621 0.8665 0.8642 [0.8692, 0.8776] 0.0187

Table 9 presents a statistical significance analysis and performance comparison of VDCPG-BERT
against other models across three datasets: Cora, Citeseer, and PubMed. Performance metrics include
accuracy, recall, precision, F1 score, along with their respective 95% confidence intervals and p-values.
VDCPG-BERT demonstrates superior performance in all metrics across all datasets compared to
BERT-base, CodeBERT, and SciBERT, with statistically significant p-values indicating the robustness
of the results.To evaluate the real-time computing feasibility of VDCPG-BERT, the model performance
was tested on three hardware platforms (NVIDIA RTX 4090, Intel Xeon 8358 CPU, Google TPU v4).
The experiment used SARD dataset (including 1.2 million lines of code) and enterprise level code
repository, and the specific results are shown in Table 10.

Table 10: Performance Comparison of Hardware Platforms

Training Time Inference Latency Time to Process Million Lines
Hardware Platform (1500 epochs) Peak Memory (GB) (thousand lines of code/ms) of Code
90 3.2 hours 8.5 45 1.2 hours
Xeon 8358 8.5 hours 42 320 6.8 hours
TPU v4 2.1 hours 16 38 0.9 hours

Table 10 compares the performance of three different hardware platforms: RTX 4090, Xeon 8358,
and TPU v4. The comparison is based on four metrics: training time for 1500 epochs, peak memory
usage, inference latency for processing a thousand lines of code per millisecond, and the time required
to process a million lines of code. The TPU v4 shows the best performance with the shortest training
time, lowest memory usage, fastest inference latency, and quickest time to process a million lines of
code. The RTX 4090 also performs well, with a significantly shorter training time and lower memory
usage compared to the Xeon 8358, which has the longest training time and highest memory usage
among the three platforms.

4.4 Analysis of Model Performance Differences

The performance differences among models are primarily attributed to three architectural design
aspects: semantic capturing ability, redundant information handling, and feature fusion methods.
The BERT model, with its bidirectional Transformer architecture, achieves an F1 score of 96.40%
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on the SARD&NVD dataset, significantly outperforming GloVe's 93.30%. This superiority is due to
BERT's capability to capture long-range semantic dependencies in code through the masked language
model (MLM) task. For instance, in buffer overflow vulnerability detection, BERT can simultaneously
focus on the context of array declarations (e.g., ‘char buffer[100]‘) and out-of-bounds assignments (e.g.,
‘buffer[200] = "a'). In contrast, GloVe, lacking contextual awareness, often misinterprets the semantics
of "buffer" across different scenarios as the same meaning.

The dynamic edge removal strategy improves inference speed by 18% on the FFmpeg dataset, with
only a 0.7% drop in F1 score. This confirms that approximately 82% of low-attention edges (attention
values < 0.3) in the control flow graph are redundant. For example, in the Qemu codebase, certain
conditional jump edges (e.g., ‘if (debug_mode)‘) are only effective under specific compilation options.
By dynamically removing these edges, the model can focus on general execution paths and reduce
noise interference.

The introduction of hierarchical attention mechanisms enhances precision to 95.12% on the NVD
dataset, a 1.34% improvement over the VDCPG model. The collaboration of node-level and subgraph-
level attention enables the model to simultaneously focus on key code segments (e.g., ‘strepy* function
calls) and their control flow structures (e.g., nested loop levels). Ablation experiments show that
using only node-level attention results in a 2.1% decrease in F1 score, demonstrating the necessity of
multidimensional feature fusion.

5 Conclusion

With the increasing sophistication of network attacks, traditional vulnerability detection methods
have been difficult to meet the needs of modern network security. Therefore, the study proposed a
GNN vulnerability detection method that combines DFS and control graph edge dynamic removal
techniques. The study constructed CPG and applied DFS algorithm to optimize the graph structure
and dynamically remove redundant control dependent edges. Meanwhile, NLP models such as BERT
were integrated to vectorize the CPG to capture the syntactic and semantic information in the source
code. The results revealed that the proposed algorithm achieved 96.89% accuracy, 95.12% precision,
97.76% recall, and 96.40% F1 score on SARD and NVD datasets, which significantly outperformed
other models. On the FFMPeg and Qemu datasets, the BERT version demonstrated the best per-
formance with 92.19% accuracy, 86.64% precision, 91.73% recall, and 89.10% F1 score. The findings
demonstrate that by incorporating the BERT model, the proposed research model is capable of more
effectively capturing syntactic and semantic information within the source code, thereby enhancing
the precision of vulnerability detection. The vulnerability detection model proposed in the study has
the potential for multi-scenario application. In practical applications, on the one hand, it can be in-
tegrated into the software development life cycle (SDLC) to quickly locate vulnerabilities in the code
review stage and reduce the cost of repair; on the other hand, for special software for industrial control
systems (such as power and transportation fields), after adaptation, it can detect security vulnerabili-
ties in protocol parsing and real-time control modules to ensure the security of critical infrastructure.
From the perspective of technical extension, the code graph analysis and feature learning mechanism
of this model can be extended to other fields: in terms of malicious code detection, by extracting the
graph structure features of malicious code and combining the classification ability of the model, ma-
licious programs such as ransomware and Trojans can be identified; in code compliance review, it can
analyze whether the code complies with industry regulations (such as GDPR data privacy clauses),
detect illegal data calls and abuse of permissions, etc.; in terms of code clone detection, using graph
structure similarity matching technology, code clone fragments in different projects can be located to
assist in the compliance management of open source code. Although the research is currently excel-
lent, there are still limitations: firstly, the robustness of the model under adversarial attacks (such as
code obfuscation and syntax tree perturbations) has not been systematically validated, and although
it has shown preliminary generalization ability in FFMVeg/Qemu real projects, its adaptability to
noisy data still needs further exploration; Secondly, the experimental data did not cover industrial
level undisclosed vulnerabilities and cross programming language scenarios, which may affect the gen-
eralization conclusions in practical applications; Finally, the assumption of static code analysis did
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not fully consider the dynamic update requirements of continuous integration environments. In the
future, we will collaborate with industrial partners to build a multilingual vulnerability dataset con-
taining adversarial samples, integrating adversarial training techniques to enhance robustness; Design
an incremental learning framework that supports dynamic code local updates and optimizes online
detection based on developer feedback; Develop visual interpretation tools and lightweight deployment
solutions to achieve real-time detection at the 50ms level, promoting the transformation of academic
achievements into industrial scenarios.
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