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Abstract

The increasing integration of software and hardware in modern computer systems has intro-
duced significant reliability challenges, necessitating advanced fault diagnosis and lifespan predic-
tion techniques. This study proposes a hybrid approach leveraging an improved Bat Algorithm
(BA) and Hidden Markov Model (HMM) to enhance fault detection and system longevity as-
sessment. By incorporating a genetic competition mechanism, the enhanced BA improves fault
classification accuracy, while the HMM-based lifespan prediction model provides superior forecast-
ing precision. Experimental results demonstrate that the proposed fault diagnosis model achieves
a 95.68% accuracy and an area under the curve (AUC) of 96.83%, significantly outperforming
conventional methods. Moreover, the lifespan prediction model surpasses backpropagation neural
networks (BPNN), achieving a lower root mean square error (RMSE) of 0.021, indicating higher
predictive reliability. These findings contribute to improving the stability and security of complex
computing environments while reducing maintenance costs. Future work will focus on optimizing
computational efficiency and extending real-time applications in large-scale systems.

Keywords: complex computer systems, bat algorithm, hidden markov model, reliability, re-
maining lifespan, fault diagnosis.

1 Introduction
Computer System Reliability Analysis (CSRA) refers to the process of evaluating the system's

capacity to carry out specified functions under specified states and within a given time. This pro-
cess aims to identify faults and risks in the system, analyze their causes, and develop corresponding
solutions to improve the system’s reliability. Through fault diagnosis and life prediction, potential
problems can be identified in advance and preventive measures can be taken, thereby improving the
reliability of computer systems [1, 2]. Computer system fault diagnosis refers to the detection of faults
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that occur in the system. The Fault Diagnosis Model (FDM) analyzes the operational data of the
system, identifies abnormal patterns and trends, and promptly identifies potential faults in the system
[3]. Through fault diagnosis, the risk of system crashes and data loss can be prevented and reduced,
ensuring business continuity and data integrity. In addition, fault diagnosis also helps optimize sys-
tem maintenance and management, improve system reliability and service life. Computer system life
prediction refers to predicting the possible failure time or replacement time of a computer system or
component in the future through certain methods and tools. The Life Prediction Model (LPM) focuses
on the entire life cycle of the system, and predicts the remaining service life of the system by analyzing
its operational data and historical information. LPM can help prepare maintenance and replacement
plans in advance, avoiding business interruptions and data loss caused by system failures [4]. Hidden
Markov Models (HMM) are statistical models used to describe Markov processes containing hidden
unknown parameters. By using these parameters, the degradation status of the equipment can be
deeply analyzed, and the rest of equipment life can be predicted. Software and hardware integration
refers to the organic combination of computer hardware and software to ensure that they can work
together to achieve specific functions or services. At present, this technology is widely used in various
fields to improve the performance, stability, and availability of computer systems, but the reliability
analysis process of such complex computer systems is also more complex [5]. In complex systems
that integrate software and hardware, the interaction between software and hardware is complex, and
existing fault diagnosis and life prediction methods are difficult to fully consider the collaborative work
of software and hardware, resulting in limited accuracy of diagnosis and prediction. Therefore, this
study proposes FDM based on improved Bat Algorithm (BA) and LPM based on HMM. The research
aims to propose an effective computer fault diagnosis and life prediction model to detect potential
faults in complex computer systems in advance and improve their reliability. The innovation of the
research lies in using Genetic Algorithm (GA) to improve BA and enhance its population diversity.

2 Literature review
CSRA can effectively improve the reliability of computer systems, reduce the possibility of fail-

ures, and ensure that the system can operate stably under specified conditions and within specified
time. Chi Y et al. reviewed the latest research progress on knowledge-based fault diagnosis knowledge
bases in response to the high complexity of reliability detection in Industrial Internet of Things (IIoT)
systems caused by the increasing level of connectivity between devices. This study contributed to
fault detection and isolation of specific components in IIoT systems [6]. John Y M et al. proposed a
multi-hardware software fault interaction reliability model to address the reliability issues of computer
system hardware and software. This model established and solved differential difference equations to
obtain formulas for mean time to failure, profit, and steady-state availability, which helps to improve
the lifespan and operational efficiency of computer systems [7]. Verma A et al. proposed a reliability
assessment model that considers the operation of hardware software systems in different modes, ad-
dressing the issue of reliability assessment models not taking into account the time, compatibility, and
dependencies between hardware and software. This model has been applied to time critical stepper
motor systems and has certain effectiveness [8]. De Sio et al. proposed a neural network resilience
evaluation method based on programmable hardware to address the issue of the rapid increase in
complexity of modern neural networks, which leads to an increased demand for computing power
in the required network architecture. This method could involve the hardware execution of neural
networks in reliability analysis and solve specific fault models [9]. Haque et al. stated that the soft-
ware reliability growth model explains system reliability by analyzing the fault dataset throughout
the entire testing process, but it has certain limitations. Therefore, they introduced the mathematical
foundations of five popular software reliability models, which helps promote the application of software
reliability models in predicting natural health reliability [10]. Zhu M et al. established a generalized
multi-environmental factor software reliability growth model to address the impact of environmental
factors on software reliability, which can help promote the development of large-scale software devel-
opment. Tests on real-world datasets have shown that the model has good software reliability [11].
Shahin M et al. proposed a fault detection model based on deep learning and gradient enhancement
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algorithms, which achieved an average accuracy of over 90% in the synthetic predictive maintenance
dataset, indicating that deep learning can demonstrate satisfactory performance in system reliability
analysis [12]. Yuan Z et al. proposed a system fault diagnosis model based on velocity adaptive graph
convolutional networks. The results indicate that the proposed model has an average accuracy of
98.83% and good robustness [13].

HMM is a statistical model used to describe Markov processes with hidden unknown parameters.
Singh A et al. summarized the performance matrix and evaluation criteria used to evaluate fraud
detection systems for automatic detection of credit card fraud, and used HMM models for probability
statistics, which will provide useful directions for research in the field of credit card fraud detection
[14]. Moudoud H et al. proposed an HMM-based IoT device attack detection and prediction module
to address the vulnerability of IoT systems to false data injection attacks. The proposed model
had high attack detection accuracy and efficiency, ensuring the reliable operation of IoT devices
[15]. Liberali G et al. proposed using HMM to evaluate the real-time response performance of
website visitors in response to the poor real-time response caused by the rich design elements in
the website. It combined the multi-armed bandit model to understand the effectiveness of hidden
states and web design, which helped improve the visitor experience [16]. Sidrow et al. suggested that
datasets composed of high-frequency time sampled curve sequences may exhibit complex dependency
structures, making modeling difficult. To this end, a hierarchical method was proposed that treats
curves as observations of HMMs and uses Fourier analysis for data transformation. The proposed
method could generate interpretable state estimates and accurate parameter estimates [17]. Salehian
M et al. used HMM for fault detection on a test bench to address the issue of adjusting controller
parameters, to improve the engine design process and meet fuel consumption and driving comfort
demands. The practicality of the proposed method was verified through an industrial engine test
bench [18]. Che J et al. investigated the active fault-tolerant control problem of a class of discrete-
time Markov jump LPV systems. It utilized time-varying HMM to characterize the data transmission
between fault diagnosis and controller reconstruction mechanisms, and verified the applicability of
the proposed method through numerical examples [19]. Li J et al. proposed a time series prediction
fuzzy model based on fuzzy rules and HMM model. The experimental results show that the proposed
model exhibits better performance than models based on fuzzy rules [20]. Shao W et al. proposed a
semi supervised Bayesian HMM dynamic soft sensing method to address the issue of industrial data
complexity hindering the development of high-precision soft sensors. The results indicate that the
proposed method can effectively address the issue of missing values in quality variables [21].

In summary, although current CSRA has been affirmed the effectiveness of HMM in data analysis,
there is still rare research on CSRA related to HMM. Therefore, this study is based on HMM to
analyze the reliability of computer systems, aiming to ensure their stable operation.

3 Research methodology

3.1 FDM construction based on improved BA

With the increasing complexity of computer systems and the increasing needs for system reliabil-
ity, it is necessary to quickly locate and diagnose faults in complex computer systems. The Malek
model is a model used for system fault diagnosis, mainly for diagnosing faults that occur during the
communication process of various nodes in multi machine systems. Assuming there are n nodes in
a processor system, the topology of the system is G (U, E, W ). U = {u1, u2, ..., un} is the node set,
E = {e1, e2, ..., en} is the edge set between nodes, and W = {w1, w2, ..., wn} is the weight of the edges.
To determine the fault node, a constraint equation is designed as shown in formula (1).

f(ui, uj) =
{

ui + uj = 0, eij = 0
(ui + uj − 2)uiuj = 0, eij = 1 (1)

In formula (1), ui and uj denote the states of nodes i and j. eij means the comparison result
between adjacent nodes. To improve the efficiency of Malek model fault diagnosis, the study introduces
BA to achieve more efficient parameter optimization and problem solving. BA is a heuristic search
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algorithm built on swarm intelligence, proposed by Professor Xin She Yang in 2010. BA simulates the
bat’s behaviors in nature using sonar to detect prey and avoid obstacles [22]. The basic principle of
BA is to map bat individuals into feasible ways in a multidimensional issue space, and search for the
global optimal solution through iterative optimization process, which owns the advantages of simple
implementation and few parameters [23, 24]. Fig. 1 shows the acoustic localization of bats.
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Fig.1 Schematic diagram of bat sound wave localization 
In Fig.1, bats locate prey and obstacles by emitting ultrasound waves and receiving reflected 

echoes, searching for prey with a fixed frequency, variable wavelength, and volume. Pulse frequency, 
sound intensity, and pulse emission frequency have significant impacts on the adaptive iteration of 
BA. In BA, the calculation of the search pulse frequency if  emitted by bat i  is shown in formula 
(2). 
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Figure 1: Schematic diagram of bat sound wave localization

In Fig. 1, bats locate prey and obstacles by emitting ultrasound waves and receiving reflected
echoes, searching for prey with a fixed frequency, variable wavelength, and volume. Pulse frequency,
sound intensity, and pulse emission frequency have significant impacts on the adaptive iteration of
BA. In BA, the calculation of the search pulse frequency fi emitted by bat i is shown in formula (2).

fi = f min + (f max −f min) ε (2)

In formula (2), ε is a random number with values within [0,1], and f max and f min are the max
and min of fi. During the random flight search process, the speed and position update rules for the
t-th iteration of bat i are shown in formula (3).vt

i = vt−1
i +

(
xt−1

i − x∗
)

fi

xt
i = xt−1

i + vt
i

(3)

In formula (3), vt
i and xt

i are the velocity and location of bat i’s t-th iteration. vt−1
i and xt−1

i are
the velocity and location of bat i’s t − 1-th iteration. x∗ is the present local optima. The local search
process of BA is to generate a novel solution around the optima. Once a solution is taken from the
current optima, the random walk method is utilized to produce a new local solution nearby. If the
bat is at the global optima, the bat individual updates its position based on its loudness, as shown in
formula (4).

xnew = xold + γAk (4)

In formula (4), xold and xnew are the positions before and after the update. γ is a random number
with a value range of [-1,1]. Ak is the average loudness of all bats at time k. During the search for
prey phase, the algorithm’s parameters are updated as shown in formula (5).{

Ak+1
i = aAk

i

rk+1
i = r0

i [1 − exp(−δk)]
(5)

In formula (5), Ak+1
i and rk+1

i are the pulse loudness and pulse emission frequency of bat i at time
k +1. a and δ represent constants greater than zero. r0

i is the initial pulse emission frequency of bat i.
As the iterations increase, the loudness will gradually approach 0, and ri will gradually approach r0

i
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until the global optimal solution is found. However, BA also faces issues of poor population diversity
and early maturity. Therefore, this study introduces GA with good global search performance to enrich
the population diversity of BA. GA is a random search algorithm that iteratively updates the solution
to optimization problems by simulating natural selection and genetic principles. Its core idea originates
from the laws of evolution in nature [25, 26]. The main steps of GA include population initialization,
selection operation, crossover operation, and mutation operation. Among them, crossover operation
means the process of generating novel individuals by exchanging partial genes of two parent individuals.
It can add the population’s diversity, assist the algorithm in exploring new solutions in the search space,
and thus improving the global search capacity. The two-point intersection used is shown in Fig. 2.
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Fig.2 Schematic diagram of two-point intersection 
In Fig.2, two-point crossover refers to gene exchange between two randomly selected intervals 

of two parent individuals, thereby generating two new offspring individuals and ensuring that the 
exchanged gene segments are complete. The two-point crossover simulates the phenomenon of gene 
recombination in the process of biological evolution, which helps the algorithm explore new 
solutions in the search space. The selection operation aims to optimize the search by selecting 
individuals with higher fitness to construct the next generation population. In the selection operation, 
this study adopts the roulette wheel selection method, and the core principle lies in the possibility 
of an individual being chose is proportional to its fitness function value. This method first calculates 
the fitness value of each individual in the population, and then calculates their probability of being 
selected based on their fitness value. The calculation of the probability P  of an individual being 
selected is shown in formula (6). 
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In formula (6), p   is the individual’s fitness value. N   is the population size. After 
calculating the probability P , random numbers within [0,1] are selected for comparison. If the 
random number is greater than P , the individual is not selected, otherwise it is selected. Mutation 
operation refers to changing the gene values on certain loci of individual strings in a population, 
aiming to introduce new genes, increase population diversity, and help avoid algorithms getting 
stuck in local optima. To improve the robustness and adaptability, this paper adopts a simple single 
point mutation method. Single point mutation involves randomly selecting a point as the mutation 
point, and then modifying the genes of the chromosome at that point to introduce diversity and 

Figure 2: Schematic diagram of two-point intersection

In Fig. 2, two-point crossover refers to gene exchange between two randomly selected intervals
of two parent individuals, thereby generating two new offspring individuals and ensuring that the
exchanged gene segments are complete. The two-point crossover simulates the phenomenon of gene
recombination in the process of biological evolution, which helps the algorithm explore new solutions
in the search space. The selection operation aims to optimize the search by selecting individuals with
higher fitness to construct the next generation population. In the selection operation, this study adopts
the roulette wheel selection method, and the core principle lies in the possibility of an individual being
chose is proportional to its fitness function value. This method first calculates the fitness value of each
individual in the population, and then calculates their probability of being selected based on their
fitness value. The calculation of the probability P of an individual being selected is shown in formula
(6).
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Fig.3 Flowchart of fault diagnosis model based on improved BA 
In Fig.3, FDM based on improved BA utilizes the genetic competition mechanism introduced 

in GA to enhance the diversity of the population and improve the optimization performance of BA. 
To investigate the impact of parameter settings on the performance of a fault diagnosis model based 
on an improved BA algorithm, a single parameter method was used to observe the changes in the 
output results of the model by changing the input parameters one by one. Specifically, following the 
parameter settings of Deb K et al [27]. The study first set the mutation probability to 0.3 and the 
crossover probability to 0.5, exploring the changes in CPU runtime under different selection 
probabilities. Then, set the selection probability to 0.3 and the crossover probability to 0.5, and 
change the mutation probability. The probability of crossing is the same. 
3.2 LPM based on HMM 

FDM can only provide fault information for computer systems and cannot provide predictive 
information about equipment lifespan, lacking comprehensive reliability assessment. Therefore, to 
further analyze the reliability of complex computer system equipment that integrates software and 
hardware, this study will establish LPM. HMM is vital for studying the state space of discrete event 
dynamic systems. Assuming that the set of hardware performance degradation indicators in a 

computer system is  1 2, ,..., nI i i i , and the set of all possible operating states of m  software 
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degradation state evolution process based on HMM is shown in Fig.4. 

Figure 3: Flowchart of fault diagnosis model based on improved BA‌

In formula (6), p is the individual’s fitness value. N is the population size. After calculating the
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probability P , random numbers within [0,1] are selected for comparison. If the random number is
greater than P , the individual is not selected, otherwise it is selected. Mutation operation refers to
changing the gene values on certain loci of individual strings in a population, aiming to introduce
new genes, increase population diversity, and help avoid algorithms getting stuck in local optima. To
improve the robustness and adaptability, this paper adopts a simple single point mutation method.
Single point mutation involves randomly selecting a point as the mutation point, and then modifying
the genes of the chromosome at that point to introduce diversity and prevent the algorithm from
getting stuck in local optima. In summary, the flowchart of FDM based on improved BA is shown in
Fig. 3.

In Fig. 3, FDM based on improved BA utilizes the genetic competition mechanism introduced
in GA to enhance the diversity of the population and improve the optimization performance of BA.
To investigate the impact of parameter settings on the performance of a fault diagnosis model based
on an improved BA algorithm, a single parameter method was used to observe the changes in the
output results of the model by changing the input parameters one by one. Specifically, following
the parameter settings of Deb K et al [27]. The study first set the mutation probability to 0.3
and the crossover probability to 0.5, exploring the changes in CPU runtime under different selection
probabilities. Then, set the selection probability to 0.3 and the crossover probability to 0.5, and
change the mutation probability. The probability of crossing is the same.

3.2 LPM based on HMM

FDM can only provide fault information for computer systems and cannot provide predictive infor-
mation about equipment lifespan, lacking comprehensive reliability assessment. Therefore, to further
analyze the reliability of complex computer system equipment that integrates software and hardware,
this study will establish LPM. HMM is vital for studying the state space of discrete event dynamic sys-
tems. Assuming that the set of hardware performance degradation indicators in a computer system is
I = {i1, i2, ..., in}, and the set of all possible operating states of m software is S = {s1, s2, ..., sm}. The
observed operating state sequence is R = {r1, r2, ..., rT }, and the corresponding degradation indicator
observation sequence is H = {h1, h2, ..., hT }. T represents the sequence length. HMM is defined by
the initial state probability matrix, the hidden state transition probability matrix B = [aij ]m×n, and
the transition probability matrix C = [bj(k)]m×n of the observed state of the hardware performance
degradation index. aij is the probability of si first and then sj . bj(k) is the probability of generating
observation ik in state sj . The degradation state evolution process based on HMM is shown in Fig. 4.
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Fig.4 Degradation state evolution process based on HMM 
Before establishing HMM, Step 1 is to determine the amount of hidden states in the model, 

and the study uses Bayesian Information Criterion (BIC) to determine it. BIC is a criterion used for 
model selection, aimed at balancing the fit goodness and model complexity to select the best model 

[28]. Assuming 1 2, ,..., bx x x  is independent and identically distributed, the posterior probability 

( )f g   is shown in formula (7). 
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In formula (7),   is the model,   is the observed data, k  is the quantity of hidden states, 
and   is the model space. The definition of BIC is shown in formula (8). 
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k

L X
  is the maximum likelihood estimate of ( )f g  . This study uses 

the Baum-Welch Algorithm (BWA) to estimate the parameters of HMM. The BWA is an iterative 
optimization algorithm used to train HMMs, which maximizes the likelihood function of HMMs 
through two main steps: iterative expectation and maximization [29]. The BWA first initializes the 
HMM parameters, then calculates the forward and backward probabilities for each time step, and 
calculates the posterior probabilities for each state at each time step based on these probabilities. 
Then, based on the posterior probability, the algorithm re-estimates the model parameters by 
maximizing the logarithmic likelihood function, repeating until the model parameters converge. In 
addition, this study also uses the Viterbi algorithm to obtain the optimal hidden sequence estimation. 
The Viterbi is a dynamic programming algorithm utilized to look for the most likely Hidden State 
Sequence (HSS) to generate an observed event sequence [30]. In HMM, the observation sequence 
is a sequence composed of a series of random events, and the HSS is the underlying cause of these 
events. The Viterbi calculates the possibility of each state and selects the path with the highest 
possibility to find the most likely HSS. The performance degradation model of software and 
hardware systems is shown in formula (9). 
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In formula (9), ( )D n  is the incremental degradation of system performance. ( )Y n  is the 

sensor indicator value predicted at time nh . ( 1)Y n   is the sensor indicator value predicted at 

time ( 1)n h .  ( 1), ( )J Z n Z n  is the degradation of system performance when the system 

transitions from state ( 1)Z n   to state ( )Z n .  ( 1)Z n   is the degradation rate. Assuming 

( 1)Z n i  , ( )Z n j , then ( )D n  has a probability density function ( , , )G d i j  .   is a 

parameter vector. The expected degradation  ( )E Y n   of computer system performance under 

different software operating states is shown in formula (10). 

 
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c
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c
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In formula (10), ( )cY n  is the performance indicator degradation observed at time 
cn ct n h . 

cn   is the current number of cycles. Fig.5 shows the process of system level remaining life 

Figure 4: Degradation state evolution process based on HMM

Before establishing HMM, Step 1 is to determine the amount of hidden states in the model, and the
study uses Bayesian Information Criterion (BIC) to determine it. BIC is a criterion used for model
selection, aimed at balancing the fit goodness and model complexity to select the best model [28].
Assuming x1, x2, ..., xb is independent and identically distributed, the posterior probability f(g |θ ) is
shown in formula (7).

f(g |θ ) |θ = (γ1, γ2, ..., γk), θ ∈ ϑ (7)

In formula (7), θ is the model, γ is the observed data, k is the quantity of hidden states, and ϑ is
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the model space. The definition of BIC is shown in formula (8).

B(f) = k ln b − 2 ln Lθ̂k
(X) (8)

In formula (8), ln Lθ̂k
(X) is the maximum likelihood estimate of f(g |θ ). This study uses the Baum-

Welch Algorithm (BWA) to estimate the parameters of HMM. The BWA is an iterative optimization
algorithm used to train HMMs, which maximizes the likelihood function of HMMs through two main
steps: iterative expectation and maximization [29]. The BWA first initializes the HMM parameters,
then calculates the forward and backward probabilities for each time step, and calculates the posterior
probabilities for each state at each time step based on these probabilities. Then, based on the posterior
probability, the algorithm re-estimates the model parameters by maximizing the logarithmic likelihood
function, repeating until the model parameters converge. In addition, this study also uses the Viterbi
algorithm to obtain the optimal hidden sequence estimation. The Viterbi is a dynamic programming
algorithm utilized to look for the most likely Hidden State Sequence (HSS) to generate an observed
event sequence [30]. In HMM, the observation sequence is a sequence composed of a series of random
events, and the HSS is the underlying cause of these events. The Viterbi calculates the possibility of
each state and selects the path with the highest possibility to find the most likely HSS. The performance
degradation model of software and hardware systems is shown in formula (9).

D(n) = Y (n) − Y (n − 1) =
{

µ (Z(n − 1)) h, Z(n) = Z(n − 1)
J (Z(n − 1), Z(n)) , Z(n) ̸= Z(n − 1) (9)

In formula (9), D(n) is the incremental degradation of system performance. Y (n) is the sensor
indicator value predicted at time nh. Y (n−1) is the sensor indicator value predicted at time (n−1)h.
J (Z(n − 1), Z(n)) is the degradation of system performance when the system transitions from state
Z(n − 1) to state Z(n). µ (Z(n − 1)) is the degradation rate. Assuming Z(n − 1) = i, Z(n) = j,
then D(n) has a probability density function G(d| i, j, ϖ). ϖ is a parameter vector. The expected
degradation E [Y (n)] of computer system performance under different software operating states is
shown in formula (10).

E [Y (n)] = Y (nc) +
N∑

n=nc+1
E [G(d |Z(n − 1) = i, Z(n) = j, ϖ ] (10)

In formula (10), Y (nc) is the performance indicator degradation observed at time tnc = nch. nc is
the current number of cycles. Fig. 5 shows the process of system level remaining life prediction.
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Fig.5 Flowchart for system level remaining life prediction 
In Fig.5, firstly, m  software execution transfer path is generated through simulation, and the 

corresponding performance indicator degradation amount is generated. Secondly, by calculating the 
expected degradation value based on the degradation path data, the remaining lifespan of the system 
can be obtained. The next step is to perform weighted averaging on the estimated values. The final 
step is to estimate the remaining lifespan of different subsystems separately and use the system 
structure to estimate the system level remaining lifespan. 
4. Results and discussion 
4.1 Analysis of the effect of FDM 

To investigate the impact of different GA parameters on the performance of FDM based on 
improved BA, this study sets the population size to 30 and the iteration count to 500. This study will 
conduct experiments on the Windows 10 system using Intel (R) Pentium 3558U@1.70GHz 
Processor with 16GB of memory. Fig.6 shows the CPU runtime of the model under different 
parameters. In Figs. 6 (a), (b), and (c), as the values of selection probability, crossover probability, 
and mutation probability change, the running time of the CPU also fluctuates continuously. This 
indicates that the proposed fault diagnosis model based on the improved BA algorithm is sensitive 
to parameter settings for selection probability, crossover probability, and mutation probability. Even 
small parameter adjustments may lead to significant increases or decreases in CPU running time. 
When these three probability values are set to 0.3, 0.5, and 0.35, the CPU runtime is the shortest 
and the efficiency of the model is higher. 
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Fig.6 The impact of different parameters on model performance 
In Fig.6, the selection probability is 0.3, the crossover probability is 0.5, and the mutation 

probability is 0.35. To further verify the superiority of the improved BA, it is compared with the 
currently advanced FDM that combines Convolutional Neural Networks Gated Recurrent Unit 
(CNN-GRU), CNN and Bidirectional Long Short-Term Memory (CNN-BiLSTM), and PSO-GA, 

Figure 5: Flowchart for system level remaining life prediction

In Fig. 5, firstly, m software execution transfer path is generated through simulation, and the
corresponding performance indicator degradation amount is generated. Secondly, by calculating the
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expected degradation value based on the degradation path data, the remaining lifespan of the system
can be obtained. The next step is to perform weighted averaging on the estimated values. The
final step is to estimate the remaining lifespan of different subsystems separately and use the system
structure to estimate the system level remaining lifespan.

4 Results and discussion

4.1 Analysis of the effect of FDM

To investigate the impact of different GA parameters on the performance of FDM based on im-
proved BA, this study sets the population size to 30 and the iteration count to 500. This study will
conduct experiments on the Windows 10 system using Intel (R) Pentium 3558U@1.70GHz Processor
with 16GB of memory. Fig. 6 shows the CPU runtime of the model under different parameters. In
Figs. 6 (a), (b), and (c), as the values of selection probability, crossover probability, and mutation
probability change, the running time of the CPU also fluctuates continuously. This indicates that the
proposed fault diagnosis model based on the improved BA algorithm is sensitive to parameter set-
tings for selection probability, crossover probability, and mutation probability. Even small parameter
adjustments may lead to significant increases or decreases in CPU running time. When these three
probability values are set to 0.3, 0.5, and 0.35, the CPU runtime is the shortest and the efficiency of
the model is higher.
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In Fig.5, firstly, m  software execution transfer path is generated through simulation, and the 

corresponding performance indicator degradation amount is generated. Secondly, by calculating the 
expected degradation value based on the degradation path data, the remaining lifespan of the system 
can be obtained. The next step is to perform weighted averaging on the estimated values. The final 
step is to estimate the remaining lifespan of different subsystems separately and use the system 
structure to estimate the system level remaining lifespan. 
4. Results and discussion 
4.1 Analysis of the effect of FDM 

To investigate the impact of different GA parameters on the performance of FDM based on 
improved BA, this study sets the population size to 30 and the iteration count to 500. This study will 
conduct experiments on the Windows 10 system using Intel (R) Pentium 3558U@1.70GHz 
Processor with 16GB of memory. Fig.6 shows the CPU runtime of the model under different 
parameters. In Figs. 6 (a), (b), and (c), as the values of selection probability, crossover probability, 
and mutation probability change, the running time of the CPU also fluctuates continuously. This 
indicates that the proposed fault diagnosis model based on the improved BA algorithm is sensitive 
to parameter settings for selection probability, crossover probability, and mutation probability. Even 
small parameter adjustments may lead to significant increases or decreases in CPU running time. 
When these three probability values are set to 0.3, 0.5, and 0.35, the CPU runtime is the shortest 
and the efficiency of the model is higher. 
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Fig.6 The impact of different parameters on model performance 
In Fig.6, the selection probability is 0.3, the crossover probability is 0.5, and the mutation 

probability is 0.35. To further verify the superiority of the improved BA, it is compared with the 
currently advanced FDM that combines Convolutional Neural Networks Gated Recurrent Unit 
(CNN-GRU), CNN and Bidirectional Long Short-Term Memory (CNN-BiLSTM), and PSO-GA, 

Figure 6: The impact of different parameters on model performance

In Fig. 6, the selection probability is 0.3, the crossover probability is 0.5, and the mutation
probability is 0.35. To further verify the superiority of the improved BA, it is compared with the
currently advanced FDM that combines Convolutional Neural Networks Gated Recurrent Unit (CNN-
GRU), CNN and Bidirectional Long Short-Term Memory (CNN-BiLSTM), and PSO-GA, as shown
in Fig. 7. In Fig. 7 (a), compared to the other three models, the proposed FDM has fewer iterations,
followed by the PSO-GA, and the CNN-BiLSTM has the highest number of iterations. In Fig. 7
(b), the average CPU runtime of the research model is the shortest, not exceeding 20 seconds. The
CNN-BiLSTM has the longest average CPU runtime. This indicates that the improved FDM of BA
has faster operational efficiency and demonstrates certain superiority.
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as shown in Fig.7. In Fig.7 (a), compared to the other three models, the proposed FDM has fewer 
iterations, followed by the PSO-GA, and the CNN-BiLSTM has the highest number of iterations. 
In Fig.7 (b), the average CPU runtime of the research model is the shortest, not exceeding 20 seconds. 
The CNN-BiLSTM has the longest average CPU runtime. This indicates that the improved FDM of 
BA has faster operational efficiency and demonstrates certain superiority. 

A
ve

ra
ge

 n
um

be
r o

f i
te

ra
tio

ns

(a) Average number of iterations

CNN-GRU

0

5

10

15

20

Number of computer nodes

25

30

0 50 100 150 200 250

CNN-BiLSTM
PSO-GA
Improve BA

300

A
ve

ra
ge

 ru
n 

tim
e/

s

(b) Average CPU running time

CNN-GRU

0

50

100

150

200

Number of computer nodes

250

0 50 100 150 200 250

CNN-BiLSTM
PSO-GA
Improve BA

300

 

Fig.7 Comparison of iteration times and runtime of four algorithms 
4.2 Performance analysis of LPM 

To verify the feasibility of HMM based LPM, this study detects and preprocesses the vibration 
signals of various devices in a complex system that integrates software and hardware. The two 
hardware datasets obtained are named Dataset 1 and Dataset 2, respectively. Fig.8 shows the 
waveform of two datasets. 
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Fig.8 Waveform diagram of the dataset 
Set the error ranges to [-2,2] and [-0.05,0.05] in two datasets, respectively. Fig.9 shows the 

remaining life prediction results comparing the proposed model with BPNN. In Figs.9 (a) and (b), 
in both datasets, the predicted curve of the research model is next to the true curve, and the prediction 
error is smaller than BPNN. Therefore, HMM-based LPM has good residual life prediction 
performance and high prediction accuracy. 
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Fig.9 Comparison of remaining life prediction results 
To further validate the superiority of the proposed model, accuracy, recall, and root mean 

square error were used as evaluation metrics with a confidence interval of 95%. Compare the 
proposed model with the Transformer model, the Sparrow Search Algorithm LSTM (SSA-LSTM), 
and the PSO-LSTM, as shown in Table 1. Among the four models, the accuracy (92.47%) and recall 
(91.73%) of the research model are the highest, while the RMSE (0.021) is the lowest. Therefore, 
HMM-based LPM has good prediction accuracy and certain superiority. 

Figure 7: Comparison of iteration times and runtime of four algorithms

4.2 Performance analysis of LPM

To verify the feasibility of HMM based LPM, this study detects and preprocesses the vibration
signals of various devices in a complex system that integrates software and hardware. The two hard-
ware datasets obtained are named Dataset 1 and Dataset 2, respectively. Fig. 8 shows the waveform
of two datasets.

as shown in Fig.7. In Fig.7 (a), compared to the other three models, the proposed FDM has fewer 
iterations, followed by the PSO-GA, and the CNN-BiLSTM has the highest number of iterations. 
In Fig.7 (b), the average CPU runtime of the research model is the shortest, not exceeding 20 seconds. 
The CNN-BiLSTM has the longest average CPU runtime. This indicates that the improved FDM of 
BA has faster operational efficiency and demonstrates certain superiority. 
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4.2 Performance analysis of LPM 

To verify the feasibility of HMM based LPM, this study detects and preprocesses the vibration 
signals of various devices in a complex system that integrates software and hardware. The two 
hardware datasets obtained are named Dataset 1 and Dataset 2, respectively. Fig.8 shows the 
waveform of two datasets. 
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Fig.8 Waveform diagram of the dataset 
Set the error ranges to [-2,2] and [-0.05,0.05] in two datasets, respectively. Fig.9 shows the 

remaining life prediction results comparing the proposed model with BPNN. In Figs.9 (a) and (b), 
in both datasets, the predicted curve of the research model is next to the true curve, and the prediction 
error is smaller than BPNN. Therefore, HMM-based LPM has good residual life prediction 
performance and high prediction accuracy. 
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Fig.9 Comparison of remaining life prediction results 
To further validate the superiority of the proposed model, accuracy, recall, and root mean 

square error were used as evaluation metrics with a confidence interval of 95%. Compare the 
proposed model with the Transformer model, the Sparrow Search Algorithm LSTM (SSA-LSTM), 
and the PSO-LSTM, as shown in Table 1. Among the four models, the accuracy (92.47%) and recall 
(91.73%) of the research model are the highest, while the RMSE (0.021) is the lowest. Therefore, 
HMM-based LPM has good prediction accuracy and certain superiority. 

Figure 8: Waveform diagram of the dataset

Set the error ranges to [-2,2] and [-0.05,0.05] in two datasets, respectively. Fig. 9 shows the
remaining life prediction results comparing the proposed model with BPNN. In Figs. 9(a) and (b), in
both datasets, the predicted curve of the research model is next to the true curve, and the prediction
error is smaller than BPNN. Therefore, HMM-based LPM has good residual life prediction performance
and high prediction accuracy.

as shown in Fig.7. In Fig.7 (a), compared to the other three models, the proposed FDM has fewer 
iterations, followed by the PSO-GA, and the CNN-BiLSTM has the highest number of iterations. 
In Fig.7 (b), the average CPU runtime of the research model is the shortest, not exceeding 20 seconds. 
The CNN-BiLSTM has the longest average CPU runtime. This indicates that the improved FDM of 
BA has faster operational efficiency and demonstrates certain superiority. 
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Fig.7 Comparison of iteration times and runtime of four algorithms 
4.2 Performance analysis of LPM 

To verify the feasibility of HMM based LPM, this study detects and preprocesses the vibration 
signals of various devices in a complex system that integrates software and hardware. The two 
hardware datasets obtained are named Dataset 1 and Dataset 2, respectively. Fig.8 shows the 
waveform of two datasets. 

(a) Dataset 1

40

50

60

Time/h
0 20 40 60 80

30

20

10

Si
gn

al
 d

at
a

0
100 120

(b) Dataset 2

0.4

0.5

0.6

Time/h
0 20 40 60 80

0.3

0.2

0.1

Si
gn

al
 d

at
a

0.0
100 120

0.7

 

Fig.8 Waveform diagram of the dataset 
Set the error ranges to [-2,2] and [-0.05,0.05] in two datasets, respectively. Fig.9 shows the 

remaining life prediction results comparing the proposed model with BPNN. In Figs.9 (a) and (b), 
in both datasets, the predicted curve of the research model is next to the true curve, and the prediction 
error is smaller than BPNN. Therefore, HMM-based LPM has good residual life prediction 
performance and high prediction accuracy. 
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Fig.9 Comparison of remaining life prediction results 
To further validate the superiority of the proposed model, accuracy, recall, and root mean 

square error were used as evaluation metrics with a confidence interval of 95%. Compare the 
proposed model with the Transformer model, the Sparrow Search Algorithm LSTM (SSA-LSTM), 
and the PSO-LSTM, as shown in Table 1. Among the four models, the accuracy (92.47%) and recall 
(91.73%) of the research model are the highest, while the RMSE (0.021) is the lowest. Therefore, 
HMM-based LPM has good prediction accuracy and certain superiority. 

Figure 9: Comparison of remaining life prediction results

To further validate the superiority of the proposed model, accuracy, recall, and root mean square
error were used as evaluation metrics with a confidence interval of 95%. Compare the proposed model
with the Transformer model, the Sparrow Search Algorithm LSTM (SSA-LSTM), and the PSO-LSTM,
as shown in Table 1. Among the four models, the accuracy (92.47%) and recall (91.73%) of the research
model are the highest, while the RMSE (0.021) is the lowest. Therefore, HMM-based LPM has good
prediction accuracy and certain superiority.



https://doi.org/10.15837/ijccc.2026.1.6873 10

Table 1: Comparison results of indicators for four models
Index Models

Transformer SSA-LSTM PSO-LSTM Research method
Accuracy/% 78.65 85.47 88.73 92.47#&*

Recall/% 77.21 84.31 86.54 91.73#&*

RMSE 0.437 0.216 0.227 0.021#

Note: # indicates a significant difference compared to the Transformer model
(P<0.05). & indicates a significant difference compared to the SSA-LSTM model
(P<0.05). * indicates a significant difference compared to the PSO-LSTM model
(P<0.05).

To further investigate the robustness of the proposed model, the Maryland battery dataset and
the Mechanical Fault Prevention Technology Society MFPT dataset were used for testing, covering
various operating conditions and fault modes. The accuracy comparison results of the above four
models are shown in Figure 10. From Figures 10 (a) and (b), it can be seen that the accuracy of
the proposed model is above 90% in both datasets, which is higher than the other three models. The
results show that the proposed model exhibits good performance and robustness in different types of
datasets.

Table 1 Comparison results of indicators for four models 

Index 
Models 

Transformer SSA-LSTM PSO-LSTM 
Research 
method 

Accuracy/% 78.65 85.47 88.73 92.47#&* 
Recall/% 77.21 84.31 86.54 91.73#&* 
RMSE 0.437 0.216 0.227 0.021# 

Note: # indicates a significant difference compared to the Transformer model (P<0.05). & indicates 
a significant difference compared to the SSA-LSTM model (P<0.05). * indicates a significant 
difference compared to the PSO-LSTM model (P<0.05). 

To further investigate the robustness of the proposed model, the Maryland battery dataset and 
the Mechanical Fault Prevention Technology Society MFPT dataset were used for testing, covering 
various operating conditions and fault modes. The accuracy comparison results of the above four 
models are shown in Figure 10. From Figures 10 (a) and (b), it can be seen that the accuracy of the 
proposed model is above 90% in both datasets, which is higher than the other three models. The 
results show that the proposed model exhibits good performance and robustness in different types 
of datasets. 
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Fig.10 Comparison of Accuracy among Four Models 
5. Conclusion 

For the stability analysis of complex computer systems, this study developed FDM based on 
improved BA and LPM based on HMM. In the experiment, when the selection, crossover, and 
mutation probabilities were 0.3, 0.5, and 0.35, the CPU running time was the shortest and the 
efficiency of the model was higher. In SPTF, compared to BA, GA, and PSO, the improved BA had 
the lowest fitness value and a faster iteration speed. It tended to converge after about 400 iterations. 
In MPTF, the fitness value of the proposed model was still the lowest and began to converge after 
about 230 iterations. The diagnostic accuracy of the research model was relatively high, at 95.68%, 
with an AUC of 96.83%. The research model had the least number of iterations, followed by PSO-
GA, and CNN-BiLSTM had the most iterations. The average running time of FDM's CPU was the 
shortest, not exceeding 20s. CNN-BiLSTM had the longest average CPU running time. The 
predicted curve of the proposed model was relatively close to the true curve, with a prediction error 
smaller than BPNN. Its accuracy and recall were the highest, at 92.47% and 91.73%, respectively, 
and its RMSE was the lowest, at 0.021. However, the residual life prediction model proposed by the 
research institute, while using GA algorithm to improve BA algorithm for model performance, also 
brings an increase in model complexity. The increase in model complexity usually means that more 
computing resources are needed for training and prediction, and often more parameters need to be 
adjusted, which may limit the actual deployment of the model in environments with limited 
computing resources. Therefore, in future research, more concise residual life prediction models 
should be further explored, such as reducing the number of layers or parameters in the model and 
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5 Conclusion
For the stability analysis of complex computer systems, this study developed FDM based on

improved BA and LPM based on HMM. In the experiment, when the selection, crossover, and mutation
probabilities were 0.3, 0.5, and 0.35, the CPU running time was the shortest and the efficiency of the
model was higher. In SPTF, compared to BA, GA, and PSO, the improved BA had the lowest
fitness value and a faster iteration speed. It tended to converge after about 400 iterations. In MPTF,
the fitness value of the proposed model was still the lowest and began to converge after about 230
iterations. The diagnostic accuracy of the research model was relatively high, at 95.68%, with an
AUC of 96.83%. The research model had the least number of iterations, followed by PSO-GA, and
CNN-BiLSTM had the most iterations. The average running time of FDM's CPU was the shortest,
not exceeding 20s. CNN-BiLSTM had the longest average CPU running time. The predicted curve of
the proposed model was relatively close to the true curve, with a prediction error smaller than BPNN.
Its accuracy and recall were the highest, at 92.47% and 91.73%, respectively, and its RMSE was
the lowest, at 0.021. However, the residual life prediction model proposed by the research institute,
while using GA algorithm to improve BA algorithm for model performance, also brings an increase in
model complexity. The increase in model complexity usually means that more computing resources are
needed for training and prediction, and often more parameters need to be adjusted, which may limit the
actual deployment of the model in environments with limited computing resources. Therefore, in future
research, more concise residual life prediction models should be further explored, such as reducing the
number of layers or parameters in the model and lowering computational complexity. And develop
automated parameter adjustment methods using hyperparameter optimization algorithms such as grid
search and random search to improve the applicability of the model in different systems.
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