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Abstract

Intrusion Detection Systems (IDS) are integral to ensuring network security. However, in prac-
tical settings, network traffic data often exhibits significant imbalances, affecting both labeled
and unlabeled data distributions. Such imbalances notably degrade the performance of existing
intrusion detection methods, particularly in semi-supervised learning contexts, where traditional
approaches struggle to effectively leverage large amounts of unlabeled data for enhanced detection
capabilities. This paper introduces a semi-supervised learning approach based on normalizing flows
to mitigate the data imbalance issue in network intrusion detection. Normalizing flows construct
flexible and invertible probabilistic models that can accurately capture and generate complex, high-
dimensional network traffic data distributions. Specifically, this method utilizes a small amount of
labeled data for initial training and incorporates manifold learning and self-training with unlabeled
data to adapt the model to the imbalance in the unlabeled data distribution, thereby improving
overall detection performance. Experimental results demonstrate that this method outperforms
traditional approaches in addressing data imbalance in intrusion detection. The proposed method
not only improves detection accuracy and recall but also significantly reduces reliance on data dis-
tribution assumptions, demonstrating robustness and generalization across diverse network traffic
datasets.

Keywords: intrusion detection systems, normalizing flows, semi-supervised learning, data im-
balance.
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1 Introduction
Intrusion Detection Systems play a pivotal role in safeguarding network security by monitoring

and analyzing network traffic to identify malicious activities or policy violations. The significance
of IDS arises from the increasing complexity and volume of cyberattacks, which pose serious threats
to the integrity, confidentiality, and availability of data and services in digital environments. The
critical importance of intrusion detection is further underscored by the necessity to protect sensitive
information, ensure service continuity, and comply with regulatory requirements. An effective IDS can
detect a wide range of attacks, from basic brute force attempts to sophisticated Advanced Persistent
Threats (APTs), thereby facilitating timely mitigation and response. However, despite technological
advancements, the growing sophistication of attacks and the ever-increasing volume of network traffic
demand continuous improvements in detection methodologies.

Intrusion detection methods are generally classified into two categories: signature-based and
anomaly-based approaches [17]. Signature-based detection relies on predefined threat patterns (sig-
natures) to identify malicious activities. While highly effective against known attacks, this method is
limited in addressing zero-day exploits and requires frequent updates to the signature database. In
contrast, anomaly-based detection models typical network behavior and flags deviations as potential
threats. This approach is effective in identifying novel attacks but is frequently hindered by high
false positive rates arising from the dynamic nature of network traffic. Both approaches have unique
strengths and limitations, highlighting the necessity for adaptive and robust detection strategies.

Supervised learning methods have been extensively employed in intrusion detection, where mod-
els are trained on labeled datasets to differentiate between benign and malicious traffic. However,
these methods face several challenges. Acquiring labeled data is both resource-intensive and time-
consuming, as it necessitates expert knowledge. Furthermore, reliance on large amounts of labeled
data restricts the scalability of supervised methods [2]. Additionally, real-world network traffic often
exhibits a long-tail distribution, with benign traffic significantly outnumbering malicious instances.
This imbalance can result in biased models that are ineffective at detecting rare yet critical attacks.
These challenges underscore the need for alternative learning paradigms capable of leveraging both
labeled and unlabeled data effectively.

To address the limitations of fully supervised methods, semi-supervised learning leverages a small
amount of labeled data in combination with a large corpus of unlabeled data [43]. This approach re-
duces labeling costs while enhancing scalability. Semi-supervised learning is particularly advantageous
in tackling data imbalance by utilizing the abundant unlabeled data to improve model robustness and
generalization. By integrating both types of data, as depicted in Figure 1, semi-supervised methods
achieve a balance between accuracy and efficiency. However, effectively addressing the imbalance in
both labeled and unlabeled data remains a significant challenge in intrusion detection.

Data imbalance in intrusion detection can lead to several adverse outcomes. Models can become
biased toward the majority class, leading to suboptimal detection rates for rare attacks. Furthermore,
overreliance on limited labeled data can result in overfitting, diminishing the model’s ability to gen-
eralize to novel threats. Addressing such imbalances necessitates sophisticated techniques to manage
and mitigate their effects. Existing solutions [11, 18, 45] for managing data imbalance include data
augmentation, resampling methods [5], and cost-sensitive learning [50]. Data augmentation entails
generating synthetic samples for the minority class to balance the dataset. Resampling methods in-
volve either oversampling the minority class or undersampling the majority class to achieve a balanced
distribution. Cost-sensitive learning assigns higher misclassification costs to minority class instances,
thereby biasing the model toward detecting them. While these techniques offer improvements, they
often encounter limitations in scalability and effectiveness when applied to highly imbalanced datasets.

Normalizing flows [31] provide a robust framework for modeling complex data distributions through
a series of invertible transformations. Their primary advantages include flexibility in capturing in-
tricate data distributions without stringent assumptions, invertibility for exact likelihood estimation
and efficient sampling, and scalability in high-dimensional spaces, making them particularly suitable
for large-scale network traffic analysis [35]. These attributes position normalizing flows as a promising
solution to the challenges posed by data imbalance in intrusion detection.

In the context of intrusion detection, normalizing flows enhance the detection of rare and novel
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Figure 1: Distribution imbalance in labeled and unlabeled data in IDS, and exponential sampling for
multi-class imbalance in this work.

attacks by precisely modeling the underlying distribution of network traffic. The integration of nor-
malizing flows with semi-supervised learning effectively leverages both labeled and unlabeled data,
thereby improving detection performance in the presence of data imbalance. This integration fosters a
deeper understanding of network traffic patterns and bolsters the robustness of detection mechanisms.

This paper introduces a semi-supervised intrusion detection approach that employs normalizing
flows. The primary contributions of this work are as follows:

• Introducing a novel semi-supervised model that utilizes normalizing flows to mitigate data im-
balance in intrusion detection;

• Developing a self-supervised learning strategy to improve the model’s adaptability to imbalanced
and unlabeled data;

• Demonstrating the effectiveness and superiority of the proposed method through extensive ex-
periments conducted on real-world network traffic datasets.

By tackling the challenges of data imbalance and capitalizing on the strengths of normalizing flows,
our method provides a robust and scalable solution for enhancing intrusion detection in diverse and
dynamic network environments.

2 Related Work
The landscape of intrusion detection has evolved significantly due to technological advancements

and the increasing sophistication of cyber threats. To understand the current state and challenges
in this field, it is crucial to examine the development of intrusion detection systems, the application
of machine learning and deep learning techniques, and the emerging role of normalizing flows. This
section explores these aspects to identify existing gaps and the potential solutions offered by our
proposed method.

First, we examine the current state and development of intrusion detection systems. The shift
from signature-based to anomaly-based methods underscores the need for more adaptive and robust
approaches that can address modern cyber threats. Despite these advancements, significant challenges
remain, particularly with regard to the scalability and effectiveness of these systems in real-world
scenarios.

Second, we explore the application of machine learning and deep learning techniques in intrusion
detection. These techniques have greatly improved detection capabilities by leveraging large datasets
to identify complex patterns indicative of malicious activity. However, the reliance on labeled data
and the pervasive issue of data imbalance present substantial challenges. We analyze how these issues
constrain the performance of existing methods, particularly in semi-supervised settings where data
imbalance can severely affect detection accuracy.

Finally, we focus on the emerging use of normalizing flows in intrusion detection. Normalizing flows
offer a novel approach to modeling complex data distributions, with significant potential to overcome
the limitations of traditional machine learning and deep learning methods. While promising, the use of
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normalizing flows in this domain is still in its early stages, and several challenges remain. We examine
how normalizing flows differ from other methods and their potential to handle imbalanced data more
effectively within a semi-supervised framework.

By synthesizing insights from these three areas, we establish the foundation for our proposed
method, which utilizes normalizing flows to enhance intrusion detection in the presence of data im-
balance. This integrative approach aims to overcome the limitations of existing methods and improve
the overall robustness and scalability of intrusion detection systems.

2.1 Intrusion Detection

Intrusion Detection Systems have significantly evolved over the past few decades to address the
growing threat landscape. Traditional IDS techniques were primarily signature-based [20, 25, 28],
relying on predefined patterns of known threats. These systems [7, 32], such as Snort and Bro, detect
intrusions by matching network traffic against a database of known attack signatures. Although
effective at detecting known attacks, these methods struggle with new, unknown threats and require
frequent updates to maintain their effectiveness. This limitation has become increasingly problematic
as the volume and sophistication of cyberattacks continue to rise, creating a significant gap in the
detection capabilities of traditional systems.

As the cyber threat landscape evolved, anomaly-based detection methods [48] gained prominence.
Unlike signature-based approaches, anomaly-based IDS models normal network behavior and identi-
fies deviations from this baseline as potential threats. This paradigm shift enables the detection of
previously unseen attacks, which are becoming increasingly common in the modern cyber environ-
ment. Anomaly-based systems utilize statistical models, machine learning algorithms, and behavioral
analysis to define what constitutes normal activity within a network. When network traffic deviates
from this established norm, the system flags it as suspicious. Despite their potential, these methods
often suffer from high false positive rates, where normal variations in network traffic are mistakenly
identified as threats. This not only overwhelms security analysts with false alarms but also undermines
trust in the IDS.

Recent advancements [3, 9, 12, 13, 16, 22, 40, 42] in IDS have focused on integrating machine
learning (ML) and deep learning (DL) techniques to enhance detection capabilities. These approaches
leverage large datasets to train models capable of identifying complex patterns indicative of malicious
activity. Although ML and DL methods have demonstrated superior performance in detecting various
types of attacks, they often rely heavily on labeled data, which is costly and time-consuming to acquire
[52]. Furthermore, the inherent data imbalance in real-world network traffic, where benign activities
vastly outnumber malicious ones, poses a significant challenge for these methods. This imbalance can
result in biased models that underperform in detecting rare but critical threats.

Machine learning and deep learning have become integral to modern intrusion detection due to
their ability to process vast amounts of data and uncover hidden patterns [3, 30]. Supervised learning
techniques, such as Support Vector Machines (SVM), Decision Trees [27, 33], and various neural
network architectures [4, 38, 44, 46], have been extensively applied in IDS. These methods, however,
require a large amount of labeled data for training, which is often impractical to acquire in real-world
scenarios. Consequently, the performance of supervised methods is heavily dependent on the quality
and quantity of labeled data available.

Deep learning, with its capacity for automatic feature extraction and high-dimensional data pro-
cessing [8, 51], has shown significant promise in enhancing intrusion detection accuracy. Techniques
such as Convolutional Neural Networks (CNNs) [26, 44] and Recurrent Neural Networks (RNNs)
[23, 49] have been employed to analyze network traffic and identify malicious patterns. However,
these methods also suffer from the data imbalance issue, where the overrepresentation of benign traf-
fic results in models that are less effective at detecting rare attacks. Despite various attempts to
address this issue, including data augmentation, resampling, and cost-sensitive learning, a robust
solution for handling data imbalance in semi-supervised settings remains elusive.
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(a) Forward flow.

(b) Inverse flow.

Figure 2: Intermediate steps in Normalizing flows.

2.2 Normalizing Flows

Normalizing flows have recently gained attention as a promising approach for modeling complex
data distributions [31]. These models consist of a series of invertible transformations that map a
simple distribution (e.g., Gaussian) to a more complex one, enabling exact likelihood estimation and
efficient sampling. The flexibility and scalability of normalizing flows make them particularly well-
suited for high-dimensional data, such as network traffic, where capturing intricate patterns is crucial
for effective intrusion detection [1, 19].

Despite their potential, the application of normalizing flows in intrusion detection is still in its
early stages. Current research has explored their use in unsupervised and semi-supervised settings,
demonstrating their ability to model the distribution of benign traffic and identify anomalies as de-
viations from this distribution. However, existing studies have not fully addressed the challenges
posed by data imbalance in intrusion detection. There remains a need for more comprehensive ap-
proaches that integrate normalizing flows with strategies specifically designed to handle imbalanced
data distributions.

Normalizing flows differ from traditional machine learning and deep learning methods in several
key aspects. Unlike standard neural networks, which often operate as black boxes, normalizing flows
provide a tractable way to estimate the likelihood of data points, facilitating a better understanding
and interpretation of the learned models. This characteristic is particularly advantageous in semi-
supervised learning, where normalizing flows can leverage both labeled and unlabeled data more
effectively. By modeling the underlying data distribution more accurately, normalizing flows can
enhance the detection of rare and novel attacks, thereby addressing the limitations of existing methods
in handling data imbalance.

Given these advantages, our proposed method integrates normalizing flows into a semi-supervised
learning framework for intrusion detection. This approach leverages the strengths of normalizing flows
in modeling complex data distributions and mitigating data imbalance. By combining self-supervised
learning and adversarial training strategies, we enhance the model’s adaptability to imbalanced unla-
beled data, improving overall detection performance. This work contributes to the field by offering a
novel solution to the longstanding challenge of data imbalance in intrusion detection, demonstrating
its effectiveness through extensive experiments on real-world datasets.
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Figure 3: Normalizing flow-based semi-supervised intrusion detection. Sensitivity Threshold Manage-
ment (STM) controls the inclusion of instances in the loss computation based on their uncertainty
measures.

3 Methodology
Our proposed method utilizes normalizing flows to address the challenge of data imbalance in

network intrusion detection. This approach is specifically designed to handle both labeled and unla-
beled data, thereby enhancing detection performance in scenarios where data distributions are imbal-
anced. By integrating normalizing flows with semi-supervised learning techniques, our method aims
to improve the robustness and scalability of intrusion detection systems. The key components of the
proposed method are outlined below.

3.1 Problem Formulation

In this section, we present the mathematical formulation of semi-supervised learning for intrusion
detection, addressing the imbalanced distribution of both labeled and unlabeled data. We then in-
troduce the concept of normalizing flows and detail their application in learning from imbalanced,
unlabeled data.

Semi-Supervised Learning in Intrusion Detection: Let D = DL ∪ DU represent the dataset,
where DL = {(xi, yi)}NL

i=1 is the labeled subset with NL labeled instances and DU = {xi}N
i=NL+1 is the

unlabeled subset with NU = N − NL unlabeled instances. Here, xi ∈ Rd represents a feature vector
and yi ∈ {1, 2, . . . , C} is the corresponding class label, where C is the number of classes also means
different intrusions.

Data Imbalance in Intrusion Detection: Let Nmax and Nmin denote the number of instances
in the most and least frequent classes in DL, respectively. The imbalance ratio γL for the labeled data
is defined as: γL = Nmax/Nmin. Similarly, the imbalance ratio γU for the unlabeled data DU can
be defined if the class distribution is inferred or known. For multi-classification, we use exponential
sampling to sample data categories. The sampling results are shown in Figure 1, the "Intrusion Types"
on the horizontal axis represents different types of network intrusions like DoS, Probe, R2L, U2R, and
normal traffic. The vertical axis represents the number of samples. The exponential sampling method
can effectively balance the distribution of different types of network intrusions.

Normalizing Flows: Normalizing flows provide a method to construct complex probability dis-
tributions by transforming a simple base distribution through a series of invertible mappings shown
in Figure 2. Formally, let z ∼ pZ(z) be a sample from a base distribution pZ . A normalizing flow f
is a bijective function that transforms z into x such that x = f(z) and z = f−1(x) also expressed as
x = fK ◦fK−1 ◦· · ·◦f1(z0) and z0 = f−1

1 ◦f−1
2 ◦· · ·◦f−1

K (x) with a flow composed of K transformations.
The probability density function pX(x) of x is given by:

pX(x) = pZ(z)
∣∣∣∣∣det ∂f−1(x)

∂x

∣∣∣∣∣ = pZ(f−1(x)) ·
∣∣∣∣∣det ∂f−1(x)

∂x

∣∣∣∣∣ . (1)

From the simple distribution z0 to the final observed variable x, the intermediate latent variable
is zk:

z0 → z1 → · · · → zk → x. (2)
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The transformation of each (k) layer is defined as:

zk = fk(zk−1) ⇆ zk−1 = f−1
k (zk), k = 1, 2, . . . , K. (3)

For a flow composed of K transformations, the log-likelihood of the data is given by:

log pX(x) = log pZ (z0) +
K∑

k=1
log

∣∣∣∣det ∂fk (zk−1)
∂zk−1

∣∣∣∣ , (4)

Where
∣∣∣det ∂fk(zk−1)

∂zk−1

∣∣∣ is the determinant of the Jacobian of the inverse transformation, pZ(z) is the
base distribution. Using Bayes’ theorem, the posterior distribution of z given x is:

pZ(z|x) = pX(x|z)pZ(z)
pX(x) (5)

The objective is to model the complex distribution of network traffic data using normalizing flows.
The normalizing flow is trained to maximize the likelihood of the data under the model, which involves
optimizing the parameters of the bijective transformations to fit the data distribution.

Applying Normalizing Flows to Intrusion Detection: In a semi-supervised intrusion detec-
tion setting, normalizing flows can be used to learn the distribution of both labeled and unlabeled
data. The process involves the following steps:

Base distribution selection and flow construction: Choose a simple distribution pZ(z), typically a
multivariate Gaussian and then define a sequence of invertible transformations f = fK ◦fK−1 ◦· · ·◦f1,
where each fk is a simple, bijective mapping.

Use the labeled data DL to train the normalizing flow by maximizing the log-likelihood, and use
the unlabeled data DU to further refine the flow model. This can be done by semi-supervised learning
strategies such as pseudo-labeling or self-training, where the model’s predictions on DU are used to
iteratively improve the model.

To address data imbalance, incorporate techniques such as class-balanced sampling[10, 34], weighted
loss functions[15, 39], or adversarial training[6, 36] to ensure the model does not become biased to-
wards the majority class. For instance, a weighted log-likelihood can be used where classes are weighted
inversely proportional to their frequencies.

By integrating these steps, the normalizing flow can effectively model the underlying distribution of
both labeled and unlabeled data, enhancing the detection of rare and novel intrusions in the presence
of data imbalance.

3.2 Proposed Method

Our proposed method leverages normalizing flows within a semi-supervised learning framework
to address the data imbalance issue in intrusion detection. By accurately modeling the complex
distribution of network traffic data and incorporating both labeled and unlabeled data, our approach
improves the detection performance and robustness of intrusion detection systems. The framework
depicted in Figure 3 outlines the key component of the proposed method. These modules address the
challenges posed by evolving data distributions, the need for discriminative embedding learning, and
the management of uncertainty in unlabeled data.

3.2.1 Pseudo Labeling

Pseudo labeling plays a crucial role in our semi-supervised learning framework by effectively uti-
lizing unlabeled data to enhance the intrusion detection capability of the model. For each unlabeled
sample, the normalizing flow model maps the input to a latent space, where the class probabilities are
computed. The predicted label, or pseudo label, is assigned based on the highest probability:

ỹ = arg max
c

p(y = c | f(xu)), (6)
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where f(xu) is the latent representation of the unlabeled sample xu, and p(y = c | f(xu)) is the class
probability derived from the classifier in the latent space. Here c is the class index.

To ensure the reliability of pseudo labels, we employ confidence-based filtering. Only samples with
high confidence predictions, defined as max(p(y | f(xu))) ≥ τ , are retained for training, where τ is a
pre-defined confidence threshold. This filtering mechanism prevents the model from being misled by
low-confidence or noisy pseudo labels. The pseudo-labeled samples contribute to the overall training
process via a pseudo-label loss, defined as:

Lpseudo = − 1
|Dpseudo|

∑
xu∈Dpseudo

C∑
c=1

I[ỹ = c] log p(y = c | f(xu)), (7)

where Dpseudo is the set of confidently pseudo-labeled samples, C is the number of classes, and I is the
indicator function, c is the class index.

3.2.2 Sensitivity Threshold Management

Despite the effectiveness of pseudo labeling, we observed during experiments that using a fixed
high confidence threshold (τ) limits the inclusion of a sufficient number of unlabeled samples. This
restriction hampers the model’s ability to learn robust data representations, particularly in scenarios
with a highly imbalanced data distribution or scarce labeled samples. To address this issue, we intro-
duce the Sensitivity Threshold Management (STM) module, which dynamically adjusts the confidence
threshold during training.

The module adaptively modulates the threshold τ based on the pseudo label distribution and the
training progress. Initially, a lower threshold is used to incorporate more unlabeled samples, gradually
increasing to enforce stricter confidence requirements as the model becomes more stable. The threshold
at epoch t is computed as:

τt = τmin + (τmax − τmin) · t

T
, (8)

where τmin and τmax are the minimum and maximum thresholds, t is the current epoch, and T is the
total number of training epochs.

By lowering the threshold in the early stages of training, STM allows the model to leverage a
broader set of unlabeled samples, facilitating better exploration of the data distribution. As the train-
ing progresses, the increasing threshold ensures that only high-confidence samples are used, improving
the quality of pseudo labels and preventing noisy samples from impacting the model.

With STM, the pseudo-label loss is modified to account for the dynamic threshold:

Lpseudo = − 1
|Dpseudo,t|

∑
xu∈Dpseudo,t

C∑
c=1

I[ỹ = c] log p(y = c | f(xu)), (9)

where Dpseudo,t is the set of pseudo-labeled samples at epoch t that satisfy the dynamic threshold τt.
The STM module improves the adaptability of the model to different data distributions and im-

balance levels in intrusion detection. By dynamically controlling the sensitivity of pseudo labeling, the
proposed framework achieves a better trade-off between data utilization and label quality, ultimately
enhancing detection performance and robustness.

Pseudo labeling is integrated into the proposed framework alongside supervised learning on labeled
data. The total loss function is defined as:

L = Lsupervised + αLpseudo + βLflow, (10)

where Lsupervised is the supervised loss on labeled data, and α is a weighting factor balancing the
contribution of pseudo labels, A regularization term Lflow is introduced to ensure that the distribution
of the latent representation z is close to the prior distribution of the flow.

In the context of intrusion detection, pseudo labeling enables the model to incorporate vast amounts
of unlabeled network traffic data, thereby improving its generalization and adaptability to unseen
attacks. Moreover, by leveraging the expressive power of normalizing flows to accurately capture
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the underlying distribution of network traffic, pseudo labeling helps the framework maintain robust
performance even in the presence of data imbalance and evolving attack patterns. Pseudo code see
Table 1.

Table 1: Optimized Pseudo Code for Semi-Supervised Training with Normalizing Flow and STM

Step Description
1 Initialize Normalizing Flow model f , optimizer, and scheduler.
2 For each epoch t ∈ {1, . . . , T}:
3 Compute dynamic threshold τt = τmin + (τmax − τmin) · t

T .
4 For each batch (xl, yl) ∈ Dlabeled, (xu, _) ∈ Dunlabeled:
5 Supervised Loss:
6 Compute Lsupervised using labeled data (xl, yl).
7 Pseudo Labeling with STM:
8 Compute pseudo labels ỹ and confidence scores for xu.
9 Select samples xu with high confidence > τt and compute Lpseudo.
10 Latent Regularization:
11 Compute Lflow using latent representations.
12 For labeled and pseudo-labeled data, ensure latent z aligns with prior p(z):
13 Lflow = − 1

N

∑N
i=1 [log p(zi) + log|det Ji|],

14 where p(z) is a Gaussian Mixture Model prior, |det Ji| is Jacobian deter-
minant, N is the number of the training data.

15 Total Loss and Gradient Update:
16 Combine all losses:
17 L = Lsupervised + αLpseudo + βLflow.
18 Perform back propagation and update model parameters.
19 Log metrics: loss, accuracy, precision, recall, and F1-score on validation data.
20 Return the trained Normalizing Flow model f(·).

4 Experiments
In this section, we detail the experimental setup, present the results, and conduct ablation studies to

demonstrate the effectiveness and robustness of our proposed method under data imbalance conditions.
Datasets: We conduct our experiments on several widely used intrusion detection datasets.

NSL-KDD[14]: an improved version of KDD Cup 99[41], addressing some of its inherent issues.
CICIDS2018[37]: a comprehensive dataset containing realistic network traffic with various attack
types. UNSW-NB15[29]: a more recent dataset with a diverse set of attack types and normal traffic.
Evaluation Metrics: Given the focus on imbalanced data, we employ the following evaluation met-
rics. Accuracy: The proportion of correctly identified instances over the total instances. Precision:
The proportion of correctly identified attacks out of all instances predicted as attacks. Recall: The
proportion of actual attacks correctly identified by the model. F1−score: The harmonic mean of
precision and recall, providing a balanced measure of performance. Baselines: We compare our
method against several state-of-the-art baselines for intrusion detection. Support Vector Machines
(SVM), Random Forest (RF), and Deep Neural Networks (DNN), Variational AutoEncoders (VAE),
Generative Adversarial Networks (GAN). Implementation Details: Preprocessing: we normalize
all features to have zero mean and unit variance. Categorical features are encoded using one-hot
encoding. Training: we use a learning rate of 1e − 3, batch size of 128, and the Adam optimizer
and scheduler with a CosineAnnealingLR strategy for training our models. Hyperparameters: The
weighting factors for the loss components α, β are selected through cross-validation. For different
datasets and settings, we adjust the hyperparameters to achieve optimal performance and robustness.
The K for the normalizing flow is set to 3 for dataset NSL-KDD, and the latent dimension is 64, the
n-components is 3, noted as 3-64-3. For dataset CICIDS2018 is 5-128-3, for dataset UNSW-NB15
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is 5-64-5. The confidence threshold τ is initialized at 0.5 and dynamically adjusted using the STM
module. The total number of training epochs is set to 500.

Table 2: Results on NSL-KDD with different unlabeled data distributions.

Method NSL-KDD
Nl=500/Nu=500,

il=100/iu=100
Nl=500/Nu=500,

il=100/iu=1
Nl=500/Nu=500,
il=100/iu=100/R

Acc. Rec. Pre. F1 Acc. Rec. Pre. F1 Acc. Rec. Pre. F1
SVM 0.76 0.68 0.76 0.72 0.71 0.61 0.74 0.71 0.69 0.63 0.70 0.68
RF 0.78 0.69 0.74 0.73 0.73 0.70 0.76 0.73 0.72 0.69 0.75 0.72

DNN 0.79 0.72 0.81 0.77 0.75 0.68 0.77 0.72 0.73 0.67 0.79 0.73
VAE 0.74 0.62 0.71 0.69 0.69 0.60 0.68 0.65 0.67 0.61 0.66 0.64
GAN 0.75 0.71 0.73 0.72 0.70 0.63 0.71 0.68 0.68 0.64 0.70 0.67
Ours 0.81 0.75 0.79 0.78 0.76 0.70 0.78 0.75 0.75 0.69 0.74 0.73

∗ Nl: number of labeled instances, Nu: number of unlabeled instances, il: imbalance ratio of labeled
instances, iu: imbalance ratio of unlabeled instances, R: reverse distribution, Acc.: accuracy, Rec.:
recall, Pre.: precision, F1: F1−score.

Table 3: Results on UNSW-NB15 with same distribution.

Method UNSW-NB15
Nl=500/Nu=1000,

il=100/iu=100
Nl=500/Nu=1000,

il=200/iu=200
Nl=500/Nu=1000,

il=500/iu=500
Acc. Rec. Pre. F1 Acc. Rec. Pre. F1 Acc. Rec. Pre. F1

SVM 0.70 0.65 0.70 0.69 0.68 0.62 0.73 0.66 0.65 0.61 0.70 0.64
RF 0.72 0.64 0.71 0.67 0.69 0.66 0.70 0.67 0.67 0.63 0.68 0.65

DNN 0.73 0.70 0.76 0.73 0.71 0.65 0.74 0.69 0.69 0.62 0.71 0.67
VAE 0.68 0.61 0.66 0.65 0.65 0.61 0.64 0.63 0.60 0.53 0.61 0.59
GAN 0.69 0.57 0.67 0.63 0.66 0.62 0.66 0.64 0.64 0.57 0.62 0.61
Ours 0.74 0.69 0.76 0.73 0.73 0.67 0.72 0.69 0.70 0.62 0.71 0.67

Table 4: Results on CICIDS2018 with Improved Performance as Unlabeled Data Increases.

Method CICIDS2018
Nl=500/Nu=1000,

il=500/iu=1000
Nl=500/Nu=1000,

il=500/iu=500
Nl=500/Nu=1000,

il=500/iu=100
Acc. Rec. Pre. F1 Acc. Rec. Pre. F1 Acc. Rec. Pre. F1

SVM 0.74 0.67 0.73 0.72 0.76 0.72 0.75 0.74 0.78 0.73 0.77 0.76
RF 0.75 0.70 0.74 0.73 0.78 0.73 0.76 0.75 0.80 0.75 0.79 0.78

DNN 0.76 0.69 0.74 0.74 0.80 0.74 0.78 0.77 0.82 0.76 0.81 0.80
VAE 0.70 0.67 0.69 0.68 0.72 0.67 0.71 0.70 0.75 0.70 0.74 0.73
GAN 0.71 0.64 0.70 0.69 0.74 0.69 0.72 0.71 0.76 0.71 0.75 0.74
Ours 0.78 0.72 0.77 0.76 0.83 0.78 0.81 0.80 0.84 0.79 0.84 0.83

4.1 Experimental Results

Table 2 shows the results on NSL-KDD dataset with different settings. The proposed method
consistently outperforms the baselines across all metrics, demonstrating its effectiveness in handling
imbalanced data distributions. The adaptive marginal distribution adjustment module plays a crucial
role in adapting to evolving data characteristics, while the contrastive learning integration enhances the
discriminative power of the model. The sensitivity threshold management module further improves the
model’s robustness against noisy labels and uncertainties, contributing to its overall performance. The
results on UNSW-NB15 and CICIDS2018 datasets are presented in Tables 3 and 4, respectively. Our
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method achieves superior performance compared to the baselines on these datasets as well, highlighting
its effectiveness in handling imbalanced data distributions and enhancing intrusion detection accuracy.

4.2 Ablation Study

To evaluate the contribution of each module in our method, we conduct ablation studies by sys-
tematically removing or modifying specific modules and observing the impact on performance, the
result see Table 5.

Sensitivity threshold management: Excluding this module results in increased model sensitivity
to noisy labels, causing a decline in precision and overall accuracy. By dynamically adjusting the
confidence threshold, the model can effectively filter out low-confidence pseudo labels, improving the
quality of training data and enhancing detection performance. Without pseudo labeling: Removing
the pseudo labeling module leads to a significant drop in recall and F1-score, indicating the importance
of leveraging unlabeled data for intrusion detection. By incorporating pseudo labels, the model can
effectively utilize unlabeled samples to enhance its detection capability, particularly in scenarios with
imbalanced data distributions.

The ablation study results confirm that each module of our proposed method contributes signifi-
cantly to its overall performance. The full model configuration consistently achieves the best results,
underscoring the necessity of each module.

Table 5: Ablation study on NSL-KDD dataset with different module settings.

Dataset and settings Methods Modules Metrics
NSL-KDD Full Supervised Pseudo Label STM Acc. Pre. Rec. F1

with all labeled data ✓ - - 0.81 0.71 0.58 0.60

Nl=500/Nu=1000
il=100/iu=100

- ✓ ✓ 0.81 0.73 0.79 0.78
- ✓ × 0.78 0.68 0.75 0.72
- × × 0.72 0.62 0.70 0.65

For normalizing flow settings, we observed that increasing the number of flow layers and latent
dimensions improves the model’s capacity to capture the complex distribution of network traffic data.
However, excessively large latent dimensions may lead to overfitting, while too few layers may limit
the model’s expressiveness. Increasing the number of Gaussian mixture model components will not
improve the effect, but will cause overfitting. By tuning these hyperparameters, we achieve a balance
between model complexity and generalization performance.

Table 6: Ablation study on NSL-KDD dataset with different flow settings.

Dataset and settings Flow Settings Metrics
NSL-KDD K-flow N-Latent Dimension N-components Acc. Pre. Rec. F1

report result 3 64 3 0.81 0.73 0.79 0.78

Nl=500/Nu=1000
il=100/iu=100

2 16 3 0.57 0.43 0.65 0.52
2 32 3 0.72 0.64 0.57 0.60
2 64 3 0.78 0.69 0.72 0.71
3 64 5 0.74 0.61 0.70 0.66
3 128 3 0.75 0.64 0.73 0.67
5 64 3 0.76 0.63 0.74 0.69
5 128 3 0.69 0.61 0.67 0.63

∗ K-flow: number of flow layers, N -Latent Dimension: latent dimension, N -components: number of
Gaussian mixture model components.

5 Conclusion
In this paper, we propose a novel semi-supervised learning framework for intrusion detection that

effectively addresses the challenge of data imbalance, a prevalent issue in intrusion detection scenarios.
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Our approach utilizes normalizing flows to model the distribution of both labeled and unlabeled data,
incorporating sensitivity threshold management to enhance detection performance.

Experimental results on multiple benchmark datasets demonstrate the effectiveness and robust-
ness of our method. Our approach consistently outperforms state-of-the-art baselines across most
evaluation metrics, particularly under conditions of imbalanced data. The ablation studies further
validate the significance of each component, highlighting their collective contribution to the overall
performance of the model.

Our method not only improves the accuracy of intrusion detection systems but also ensures robust-
ness against the varying distributions of unlabeled data—a common issue in real-world applications.
By dynamically adapting to the evolving data distribution and incorporating contrastive learning to
learn discriminative embeddings, our approach provides a comprehensive solution to the challenges
posed by semi-supervised learning in the context of intrusion detection.

6 Discussion
Despite the promising results, several avenues for future research remain. First, extending our

framework to handle more diverse and dynamic network environments would be valuable. This in-
cludes evaluating the approach on real-time streaming data to assess its performance in live network
conditions. Additionally, further exploration of more sophisticated data augmentation techniques to
generate realistic variations of network traffic could enhance the robustness of the model.

Another potential direction is the integration of domain adaptation techniques to improve the
model’s ability to generalize across different network domains with varying characteristics. Finally,
investigating the incorporation of more advanced neural architectures and optimization strategies
could further enhance the performance and efficiency of the proposed method.

Our work makes a significant contribution to the field of intrusion detection by providing a robust
and effective solution to the challenges posed by data imbalance and the semi-supervised learning
paradigm. We believe that the proposed framework can serve as a foundation for future developments
in this area, paving the way for more accurate and reliable intrusion detection systems.
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