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Abstract

Behavior recognition provides important help and support in the fields of medical care, secu-
rity, and intelligent transportation, and thus has received wide attention in the field of practical
intelligent applications. However, there remain many challenges in the task of behavior recognition
under distributed multi-view video, such as lighting changes under different viewpoints, trunk pos-
ture changes, and background noise, which seriously affect the accuracy of behavior recognition.
To address these challenges, a multi-view cross-modal distillation behavior recognition method is
proposed. Data from two different modalities, skeletal points and RGB, are included to construct
teacher and student networks respectively, and KL divergence is used to evaluate cross-modal
knowledge transformation to achieve behavior recognition under multiple views. Meanwhile, semi-
supervised learning framework is designed to improve the learning performance of the student
network through pseudo-labeling. The consistency information of behaviors under different view-
points is learned among the introduced multiple student networks, which effectively improves the
stability and accuracy of multi-view behavior recognition. Experimental results on the behavior
recognition datasets NTU RGB+D 60 and NTU RGB+D 120 show that the method outperforms
some current popular methods in terms of recognition accuracy. In addition, further experiments
conducted in an experimental environment built with real edge devices validate the feasibility of
the method for deployment and use in distributed environments.

Keywords: Deep Action recognition, Cross-Model Knowledge Distillation, Contrastive learn-
ing, Multi data modality, Edge Intelligence.
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1 Introduction
With the continuous proliferation of IoT devices, IoT technology is becoming one of the important

development directions in the digital era [? ]. Alongside the rapid increase in IoT devices, the vast
amount of data generated is also gradually increasing. As a result, processing and analyzing this
data has become an urgent challenge . Edge computing technology, as an effective solution, enables
efficient data processing and analysis on edge devices, significantly reducing latency and bandwidth
loss in the data transmission process [18]. Within this paradigm, behavior recognition has gained
substantial attention due to its potential to enhance applications such as video surveillance, intelli-
gent human-computer interaction, and healthcare monitoring . In an IoT architecture centered on
edge computing, behavior recognition technology—widely regarded as a critical IoT application—has
attracted increasing attention from researchers and society alike. This technology can collect users’
daily activity data from IoT devices for real-time processing and analysis, enabling the recognition and
analysis of user behavior, thus enhancing their quality of life and safety. Therefore, researching and
exploring efficient behavior recognition technologies within edge computing holds significant research
and application value [24].

The fundamental bottleneck in image-based recognition within edge computing lies in the trade-off
between computational efficiency and recognition accuracy, particularly under complex environmental
conditions. Factors such as occlusion, viewpoint variability, background noise, and lighting changes
significantly affect the accuracy of behavior recognition. To improve recognition accuracy, researchers
have explored various methods [22, 31, 32, 33], including the use of skeletal modality data, which
enhances recognition precision. However, modality-specific limitations exacerbate the issue: while
skeletal data provides robust structural information and scale invariance, it struggles with differenti-
ating actions that share similar motion trajectories or endpoints. On the other hand, RGB data is rich
in appearance features but is highly susceptible to environmental variability, making it noisier and
less reliable. Effectively utilizing these modalities to achieve robust behavior recognition in distributed
edge environments remains an open challenge.

To address these limitations, multimodal data fusion has been proposed as a promising solution ,
combining the complementary strengths of skeletal and RGB data. However, achieving efficient and
scalable fusion suitable for edge environments requires overcoming issues like data inconsistency across
modalities, model robustness, and overfitting. To make efficient use of these multimodal data sources,
many researchers have proposed the use of Knowledge Distillation (KD). The goal of knowledge
distillation is to transfer knowledge from a teacher network to a student network, enabling the fusion
of multiple modalities to improve recognition accuracy. It can also help mitigate the limitations edge
devices face in accessing certain data modalities due to limited computational resources. Traditional
distillation methods minimize output differences between teacher and student networks, transferring
useful knowledge to a lightweight student network, which is suitable for RGB-based student networks
deployed in edge environments. Various KD approaches have been proposed for behavior recognition,
transferring different types of knowledge between models. Examples include transferring knowledge
from an optical flow model to an RGB model [9], from an RGB model to a skeletal model [23], and
from a skeletal model to an RGB model [4, 12], among others.

However, these methods face the challenge of inconsistency in raw data across different modali-
ties, which can lead to reduced model robustness, data overfitting, decreased learning efficiency, and
diminished model generalization. Therefore, a cross-modal contrastive approach is needed to better
integrate data from different modalities. This paper explores a novel approach for effectively combin-
ing RGB video and skeletal modality, aiming to address the issue of insufficient accuracy in behavior
recognition models when distinguishing between actions with similar skeletal structures. While skele-
tal sequences provide simplified body structure and posture information, are scale-invariant, and are
less sensitive to changes in clothing texture and background, they can struggle to differentiate actions
with similar motion trajectories and the same start and end points. As shown in Figure 1, actions
like drinking, eating, and brushing teeth share similar trajectories, start points, and endpoints from
different viewpoints. This indicates that using skeletal sequences alone makes it difficult to distinguish
such actions, and thus integrating the rich appearance information from RGB videos offers an effective
solution to this problem.
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Drink Eat Brush Teeth

Figure 1: Action with Similar Skeleton.

Based on the above analysis, this paper proposes a Cross-Modal Distillation for Multi-View Action
Recognition method (CMMVL) for behavior recognition tasks using multimodal data. The knowledge
distillation model in CMMVL effectively combines skeletal and RGB data, two complementary modali-
ties, while comparing multiple student models with multi-view inputs to improve recognition accuracy.
The teacher network, with its advantage of extracting most action features and its insensitivity to back-
ground, guides the student network to focus on the actions themselves. The extension of the student
model with multi-view data allows the learned features to have a more even spatial distribution, which
facilitates classification.

This paper’s main contributions are threefold:
1. A multi-view human action recognition network model based on cross-modal distillation for edge

environments is proposed. This model captures human actions by modeling two types of modality
data separately with student and teacher models, making it applicable in real-world scenarios such as
video surveillance and intelligent human-computer interaction.

2. The model uses semi-supervised training, where the predictions of the teacher network serve as
pseudo-labels for the student network. Under the constraint of KL loss, the student network learns
the knowledge provided by the teacher network, enhancing knowledge sharing and transfer between
the teacher and student networks.

3. The proposed cross-modal distillation approach expands multiple student networks using multi-
view data. The student network learns action consistency information from RGB data, with its rich
appearance representation distinguishing different actions with similar skeletons. Through knowl-
edge transfer from the teacher network, it effectively combines the complementary skeletal and RGB
modality data.

4. In experimental environments set up on real edge devices, the proposed method outperforms
several mainstream methods in recognition accuracy. Experiments also validate the feasibility of
deploying and using this method in edge environments.

The remainder of this paper is organized as follows: Chapter 1 discusses related work on multi-view
action recognition and knowledge distillation-based action recognition; Chapter 2 presents a multi-
view cross-modal action recognition method; Chapter 3 details the experimental implementation,
introduces the dataset, and describes and analyzes the experimental results; Chapter 4 provides a
summary of this paper.

2 Related Work

2.1 Research on behavior recognition based on multi-view

Nowadays, action recognition methods have achieved considerable success; however, these meth-
ods primarily focus on single-view videos. In multi-view environments, the availability of different
modalities such as pose and depth has inspired numerous studies aimed at solving the problem of view
invariance. In this line of research, most methods leverage depth [1], RGB [19, 25], skeletal data [15],
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or multimodal approaches [29] to learn view-independent features.
In multimodal view-independent feature learning, Wang et al. [27] proposed multi-view representa-

tion learning network (MRLN) to enhance few-shot action recognition by modeling spatial, temporal,
and inter-video relations. Xu et al. [30] presents a two-stage multi-view framework for efficient clas-
sification and localization of distracted driving behaviors, addressing high-similarity behaviors and
background interference. Dhiman et al. [7] proposed a deep view-invariant human action recogni-
tion framework by combining motion and Shape-Time Dynamics (STD) dual streams. The motion
stream encapsulates the action’s motion content into RGB Dynamic Images (RGB-DI) and processes
it using a fine-tuned Inception V3 model. The STD stream employs a series of Long Short-Term
Memory (LSTM) and Bi-directional LSTM (BiLSTM) networks to learn long-term view-invariant
shape dynamics of actions. The Human Pose Model (HPM) generates view-invariant features based
on the Structural Similarity Index Matrix (SSIM) from key depth pose frames. However, the use
of multiple LSTM networks results in high computational costs for temporal action features. Liu et
al. [16] proposed a new action recognition approach to learn view-independent features, encoding the
spatiotemporal information of skeletal joint sequences into a View-Invariant Skeleton Map (VISM)
and using a 3D convolutional neural network for 3D action recognition with VISM features. Existing
methods learn view-invariant features from skeletal sequences, but these approaches require the avail-
ability of 2D/3D pose information. Additionally, the 3D motion modality has also shown effectiveness
in action recognition, but obtaining 3D motion is computationally costly, and these methods do not
generalize well to the more accessible RGB modality. In summary, while leveraging multimodal data
to learn view-invariant features across multiple views can improve recognition performance, further
research is needed on multi-view action recognition methods suitable for deployment on edge devices.

This paper focuses on multi-view human action recognition in edge environments, specifically
addressing the application of using only RGB data for action recognition. In this study, contrastive
learning is employed to efficiently utilize multi-view data to learn view-independent features, enhancing
the quality of the learned action features. Through this approach, our method not only improves
multi-view action recognition accuracy compared to mainstream methods but is also more suitable for
deployment on edge devices.

2.2 Research on behavior recognition based on knowledge distillation

Knowledge distillation [11] was initially proposed to extract knowledge from a large model to a
smaller model, enhancing the performance of the smaller model during testing. In the field of action
recognition, distillation learning has recently gained significant attention. Knowledge distillation is
used to transfer knowledge from a teacher network to a lightweight student network. Currently,
knowledge distillation is applied to action recognition learning, with frameworks increasingly suited
to cross-modal knowledge distillation. Wang et al. [26] proposes a knowledge distillation framework
using a generative model to enhance spatial-temporal feature semantics for video tasks. Garcia et al.
[9] proposed a distillation framework comprising teacher and student networks, which can hallucinate
depth features from RGB features. Crasto et al. [3] introduced MARS, which trains an RGB stream
with standard cross-entropy loss while mimicking the feature learning of the optical flow stream. This
mimicry is achieved through a distillation loss that minimizes the Euclidean distance between the
features learned by the two streams. Xiao et al. [28] extracted fine-grained motion representations
from Temporal Gradients (TG) and enforced consistency between different modalities (i.e., RGB and
TG). Many distillation methods in action recognition research not only focus on optical flow and
RGB but also explore RGB and skeletal information. The method in [12] is specifically designed to
combine cross-modal information from RGB and skeletons. By injecting skeletal information into the
RGB stream through feature-level and attention-level distillation mechanisms, this approach provides a
practical model for combining RGB and 3D poses. However, methods that combine RGB and skeletons
do not explicitly consider similar skeletal sequences that represent human actions. Cross-modal data
inconsistency between RGB and skeletal features remains a major hurdle, as these modalities often
capture different aspects of motion, leading to misalignments during distillation. While multi-stream
models (e.g., optical flow and RGB, or skeleton and RGB) have been explored, few methods have
leveraged multi-view consistency in learning from these modalities. This paper shows that this issue
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can be addressed by expanding multiple student models.
This paper investigates and designs a cross-modal distillation network model for knowledge transfer

from skeletal sequences to RGB videos. The goal is to leverage the advantages of the 3D skeletal teacher
model, which can extract most action features and is less sensitive to background, to guide the student
model in focusing on the actions themselves. Expanding actions in the student model across multiple
views results in more spatially uniform feature distribution, enhancing action recognition accuracy.

3 Multi-perspective cross-modal behavior recognition method

3.1 Cross-modal distillation data input

To efficiently utilize RGB video data, the data preprocessing method follows Duan et al. [8], which
uses a 2D image-based human pose feature learning approach to process videos. The preprocessed data
is then fed into the teacher network for learning. The video preprocessing process is as follows: first,
video frames are extracted from the RGB video, and a top-down pose estimator is used to generate 2D
poses; second, the 2D pose heatmaps are obtained using a human pose feature learning approach based
on 2D images; finally, the 2D poses are stacked along the temporal dimension to create 3D heatmaps,
which are then input into the student network for learning. The principles of data processing are
explained as follows:

The dimensions of the 2D pose representation are K ×H ×W , where K is the number of joints, and
H and W are the height and width of the frame, respectively. When using heatmaps generated by the
top-down pose estimator directly as target heatmaps, zero padding is applied to the target heatmap to
match the original frame, given the corresponding bounding box. For existing joint coordinate triplets
(xk, yk, ck), joint heatmaps J are obtained by synthesizing K Gaussian maps centered on each joint:

Jkij = e
− (i−xk)2+(j−yk)2

2×σ2 × ck, (1)

whrer θ controls the spread of the variance of the Gaussian map, and (xk, yk) and ck represent the
position and confidence score of the k-th joint, respectively. The limb heatmap L is as follows:

Lkij = e
− D((i,j),seg[ak, bk])2

2×σ2 × min (cak
, cbk

) . (2)

The k-th limb is located between two joints, ak and bk. The function D calculates the distance
from point i, j to the segment [(xak

, yak
), (xbk

, ybk
)]. Finally, the 3D heatmap is obtained by stacking

all heatmaps (J or L) along the temporal dimension, resulting in dimensions of K × T × H × W .
Two techniques—subject-centered cropping and uniform sampling—are applied, as in reference [19],
to further reduce redundancy in the 3D heatmap. The processed 3D heatmap is then fed into the
model for training.

3.2 Cross-modal action recognition framework based on knowledge distillation

CMMVL consists of a teacher network and multiple student networks. Figure 2 illustrates the
architecture of the CMMVL framework, which consists of a teacher network and multiple student
networks. In this example, three student networks—Student Model 1, 2, and 3—process RGB ac-
tion videos from three different viewpoints. The teacher model, which is based on skeleton sequences
corresponding to the same RGB action videos, guides the student networks in learning action rep-
resentations. The CMMVL framework is organized into three key components. In the first stage,
knowledge distillation occurs between the teacher model and Student Model 3, where the teacher’s
predictions are transferred to the student network. In the second stage, pseudo-labels are generated for
the student networks based on the action categories predicted by the teacher model, facilitating semi-
supervised learning. The final stage applies contrastive learning to ensure consistency across multiple
views by aligning action representations between the student models, promoting robust multi-view
feature learning.
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Figure 2: Framework of CMMVL.

The teacher network is a network model that uses the skeleton modality. After pre-training, it
predicts the probabilities of the input data, and the class probability distribution for all data in
the teacher network is denoted as PS . The parameters of Student Network 3 are then optimized to
make the estimated class probability distribution PV 3 as consistent as possible with PS . In reference
[11], KL divergence is proposed as the loss for knowledge transfer between two networks of the same
modality. Although the teacher network and the student network use two different modalities of data,
the probability distributions of the modality data are consistent, allowing KL divergence to be used as
the calculation for the knowledge transfer loss between the teacher network and the student network:

KL (P τ
S , P τ

V 3) =
∑

i

P τ
S

(
log P τ

S (i)
P τ

V 3(i)

)
, (3)

where P τ
S and P τ

V 3 represent the target probability distributions of the teacher and student networks,
respectively, after being softened by the addition of a temperature parameter. As the temperature
parameter changes, the target probability distributions returned by the teacher and student networks
become smoother, providing additional information on other classes:

P τ (n) = ezn/τ∑M
i ezi/τ

. (4)

A temperature value τ > 1 generates a smoother probability distribution, with specific recom-
mended values suggested in the literature [9] to avoid overfitting. However, using the loss function (3)
alone is not optimal for cross-modal knowledge transfer, as finding an optimal τ is challenging and
largely depends on the student network. To address this uncertainty, the teacher network’s predictions
are used as pseudo-labels, and cross-entropy (CE) loss minimizes the discrepancy between the student
network’s predictions and the pseudo-labels generated by the teacher network.

CE
(
P̂V , PV

)
= − log

(
PS

(
P̂V

))
, (5)

where P̂V is the predicted value of the student network and PV is the predicted value of the teacher
network.
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3.3 View-independent feature learning with multiple student models

In the context of cross-modal action recognition, Zhang et al. [34] proposed a deep mutual learning
strategy. This strategy collaboratively trains a group of student networks, enabling each network
to learn by mimicking the teacher network’s probability distribution and matching the probability
estimates of its peer networks. Experimental validation shows that using the mutual learning strategy
can improve the performance of cross-modal knowledge distillation models. However, to reduce the
computational overhead of training the student models, the deep mutual learning strategy has been
refined.

In the multi-student network learning of cross-modal knowledge distillation, not every student
network learns to mimic the teacher network’s probability distribution. The training strategy for the
student networks is as follows: train a group of N student networks, designating student network N as
the primary student network to learn by imitating the teacher network’s probability distribution. The
N student networks share parameters and optimize the class probability distributions obtained through
learning. For all student networks except network N , a gradient stopping operation is performed before
generating the class probability distribution.

Multiple student networks are applied to the same modality, using KL loss with a temperature value
τ . However, to compensate for the lack of rich appearance information in skeletal data and address
the challenge of classifying similar skeletal patterns, CL loss is used to fuse multi-view RGB data,
optimizing the class probability distribution. When N = 3, the cross-modal knowledge distillation
network framework for multi-view fusion through mutual learning is shown in Figure 2. The CL loss
functions between student networks 1, 2, and 3 -denoted as CL(1,2), CL(2,3), and CL(1,3) - are given
by the following equations:

CL(1,2) = 1
2D

(
z2, stopgrad

(
h1
))

+ 1
2D

(
z1, stopgrad

(
h2
))

,

CL(2,3) = 1
2D

(
z3, stopgrad

(
h2
))

+ 1
2D

(
z2, stopgrad

(
h3
))

,

CL(1,3) = 1
2D

(
z3, stopgrad

(
h1
))

+ 1
2D

(
z1, stopgrad

(
h3
))

.

(6)

Here, h and z represent the feature vectors learned by the backbone network and multilayer
perceptron in the student network, respectively. D(z, h) denotes the negative cosine similarity between
the feature vectors z and h, and stopgrad() represents the gradient stopping operation.

The proposed method can be extended to include more student networks. For N student networks,
the optimized CL loss function for the network is given by the following equation:

CLN = CL(1,2) + CL(1,3) + CL(2,3) + · · · + CL(N−1,N). (7)

Combining the KL loss and CE loss described in Section 3.2, the loss function for optimizing
cross-modal knowledge distillation across N student networks is given by the following equation:

LN = KL(P τ
S , P τ

V 3) + CE(P̂V , PV ) + λCLN , (8)

where is the weighting factor of CL loss. The multi-view distillation model optimization algorithm is
shown in Algorithm 1.

In Algorithm 1, during the training process of the distillation model, the teacher and student
networks iteratively perform cross-modal knowledge transfer and pseudo-label learning using KL loss
and CE loss, while CL loss is used between student networks to fuse multi-view data, compensating
for the limitations of the skeletal modality. Thus, CMMVL not only learns to transfer pose knowledge
to RGB but also learns discriminative representations through multi-view pose fusion. During testing,
we use only the student network, taking RGB video as input to compute action class scores, thereby
avoiding issues with missing skeletal modality data.
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Algorithm 1 : Multi-view distillation model optimization
Require: S = {S(i) | i = 1, 2, . . . , M}: Skeletal sequences

1: V = {V (i) | i = 1, 2, . . . , M}: RGB video streams
2: M : Total number of samples
3: N : Number of action viewpoints
4: P : Probability distribution of actions

Ensure: Trained multi-view distillation model, including the teacher and student networks.
5: Pre-train the teacher model using the skeletal sequences S.
6: Freeze the teacher model parameters and use the skeletal sequences to predict class probabilities,

obtaining the target class label ĉS and soft target class probability Ps.
7: Train N student models using N viewpoints of RGB video streams V1, V2, . . . , VN . The N student

models share parameters and each produces predictions P̂VN
and soft target class probabilities

PV1 , PV2 , . . . , PVN
.

8: Calculate the KL loss between Ps and PVN
using the values of Ps and PVN

from Steps 2 and 3.
9: Calculate the CE loss between P̂VN

and the true values PVN
using the predictions from Step 3.

10: Calculate the CL loss between each of the N student models as obtained in Step 3.
11: Sum the losses calculated in Steps 4, 5, and 6 and iteratively update the model until convergence.

4 Experiment

4.1 Experimental Setup

4.1.1 Models and Dataset

The CMMVL teacher network employs the PoseC3D network model, while the student network
uses I3D as its backbone network. The proposed CMMVL and related detailed ablation studies were
evaluated on commonly used datasets (specifically NTU-RGB+D). All experiments were conducted on
skeletal modality and corresponding RGB videos, with evaluation performed on the respective RGB
validation sets.

(1) The PoseC3D network model [8] is an open-source 3D-CNN-based skeletal action recogni-
tion framework provided by the Chinese University of Hong Kong. PoseC3D achieves both excellent
recognition accuracy and efficiency, reaching state-of-the-art (SOTA) performance on multiple skeletal
action datasets including FineGYM, NTU RGB+D, and Kinetics-skeleton. Unlike traditional GCN
methods based on 3D human skeletons, PoseC3D achieves superior recognition performance using only
stacked 2D human skeleton heatmaps as input.

(2) The I3D network model [2] is a video action recognition model proposed by DeepMind in 2017.
The I3D network model serves as a feature extraction mechanism, where different tasks essentially
correspond to different feature space mappings - different tasks can be performed by simply changing
the labels, such as video emotion recognition and micro-expression recognition. In RGB video-based
action recognition, the I3D network demonstrates stable performance and good effectiveness, and
continues to be widely used as a baseline network for video understanding tasks.

(3) The NTU-RGB+D dataset [20], provided by Nanyang Technological University, contains 60
action classes with approximately 56,000 video clips. These are divided into three major categories:
40 daily actions (drinking, eating, reading, etc.), 9 health-related actions (sneezing, staggering, falling
down, etc.), and 11 interactive actions (punching/kicking, hugging, etc.). The RGB videos have a
resolution of 1920x1080, while both depth maps and infrared videos are 512x424. The 3D skeletal
data includes three-dimensional coordinates of 25 body joints per frame. The dataset employs two
different evaluation protocols: Cross-subject (CSub) and Cross-view (CView). The NTU-RGB+D 120
dataset [17] expands upon the NTU-RGB+D dataset by adding another 60 classes with approximately
57,600 video samples. This brings the total to 120 classes and 114,480 samples in the NTU-RGB+D
120 dataset. This expanded dataset employs two different evaluation protocols: Cross-subject (CSub)
and Cross-setup (CSet).
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4.1.2 Environment Setup

All experiments in this section are conducted under the Python deep learning framework on Ubuntu
16.04, utilizing two NVIDIA Tesla P100 GPUs. The training input used both 3D skeletal data and
corresponding RGB videos provided by the NTU-RGB+D dataset. The backbone model for the
teacher network is the PoseC3D backbone proposed in reference [6]. The student network employs
the I3D RGB backbone network proposed in reference [2], which was pre-trained on ImageNet [5] and
Kinetics-400 [14].

A test bed for efficiency evaluation of our training strategy is constructed. Without loss of gen-
erality, there are two types of subordinates with 100M links connect their edge server, laptop and
Raspberry Pi. Two edge nodes collect videos from different viewpoints and transmit them to the edge
computing server. The two edge nodes are Raspberry Pi E1 and E2, with the edge computing server
designated as S1. The configurations of edge computing server S1 and Raspberry Pi nodes E1 and E2
are shown in Tables 1 and 2. The edge computing server S1 is equipped with an i7-9700 (3.00GHz,
3.00GHz) CPU, NVIDIA GeForce RTX 2060 GPU, and 16GB of memory, while the Raspberry Pi
nodes E1 and E2 use a 1.5GHz quad-core Broadcom BCM2711 B0 (Cortex-A72) processor.

Table 1: Detail Information of Central Server
hardware Central Server

CPU i7-9700(3.00GHz 3.00 GHz)
Memory 16GB DDR4

GPU NVIDIA GeForce RTX 2060
Wireless network 802.11ac(2.4/5GHz) Bluetooth5.0
Wired network Gigabit Ethernet

Idle power 120W
CPU full load power 95W
GPU full load power 160W

Table 2: Detail Information of Raspberry Pi 4B
hardware A type of edge device

CPU 1.5GHz quad-core Broadcom BCM2711BO (Cortex A-72)
Memory 2GB DDR4

GPU 500MHz VideoCore VI
Wireless network 802.11ac(2.4/5GHz) Bluetooth5.0

Idle power 10W
full load power 15W
Average Power 12W

Raspberry Pi nodes E1 and E2 collect videos from viewpoints that differ by 45 degrees and transmit
them to edge computing server S1, where the server S1 performs model training and action recognition.

4.1.3 Implementation details

The hyperparameters are carefully selected as follows. A value of τ = 2 is chosen to smooth class
probabilities effectively, aiding in knowledge transfer while avoiding overfitting. We use 3 student
networks balances computational complexity with accuracy gains.

4.2 Result and Analysis

In this section, experimental evaluations are conducted to verify the accuracy and effectiveness of
CMMVL. CMMVL is compared with current state-of-the-art single skeletal modality and multi-modal
action recognition methods. The impact of the multi-student network distillation method on model
performance is validated.
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To evaluate CMMVL’s model performance, this paper compares it with current mainstream deep
learning algorithms on the NTU-RGB+D 60 and NTU-RGB+D 120 datasets, as shown in Tables
3 and 4. CMMVL is compared with advanced methods that use only skeletal modality. Previous
approaches [21, 22, 31] primarily used spatiotemporal graph convolutional networks to learn action
features. As shown in the tables, CMMVL achieves superior action recognition performance under
different partition criteria on the NTU-RGB+D dataset compared to previous methods, indicating that
RGB and skeletal modalities complement each other to some extent in action recognition tasks, and
better exploitation of the relationship between these two modalities can achieve improved recognition
results.

Table 3: Comparison with state-of-the-art methods on NTU-RGB+D 60
Method Pose RGB NTU-60(CView) NTU-60(CSub)

ST-GCN [31] ! % 88.3 81.5
RA-GCN [22] ! % 93.6 87.3
2s-AGCN [21] ! % 95.1 88.5

SGN [33] ! % 94.5 89.0
MMFF [35] ! ! 91.6 85.4

3s-AimCLR [10] ! ! 92.8 86.9
CMMVL ! ! 95.6 89.1

Furthermore, compared to advanced methods [10, 35] that use both RGB and skeletal modalities,
CMMVL achieves better results through its cross-modal multi-student network knowledge distillation
model. As shown in Table 3, CMMVL’s two experimental results on the NTU-RGB+D 60 dataset
surpass the state-of-the-art methods by 0.5% and 0.1% respectively. In Table 4, CMMVL’s two
experimental results on the NTU-RGB+D 120 dataset exceed previous methods by 2.1% and 1.3%
respectively. This demonstrates that the cross-modal approach using multi-student network knowledge
distillation better integrates the two data modalities and can learn superior action representation
information.

Table 4: Comparison with state-of-the-art methods on NTU-RGB+D 120
Method Pose RGB NTU-120(CSet) NTU-120(CSub)

ST-GCN [31] ! % 73.2 70.7
RA-GCN [22] ! % 82.7 81.1

SGN [33] ! % 81.5 79.2
3s-AimCLR [10] ! ! 80.9 80.1

CMMVL ! ! 84.8 82.4

The NTU-RGB+D 120 dataset has greater complexity due to its larger number of classes and
increased inter-class similarity. The CMMVL framework’s ability to leverage complementary modal-
ities (skeletal and RGB) and its multi-student structure make it particularly effective for handling
such complexity. This is less critical for NTU-RGB+D 60, where the skeletal modality alone achieves
near-optimal results for many classes.

Table 5: Comparison of the Backbone Network only used the main student model
Knowledge Distillation NTU-60(CView) NTU-60(CSub) NTU-120(CSet) NTU-120(CSub)

Not used 87.3 85.5 80.1 77.0
Used 95.6 89.1 84.8 82.4

Table 6 presents a comparison of inference time across different methods, including the proposed
CMMVL framework, ST-GCN, RA-GCN, SGN, and 3s-AimCLR. The x-axis represents the methods,
and the y-axis denotes the inference time in seconds. The proposed CMMVL framework exhibits a
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Table 6: Inference time of various methods.
Method CMMVL ST-GCN RA-GCN SGN 3s-AimCLR
Time(s) 0.09 0.13 0.11 0.16 0.15

competitive inference time, achieving a value below 0.1 seconds per sample. This demonstrates its
computational efficiency, especially in real-time applications.

4.3 Ablation Experiment

To verify the impact on model performance of knowledge distillation, mutual learning between
multiple student models, multi-student model learning strategies, multi-view fusion learning, and
hyperparameter selection, the following ablation experiments were conducted on the NTU-RGB+D
dataset:

The results of the ablation study on the impact of knowledge distillation algorithm on model
performance are shown in Table 5, comparing the effectiveness with and without knowledge distillation.
The model without knowledge distillation, which uses only the backbone network of the main student
model on the RGB modality, represents the performance of the I3D network on the NTU-RGB+D
dataset. Comparison of the data in the table shows that the network model incorporating knowledge
distillation outperforms the I3D network alone in recognition effectiveness across all metrics. This
demonstrates that the introduction of the knowledge distillation algorithm effectively combines skeletal
data with RGB data, and the complementary learning of these two modalities in action representation
improves action recognition performance.

Table 7: Comparison of the Backbone Network only used the main student model
Knowledge Distillation NTU-60(CView) NTU-60(CSub) NTU-120(CSet) NTU-120(CSub)

Not used 87.3 85.5 80.1 77.0
Used 95.6 89.1 84.8 82.4

To investigate the effectiveness of mutual learning between multiple student models, a comparison
was made between models with and without multiple student models, as shown in Table 6. The model
in Table 6 uses only the main student model, with all viewpoint data input into the main student
model, without inter-viewpoint feature fusion computation. The comparison of data in the table
shows that the multi-student model achieves better recognition performance than the single student
model. This indicates that the multi-student model learned viewpoint consistency information when
processing RGB data from multiple viewpoints, effectively improving model recognition performance.

Table 8: Comparison of the Backbone Network only used the main student model
Multi-student model NTU-60(CView) NTU-60(CSub) NTU-120(CSet) NTU-120(CSub)

% 94.8 87.7 83.3 81.1
! 95.6 89.1 84.8 82.4

To study how multi-view RGB modality compensates for the limitations in distinguishing similar
actions due to similar skeletal and motion patterns, classification results for similar actions such as
eating and drinking are shown in Table 7. The table compares classification performance between using
only skeletal modality input with the teacher model backbone network and the CMMVL approach.
The data comparison shows that CMMVL’s recognition performance surpasses that of the teacher
model backbone network on most datasets, with only one metric showing similar performance. This
demonstrates that multi-view RGB modality can, to some extent, compensate for the limitations of
skeletal modality data. Training the model using knowledge distillation provides a feasible premise
for actual model deployment and expands the use of multiple data modalities in edge environments.

To investigate the impact of hyperparameter selection on model performance, a quantitative anal-
ysis was conducted on the weighting factor of CL loss, with λ ranging from 0 to 1. The impact of
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Table 9: Comparison of PoseC3D and CMMVL
Model NTU-60(CView) NTU-60(CSub) NTU-120(CSet) NTU-120(CSub)

Teacher Network 95.1 88.5 84.8 82.1
CMMVL 95.6 89.1 84.8 82.4

Table 10: The Influence of Different λ on the Accuracy.
λ 0.0005 0.005 0.01 0.05 0.1 0.2 0.5 0.9
Accuracy 58 87 59 57 50 52 55 53

different λ values on accuracy under the CSub evaluation protocol of the NTU-RGB+D 60 dataset is
shown in Table 10. The graph indicates that optimal performance is achieved when λ = 0.005.

5 Conclusion
To address issues such as data heterogeneity in multi-view action recognition in practical edge

environments, this paper proposes a multi-view human action recognition model based on cross-modal
distillation. The model primarily expands the use of multiple data modalities in edge environments and
resolves the challenge of distinguishing between actions with similar skeletal features. The proposed
model employs knowledge distillation algorithms, using existing high-quality skeletal models to guide
student models in learning human action features. Specifically, the multi-student network collectively
learns potential spatial relationships between multiple viewpoints of different actions, with knowledge
transfer occurring only between the main student network and the teacher model, thereby improving
distillation learning efficiency. This model not only learns viewpoint-invariant features across multiple
viewpoints but also constructs student networks suitable for deployment in practical edge scenarios.
Experiments based on the NTU-RGB+D 60 and NTU-RGB+D 120 datasets, compared with current
mainstream action recognition methods, showed improvements of 0.5%, 0.1%, 2.1%, and 1.3% respec-
tively, demonstrating the superiority of the proposed method. Additionally, significant improvements
were achieved through optimizations based on a self-supervised end-to-end multi-view human action
recognition model using contrastive learning. Multiple ablation studies validate the effectiveness of
the multi-student network distillation model for multi-view action recognition. The proposed model
holds strong potential for real-world applications. In smart transportation, where accurate and real-
time action recognition is crucial for monitoring and controlling traffic behavior, the model can be
deployed on edge devices for efficient analysis of driver behavior, pedestrian actions, or even detecting
distracted driving. In medical monitoring, the ability to recognize subtle movements or actions—such
as patient rehabilitation exercises or identifying fall events—could improve patient care and safety.
The lightweight nature of the model, combined with its high accuracy, makes it suitable for these
applications, where both computational efficiency and real-time processing are essential.
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